# The semantics of non-commutative geometry and quantum mechanics.

#### B. Zilber

University of Oxford

July 30, 2014

B. Zilber

University of Oxford

### 1 Dualities in logic and geometry

2 The Weyl-Heisenberg algebra

3 Calculations

B. Zilber

(ロト・日本・日本・日本・日本・日本)

University of Oxford

# Tarskian duality

#### Theory $T \leftrightarrow$ Class of models $\mathfrak{M}(T)$

University of Oxford

# Tarskian duality

#### Theory $T \leftrightarrow$ Class of models $\mathfrak{M}(T)$

For a  $\kappa$ -categorical T

Theory  $T \longleftrightarrow$  Model  $M_T$  (of cardinality  $\kappa$ )

B. Zilber

University of Oxford

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

# Tarskian duality

#### Theory $T \longleftrightarrow$ Class of models $\mathfrak{M}(T)$

For a  $\kappa$ -categorical T

#### Theory $T \longleftrightarrow$ Model $M_T$ (of cardinality $\kappa$ )

Recall **Morley - Shelah Classification Theory**: For a first-order countable  $\kappa$ -categorical theory T and  $\kappa > \aleph_0$ , the model M "is characterised by geometric features" - dimensions, homogeneity and so on – *stability theory*.

・ロト ・回ト ・ヨト ・ヨト

# Geometric dualities

Affine commutative C-algebra

 $R = \mathbb{C}[X_1, \ldots, X_n]/I$ 

Commutative unital C\*-algebra

Α

Affine *k*-scheme

B. Zilber

 $R = k[X_1, \ldots, X_n]/I$ 

k-scheme of finite type

Complex algebraic variety

 $\mathbf{M}_{R}$ 

Compact topological space

 $\mathbf{M}_{A}$ 

The geometry of *k*-definable points, curves etc of an algebraic variety  $\mathbf{M}_B$ 

The geometry of k-definable points, curves etc of a "Zariski geometry"  $\mathbf{M}_{S}$ 

University of Oxford

# Claim A

B. Zilber

These are syntax – semantics dualities.

University of Oxford

-



These are syntax – semantics dualities.

The dualities can be recast in the form of Tarskian dualities. Leaving aside the  $C^*$ -aspect, this is the semantics of *stable* (=geometric) type.

University of Oxford

# Claim A

**B** Zilber

These are syntax – semantics dualities.

The dualities can be recast in the form of Tarskian dualities. Leaving aside the  $C^*$ -aspect, this is the semantics of *stable* (=geometric) type.

Non-example. The models of the theory of arithmetic **do not** provide a semantics of geometric type.

The real 2-torus has co-ordinate ring  $A_0 = \langle U, V : U^* = U^{-1}, V^* = V^{-1}, UV = VU \rangle$  in the *comlexified form* =  $\mathbb{C}^{\times} \times \mathbb{C}^{\times}$ .

Taking \* into account we see the real torus

- The real 2-torus has co-ordinate ring  $A_0 = \langle U, V : U^* = U^{-1}, V^* = V^{-1}, UV = VU \rangle$  in the *comlexified form* =  $\mathbb{C}^{\times} \times \mathbb{C}^{\times}$ .
- Taking \* into account we see the real torus



Calculations

### A non-commutative example "at root of unity"

Non-commutative 2-torus at  $q = e^{2\pi i \frac{m}{N}}$  has co-ordinate ring  $A = A_q =$  $\langle U, V : U^* = U^{-1}, V^* = V^{-1}, UV = qVU \rangle$ 

University of Oxford

The semantics of non-commutative geometry and quantum mechanics.

B. Zilber

Calculations

### A non-commutative example "at root of unity"

Non-commutative 2-torus at  $q = e^{2\pi i \frac{m}{N}}$  has co-ordinate ring  $A = A_q =$  $\langle U, V : U^* = U^{-1}, V^* = V^{-1}, UV = qVU \rangle$ 

Points have structure of (an orthonormal basis) of a *N*-dim Hilbert space.



# Theorem (2005)

The above dualities can be extended to non-commutative geometry "at roots of unity".

$$A_{\mathbf{V}} \longleftrightarrow \mathbf{V}_{\mathcal{A}}.$$

 $A_V$  – co-ordinate algebra,  $V_A$  – Zariski geometry.

B. Zilber

University of Oxford

Affine commutative  $\mathbb{C}$ -algebra R

Commutative C\*-algebra A

Affine k-scheme R

**B** Zilber

k-scheme of finite type S

 $C^*$ -algebra A at roots of unity

Weyl-Heisenberg algebra  $\langle Q, P : QP - PQ = i\hbar \rangle$ 

Complex algebraic variety  $\mathbf{M}_{R}$ 

Compact topological space  $\mathbf{M}_A$ 

The *k*-definable structure on an algebraic variety  $\mathbf{M}_{R}$ 

The *k*-definable structure on a Zariski geometry  $\mathbf{M}_{S}$ 

Zariski geometry  $V_A$ 

Affine commutative  $\mathbb{C}$ -algebra R

Commutative C\*-algebra A

Affine k-scheme R

**B** Zilber

k-scheme of finite type S

 $C^*$ -algebra A at roots of unity

Weyl-Heisenberg algebra  $\langle Q, P : QP - PQ = i\hbar \rangle$ 

Complex algebraic variety  $\mathbf{M}_R$ 

Compact topological space  $\mathbf{M}_{A}$ 

The *k*-definable structure on an algebraic variety  $\mathbf{M}_{R}$ 

The *k*-definable structure on a Zariski geometry  $\mathbf{M}_S$ 

Zariski geometry  $V_A$ 

?

Affine commutative  $\mathbb{C}$ -algebra R

Commutative C\*-algebra A

Affine k-scheme R

k-scheme of finite type S

 $C^*$ -algebra A at roots of unity

Weyl-Heisenberg algebra  $\langle Q, P : QP - PQ = i\hbar \rangle$ 

Complex algebraic variety  $\mathbf{M}_{R}$ 

Compact topological space  $\mathbf{M}_A$ 

The *k*-definable structure on an algebraic variety  $\mathbf{M}_{R}$ 

The *k*-definable structure on a Zariski geometry  $\mathbf{M}_{S}$ 

Zariski geometry VA

? shut up and calculate!

"The whole of quantum mechanics is in this **canonical commutation relation**".

B. Zilber

University of Oxford

# "The whole of quantum mechanics is in this **canonical commutation relation**".

An analogy:

$$Y = X^2 + aX + b$$

is (the equation of) a parabola.

$$H=\frac{1}{2}(P^2+\omega^2Q^2)$$

is (the Hamiltonian of) a quantum harmonic oscillator.

・ロト ・同ト ・ヨト ・ヨ

University of Oxford

B. Zilber

B. Zilber

This does not allow the  $C^*$ -algebra (Banach algebra) setting.

<ロ> <回> <回> <三> <三> <三> <三> <三> <三> <三> <三</p>

University of Oxford

**B** Zilber

This does not allow the  $C^*$ -algebra (Banach algebra) setting. On suggestion of Herman Weyl and following Stone – von Neumann Theorem replace the Weyl-Heisenberg algebra by the category of **Weyl**  $C^*$ -algebras

$$egin{aligned} & m{A}_{a,b} = \left\langle m{U}^a, m{V}^b: m{U}^am{V}^b = m{e}^{iab\hbar}m{V}^bm{U}^a 
ight
angle, \ & m{a}, m{b} \in \mathbb{R}, \ m{U}^a = m{e}^{iaQ}, \ m{V}^b = m{e}^{ibP}. \end{aligned}$$

where it is also assumed that  $U^a$  and  $V^b$  are unitary.

This does not allow the  $C^*$ -algebra (Banach algebra) setting. On suggestion of Herman Weyl and following Stone – von Neumann Theorem replace the Weyl-Heisenberg algebra by the category of **Weyl**  $C^*$ -algebras

$$A_{a,b} = \left\langle U^a, V^b : U^a V^b = e^{iab\hbar} V^b U^a 
ight
angle,$$

$$a,b\in\mathbb{R},\ U^a=e^{iaQ},\ V^b=e^{ibP}.$$

where it is also assumed that  $U^a$  and  $V^b$  are unitary.

We may assume that  $\frac{\hbar}{2\pi} \in \mathbb{Q}$  and so, when  $a, b \in \mathbb{Q}$  the algebra  $A_{a,b}$  is at root of unity. We call such algebras **rational Weyl** algebras.

University of Oxford

イロト イヨト イヨト イヨト

# Sheaf of Zariski geometries over the category of rational Weyl algebras

The category  $A_{fin}$  has objects  $A_{a,b}$ , rational Weyl algebras, and morphisms = embeddings.

University of Oxford

# Sheaf of Zariski geometries over the category of rational Weyl algebras

The category  $A_{fin}$  has objects  $A_{a,b}$ , rational Weyl algebras, and morphisms = embeddings. Note,

$$A_{a,b} \subseteq A_{c,d}$$
 iff  $cn = a \& dm = b$  for  $n, m \in \mathbb{Z} \setminus \{0\}$ .

University of Oxford

# Sheaf of Zariski geometries over the category of rational Weyl algebras

The category  $A_{fin}$  has objects  $A_{a,b}$ , rational Weyl algebras, and morphisms = embeddings. Note.

$$A_{a,b} \subseteq A_{c,d}$$
 iff  $cn = a \& dm = b$  for  $n, m \in \mathbb{Z} \setminus \{0\}$ .

This corresponds to the surjective morphism in the dual category  $\mathcal{V}_{\mathrm{fin}}$  of Zariski geometries

$$\mathsf{V}_{\mathcal{A}_{a,b}} o \mathsf{V}_{\mathcal{A}_{c,d}}$$

University of Oxford

B. Zilber

University of Oxford

# Sheaf of Zariski geometries over the category of rational Weyl algebras

The category  $A_{fin}$  has objects  $A_{a,b}$ , rational Weyl algebras, and morphisms = embeddings. Note.

$$A_{a,b} \subseteq A_{c,d}$$
 iff  $cn = a \& dm = b$  for  $n, m \in \mathbb{Z} \setminus \{0\}$ .

This corresponds to the surjective morphism in the dual category  $\mathcal{V}_{\mathrm{fin}}$  of Zariski geometries

$$V_{A_{a,b}} 
ightarrow V_{A_{c,d}}.$$

The duality functor

**B** Zilber

$$A \mapsto \mathbf{V}_A$$

can be interpreted as defining a sheaf of Zariski geometries over the category of rational Weyl algebras.

# Completions of $\mathcal{A}_{\mathrm{fin}}$ and $\mathcal{V}_{\mathrm{fin}}$ .

The completion of  $\mathcal{A}_{\mathrm{fin}}$  is  $\mathcal{A},$  the category of all Weyl algebras in the Banach algebras topology.

$$B = \lim_{\mathcal{D}} A_i$$

B. Zilber

University of Oxford

# Completions of $\mathcal{A}_{\mathrm{fin}}$ and $\mathcal{V}_{\mathrm{fin}}$ .

The completion of  $\mathcal{A}_{\mathrm{fin}}$  is  $\mathcal{A},$  the category of all Weyl algebras in the Banach algebras topology.

$$B = \lim_{\mathcal{D}} A_i$$

Completing  $\mathcal{V}_{fin}$  is the main difficulty of the project.

B. Zilber

University of Oxford

# Completions of $\mathcal{A}_{\mathrm{fin}}$ and $\mathcal{V}_{\mathrm{fin}}$ .

The completion of  $\mathcal{A}_{\mathrm{fin}}$  is  $\mathcal{A}$ , the category of all Weyl algebras in the Banach algebras topology.

$$B = \lim_{\mathcal{D}} A_i$$

Completing  $\mathcal{V}_{fin}$  is the main difficulty of the project. This construction is called **structural approximation**.

University of Oxford

# Completions of $\mathcal{A}_{\mathrm{fin}}$ and $\mathcal{V}_{\mathrm{fin}}$ .

The completion of  $\mathcal{A}_{\mathrm{fin}}$  is  $\mathcal{A}$ , the category of all Weyl algebras in the Banach algebras topology.

$$B = \lim_{\mathcal{D}} A_i$$

Completing  $V_{fin}$  is the main difficulty of the project. This construction is called **structural approximation**. Let

$$\mathbf{V}_{*\mathcal{A}} = \prod_{\mathcal{D}} \mathbf{V}_{\mathcal{A}_i}$$

Apply the specialisation= surjective morphism

$$\mathsf{lim}: \mathbf{V}_{*A} \twoheadrightarrow \mathbf{V}_{B}.$$

University of Oxford

### The state of space.

We construct a  $\mathcal{V}_{\mathrm{fin}}\text{-}\mathsf{projective}$  limit object,  $V_\mathcal{A}\in\mathcal{V}$  :

$$\mathbf{V}_{\mathcal{A}} = \lim \mathbf{V}_{*\mathcal{A}}, \ \mathbf{V}_{*\mathcal{A}} = \prod_{\mathcal{D}_{div}} \mathbf{V}_{\mathcal{A}_i}$$

$$A \in \mathcal{A}_{\mathrm{fin}} \Rightarrow A \subset {}^{*}A \& \mathbf{V}_{\mathcal{A}} \twoheadrightarrow \mathbf{V}_{\mathcal{A}}.$$

This object is closely related to the Hilbert space of quantum mechanics. We call the object **the space of states.** 

### The state of space.

We construct a  $\mathcal{V}_{\mathrm{fin}}\text{-}\mathsf{projective}$  limit object,  $V_\mathcal{A}\in\mathcal{V}$  :

$$\mathbf{V}_{\mathcal{A}} = \lim \mathbf{V}_{*\mathcal{A}}, \ \mathbf{V}_{*\mathcal{A}} = \prod_{\mathcal{D}_{div}} \mathbf{V}_{\mathcal{A}_i}$$

$$A \in \mathcal{A}_{\operatorname{fin}} \Rightarrow A \subset {}^{*}A \& V_{\mathcal{A}} \twoheadrightarrow V_{\mathcal{A}}.$$

This object is closely related to the Hilbert space of quantum mechanics. We call the object **the space of states.** 

The non-standard Zariski geometry  $V_{*A}$  can be seen as "the huge finite universe" and the state of space is its "observable image". Iim is the standard part map.

# Analogy

B. Zilber

Rational Weyl algebra Zariski geometry Limit object  $V_A$ 

Zariski-continious maps on  $\mathbf{V}_{*A}$ 

Rational number Interval in rational numbers Interval in real numbers  $\mathbb{R}$ integrable functions on  $\mathbb{R}$ 

# Scheme of calculations

- rewrite the formula over V<sub>A</sub> in terms of Zariski-regular pseudo-finite sums and products over V<sub>\*A</sub>
- calculate in V<sub>\*A</sub> (using e.g. the Gauss quadratic sums formula)
- apply the specialisation lim to the result and get the result in terms of the standard reals.

Calculations

### Example. The canonical commutation relation

We define in  $V_{*A}$  :

$$Q := rac{U^a - U^{-a}}{2ia}, \ \ P := rac{V^b - V^{-b}}{2ib},$$

in accordance with

$$U^a = e^{iaQ}, V^b = e^{ibP}.$$

University of Oxford

Calculations

### Example. The canonical commutation relation

We define in  $\mathbf{V}_{*A}$ :

$$Q := rac{U^a - U^{-a}}{2ia}, \ \ P := rac{V^b - V^{-b}}{2ib}$$

in accordance with

$$U^a = e^{iaQ}, V^b = e^{ibP}.$$

Calculate that for any state e in  $V_{*A}$ 

$$(QP - PQ)e = i\hbar e + \epsilon$$
,  $\lim \epsilon = 0$ 

So in  $V_{\mathcal{A}}$ 

B. Zilber

$$QP - PQ = i\hbar I.$$

University of Oxford

Calculations

### Example. Quantum harmonic oscillator.

University of Oxford

Calculations

### Example. Quantum harmonic oscillator.

The Hamiltonian:

$$H=\frac{1}{2}(P^2+Q^2)$$

University of Oxford

Calculations

### Example. Quantum harmonic oscillator.

The Hamiltonian:

$$H=\frac{1}{2}(P^2+Q^2)$$

The time evolution operator :

$$K^t := e^{-i\frac{H}{\hbar}t}, t \in \mathbb{R}.$$

We model  $K^t$  in  $\mathbf{V}_{*A}$  assuming sin t, cos  $t \in \mathbb{Q}$ .

Calculations

### Example. Quantum harmonic oscillator.

The Hamiltonian:

$$H=\frac{1}{2}(P^2+Q^2)$$

The time evolution operator :

$$K^t := e^{-i\frac{H}{\hbar}t}, t \in \mathbb{R}.$$

We model  $K^t$  in  $\mathbf{V}_{*A}$  assuming sin t, cos  $t \in \mathbb{Q}$ . The *kernel of the Feynman propagator* is calculated as

$$\langle x_1 | \mathcal{K}^t x_2 \rangle = \sqrt{\frac{1}{2\pi i \hbar \sin t}} \exp i \frac{(x_1^2 + x_2^2) \cos t - 2x_1 x_2}{2\hbar \sin t}$$

University of Oxford

Calculations

### Example. Quantum harmonic oscillator.

The trace of  $K^t$ ,

$$\operatorname{Tr}(\mathbf{K}^{t}) = \int_{\mathbb{R}} \langle x | \mathbf{K}^{t} x \rangle = \frac{1}{\sin \frac{t}{2}}.$$

B. Zilber

University of Oxford

Calculations

### Example. Quantum harmonic oscillator.

The trace of  $K^t$ ,

$$\operatorname{Tr}(\mathcal{K}^t) = \int_{\mathbb{R}} \langle x | \mathcal{K}^t x \rangle = \frac{1}{\sin \frac{t}{2}}.$$

Note that in terms of conventional mathematical physics we have calculated

$$\mathrm{Tr}(\mathbf{K}^t) = \sum_{n=0}^{\infty} e^{-it(n+\frac{1}{2})},$$

a non-convergent infinite sum.

University of Oxford