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Abstract

One of the main claims of the paper is that Dirac’s calculus and
broader theories of physics can be treated as theories written in the
language of Continuous Logic. Establishing its true interpretation
(model) is a model theory problem. The paper introduces such a
model for the fragment which covers “free theories”, that is physical
theories with Gaussian (quadratic) potential. The model is pseudo-
finite (equivalently, a limit of finite models), based on a pseudo-finite
field in place of the field of complex numbers. The advantage of this
unusual setting is that it treats the quantum and the statistical me-
chanics as just domains in the same model and explains Wick rotation
as a natural transformation of the model corresponding to a shift in
scales of physical units.
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1 Introduction

1.1 The success of model theory in its numerous applications in var-
ious areas of mathematics is due, in the first place, to its focus on the
fundamental questions: what is the adequate mathematical language
of the area? what is the structure that is being studied?

We start here by asking the same questions about physics or rather
some parts of physics. More precisely our focus of interest is in foun-
dations of quantum theory and of statistical physics, the two areas
differing by the nature of physical processes and the scales of magni-
tudes, using different mathematical platforms connected by the formal
mathematical trick called “the Wick rotation”.

Statistical physics was properly established in the 19th centure
when it was notices that the probability of a state (of a gas) with

certain energy E and temperatire T is proportional to e−
E
T .

Several decades later quantum physics started with the basic ob-
servation that the state of a quantum system of energy E at time t can
only be adequately observed by attributing to it the complex number
of norm 1, eiEt, called the probability amplitude.

This settings generate certain logic which in the first case one can
recognise as a form of the probabilistic logic. The second case is in fact
more general and can be classified (as yet informally) as the continuous
logic with values in C.

The typical n-ary predicate in the theory has the form

Un → C; x̄ · u 7→ c · ef(x̄) (1)

where U is the domain of physical units, u ∈ U, f : Cn → C some
function (typical for Hamiltonian mechanics) possibly with complex
coefficients, c a constant.

The quantifiers are of the form

ef(x̄,y) 7→
∫
R

ef(x̄,y) · ea(y) dy

and in basic cases the right-hand can be calculated to be of the form
b · eg(x̄).

In statistical theory f and a are real functions. In quantum theory
these are typically similar functions obtained by changing f(x, y) and
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a(y) to if(x, y) and ia(y). The quantum mechanical version is in fact
the calculus in Dirac’s formalism.

The Wick rotation effect is that the calculation of quantifiers for
real f and a return the same result if(x, y) and ia(y) with respective
changes from b·eg(x̄) to b′·eig(x̄), appropriately defined b′. The effect can
be explained mathematically in many cases but the physical nature
of the formal link between statistical and quantum theory remains a
mystery.

1.2 In this paper we take seriously the assumption that the logical
setting of physics is that of continuous logic (CL) and treat the laws
of physics written in terms of CL-formulas as axioms of a CL-theory.
The problem is to find an interpretation of the axioms, that is a class
of yet to be defined structures: continuous, finite, or pseudo-finite .

(In [3] E.Hrushovski solves a similar, albeit in fact inverse, problem
of writing down a CL-theory for a class of finite and pseudo-finite
structures.)

First of all we need to determine the universe U as in (1) and the
structure on it.

A crucial question of significance in physics is that whether U is
discrete or continuous. In statistical mechanics U is discrete, and even
finite of huge size, by definition. In quantum theory it is currently
universally accepted that U is discrete (which follows from the fact
that distinct points of the space has to be at the distance at least of
the Planck length). It is also consistent to assume more generally the
finiteness of the universe if we accept that the age of the universe is
finite. These issues are being actively discussed in physics literature.

Now, if we accept that U is finite or pseudo-finite (in the model
theory sense) then the range of the maps in (1) does not need to be
a continuous field, in fact it makes sense to consider logical values in
a finite or pseudo-finite field Fp in place of C. However, there is an
obvious difficulty of practical nature. R.Penrose in his book The Road
to Reality writes about the prospect of using finite fields in physics:

... It is unclear whether such things really have a significalnt role
to play in physics, although the idea has been revived from time to
time. If Fp were to take the place of the real-number system, in any
significant sense, then p has to be very large indeed. ... To my mind,
a physical theory which depends fundamentally upon some absurdly
enormous prime number would be a far more complicated (and im-
probable) theory than one that is able to depend on a simple notion of
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infinity. Nevertheless, it is of some interest to pursue these matters.
...

One of the main result of our paper is that the setting with pseudo-
finite Fp is quite easily convertible to the setting over the field C.
Conversely the continuous calculus over C (and R) can be translated
into some meaningful calculations over Fp without loss.

1.3 The mathematical tool which is behind the passage between the
pseudo-finite setting and C is the following diagram first established
in [2] and worked out in the current paper in more detail:

lmU
U −→ C̄
| |

expp | | exp
↓ ↓

lmF

Fp −→ C̄

(2)

Here U is a pseudo-finite additive group and expp is a surjective homo-
morphism of the additive group onto F×p . The horizontal arrows are
“limit” maps lmU and lmF respectively, lmF is a place from the field
Fp onto C̄ = C ∪ {∞}, and lmU is appropriate map for the additive
structures.

It is crucial that the limit maps are rather well-controlled, in par-
ticular certain natural multpilicative subgroups ′S′, ′R′+ ⊂ Fp map
onto the unit circle S ⊂ C̄ and the non-negative reals R+ ⊂ C which
allows to mimic polar coordinates of C in Fp and thus develop a work-
ing analogue of continuous complex calculus.

1.4 In essense, the main model theory result of the paper is the
construction of a continuous-model ultraproduct of quite intricate fi-
nite structures interpreted in (Up,Fp) which include wave-functions,
finite-dimensional “Hermitian and Euclidean Hilbert spaces” over Fp,
linear operators on the spaces and other relevant constructs.

One of the main gains of the pseudo-finite setting in terms of foun-
dations of physics is in explaining the effect of Wick rotation as the
transformation/homomorphism of U caused by the multiplication

u 7→ i · u

where i is a non-standard integer such that

lmU(i · u) = i · lmU (u) ( i =
√
−1 ).
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The action of the “huge” integer i shifts a subdomain Vu of the
universe U to the subdomain Vv = i ·Vu. We associate Vu with physics
at the scale of statistical mechanics and the Euclidean Hilbert space
formalism and Vv with quantum mechanics and Hermitian Hilbert
spaces. Thus the shift by i is the mathematical form of the change of
scales in physics which manifests itself as the Wick rotation.

2 Main results

2.1 We define U = Up,l as the quotient of the additive group of non-
standard integers ∗Z by the ideal generated by the number (p− 1) · l,

U := ∗Z/(p− 1) · l

for distinguished parameters: prime p and a highly divisible l.

expp : U→ F×p

is a homomorphism with the kernel (p − 1) · U and i ∈ ∗Z divides
(p− 1) and is divisible by l.

2.2 Logical evaluations of U in Fp. We think of Fp as the domain
of logical values as opposed to U and UM as domains of physical
units. We think of definable operations on Fp as logical connectives,
where definable means interpretable in the non-standard model of
arithemetic ∗Z with distinguished parameters p, l and the map expp .

The map expp : U → Fp gives rise to evaluations of “physical
models” and leads to a basic notion of the Hilbert space formalism of
physics, a state (over Fp):

ϕ : V→ Fp

where V ⊂ UM is a specific subdomain. A basic state (basic predicate)
ϕ has the form

ϕ(x̄) = expp(f(x̄) · u)

where f(x̄) is a polynomial over Z, x̄ ∈ ∗ZN and u ∈ V. A general
state is obtained from basic ones by using “logical connectives”.

The states (which are of course a certain kind of coordinate func-
tions) form an Fp-linear spaceHV of pseudo-finite dimension, with nat-
ural choices of orthonormal bases and well-defined inner product with
values in F or a well-controlled extension of F. Moreover, we consider
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definable linear maps on HV, analogues of linear unitary operators
playing an important role in physics (such as the Fourier transform
and time evolution operators).

The definable family of position states

Lu = {ur : r ∈ V}; ur(s) := δ(r − s)

(Kronecker-delta) forms a basis of HV. A definable injective linear
operators A give rise to other definable bases

LAu = {Aur : r ∈ V}.

In regards to model-theoretic formalism, unlike the traditional ap-
proach (see e.g. [5]), HV is not considered to be a universe of a
structure. Instead, we consider the multisorted structure on sorts
Lψ, definable bases, with linear maps between these, together with
the Fp-linear space HV interpretable in the sorts.

2.3 In the current paper we restrict the study to so called Gaus-
sian setting. This means that the f(x̄) defining basic states ϕ are
quadratic forms on ∗Z (in fact on the ring KN = ∗Z/N , for N = |V|)
and the operators are of the form

A : ϕ 7→ 1√
N

∑
r∈KN

expp(a(q, r)u) · ϕ(r), (3)

where u ∈ V, an element of order N and a(q, r) is a quadratic form.
These are discrete analogues of quantum mechanics unitary opera-
tors for the free particle and the harmonic oscillator. We believe free
fields theories should be representable in the setting once we switch
to considering domains V ⊂ UM for appropriate infinite pseudo-finite
M.

We are in particular interested in studying relationship between
two domains Vu and Vv in U determined by the choices of units, u
and v respectively, of different scales: v = i · u, for i described above.

2.4 Our first main result, Thm 6.10, establishes for the discrete
pseudo-finite model a unifying treatment of “physics” over the two
domains:

In fact,
Vv ⊂ Vu
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both equipped with additive non-standard metrics defined in terms of
units v or u respectively.

The mulitplication by i determines the projection

i : Vu � Vv = iVu.

Given a state ϕ on Vu, its restriction to Vv is a state on Vv, which
we denote ϕi. In fact, if ϕ = expp(f(r)u) then ϕi = expp(if(r)u).

Respectively the action of a linear operator A on ϕ ∈ HVu becomes
the action of some well-defined linear operator Ai on ϕi ∈ HVv ,

Aiϕi = (Aϕ)i.

A formal inner product on the spaces transforms correspondingly

〈ϕi|ψi〉 = 〈ϕ|ψ〉i,

where we consider both a formal-Euclidean and a formal-Hermitian
versions of inner product.

This gives us the isomorphism of the structures

{}i : HVu → HVu (4)

Note that a tensor product powers H⊗MV for pseudo-finite M is in-
terpretable inHV (or rather in the underlying structure (U; Fp)). Thus
the picture can be generalised to pseudo-finite-dimensional setting

VMv ⊂ VMu ⊂ UM

with the Hilbert spaces replaced by tensor product powers H⊗MVv
and

H⊗MVu
respectively.

2.5 Our final task is to recast the pseudo-finite ultraproduct of fi-
nite structures underlying the formal Hilbert spaces HVu , HVv as a
continuous logic (CL) structure with values in the complex numbers.
The key to the construction are the limit maps lmU and lmF shown in
diagram (2).

First we have to convert the domains Vu and Vv into metric spaces
presentable as countable unions of finite diameter subspaces. That is
not obvious since the nonstandard-valued dimeters of Vu and Vv (in
units u and v respectively) are large nonstandard numbers, however we
follow these metrics and define, for V := Vu and V := Vv respectively,

V|n = {u ∈ V : dist(0, u) ≤ n},
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Vlm
|n := lmU(V|n) and Vlm :=

⋃
n∈N

Vlm
|n

It turns out that

Vlm
u = R and Vlm

v = ıR

For a state ϕ as above we define

ϕlm : Vlm → C; ϕlm(rlm) := lmF(
√
Nϕ(r))

Note that we have to use a normalising coefficient, an infinite pseudo-
finite number

√
N (N is Nu or Nv, respectively) in order to produce

a meaningful wave-functions R→ C. As a result, inner products also
have to be renormalised, which agrees with the Dirac delta-function
renormalisation of respecive integral formulas.

Crucially, in case of Vu we find it technically necessary to choose
the Euclidean inner product, and in case of Vv the Hermitian inner
product.

Finally, the linear operators A of the form (3) becomes the integral
operator on the Hilbert space of functions φ,

Alm : φ 7→
∫
R

eα(s,x) · φ(x) dx. (5)

In terms of continuous logic, this is an existential quantifier (bounded
by condition eα(s,x)).

We refer to the two structures as

HR := Hlm
Vu

and HıR := Hlm
Vv

with Euclidean and Hermitian inner products respectively.

2.6 The final result presented in section 8 can be summarised as the
following Theorem compairing the two continuous logic structures:

The map (4) passes to a morphism of CL-structures

{}i : HR → HıR

realised by the bijection on the CL-position states sorts

Llmu → Llmui ; ur 7→ uır, r ∈ R
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and general ket-sorts

Llmψ → Llmψi ; ψr 7→ ψır, r ∈ R

which commute with the tranformation of the integral operators (5)∫
R

eα(s,x) · φ(x) dx 7→
∫
R

eıα(s,x) · φi(x) dx

and induces the R-bilinear bijective maps between inner products

〈ψr|ϕs〉E 7→ 〈ψi
r|ϕi

s〉H; r, s ∈ R

(Euclidean on LHS and Hermitian on RHS)
This gives a full account on the Wick rotation in Gaussian setting.

Also, treating the integral operators as quantifiers, the structure
allows quantifier elimination.

2.7 Future directions. The extension of the Gaussian setting to
free fields theories seems quite feasible. The more general setting
requiring perturbation methods is more challenging but does not seem
impossible since tools of real and complex analysis are reasonably
available in Fp-setting.

3 Definability and scales in U.
3.1 As in [2], let

∗C = CP /D, ∗Z = ZP /D

be ultrapowers of the field of complex numbers and of the ring of
integers by a non-principal ultrafilter on the set of prime numbers P.

Recall that by definition we have a representation of Up,l and Fp

together with expp in (∗Z; +, ·, p, i, l) as quotients

Up,l = ∗Z/(p− 1)l; Fp = ∗Z/p

and
expp : η · 1̂ 7→ εη, for some ε ∈ Fp and each η ∈ ∗Z

such that, for some m, j∧
n∈N

n|m & m2 = l & m|j & j2 = i & i|(p− 1) (6)
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and
εη = 1 mod p iff (p− 1)|η (7)

Notation

acl(X) = the algebraic closure of subset X ⊂ Fp in Fp.

∗Z[N : M ] := {z ∈ ∗Z : N ≤ z ≤M}

3.2 Lemma. We may assume in addition to (6) that

i2 6= p− 1⇒
∧

a1,...,ak∈Z
ik + a1i

k−1 + . . .+ ak 6= 0 mod p

Proof. The set of conditions on i on the right hand side of ⇒ is
countable as is the set of conditions in (6). Thus these can be realised
together with j and l in the ω-saturated structure ∗Z. �

3.3 Lemma. Asssuming p, i satisfying (6) and 3.2 are fixed, there
is an ε ∈ Fp which along with (7) satisfies

ε
p−1
i /∈ acl(Q[i]) (8)

that is

α := ε
p−1
i = expp(

p− 1

i
)

is transcendental in Fp over i.

Proof. Indeed, ε
p−1
i is an element of (non-standard) order i in the

multiplicative group F×p of order p−1. The set of integers r ∈ ∗Z[0 : i]
co-prime with p− 1 is an infinite definable set and for each such r the

element εr satisfies (7) in place of ε. At the same time (εr)
p−1
i takes

different values for distinct r. Since ∗Z is ω-saturated, there is an r

such that (εr)
p−1
i /∈ acl(Q[i]). Taking ε to be εr proves the claim.

3.4 We write (∗Z; Ωp) for the structure of nonstandard arithmetic
with extra parameters p, ε, i. Note that Ωp also determines m and j
when (6) is satisfied.

Call a k-tuple L ∈ ∗Zk finite-generic with respect to Ωp (f,-g. for
short) if for any Ωp-formula Φ(x̄)

For each l̄ ∈ NK , (∗Z; Ωp) � Φ(l̄) ⇒ (∗Z; Ωp) � Φ(L) (9)

Note that the set of formulas satisfying the antecedent of (9) is a
k-type. We call a formula Φ as in (9) an f.-g. formula.
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3.5 Properties.
1. n̄ ∈ Nk then n̄ is f.-g.
2. (L1, L2) is f.-g. then L1 and L2 are f.-g.
3. L ∈ ∗Zk f.-g. and f(X) an Ωp-definable function such that,

f(Nk) ⊆ N. Then f(L) is f.-g. and f(L) ≥ 0.
4. Let β be a definable elemenent in (∗Z; Ωp). If x = L is a solution

of non-trivial equation p(x, β) = 0 mod p, for p(x, y) ∈ Z[x, y], then
L is not f.-g.

Proof. 1. and 2. immediate by definition.
3. Let Φ(x) be an f.-g. formula. Then Φ(f(ȳ)) is f.-g. since

(∗Z; Ωp) � Φ(f(n̄)) for all n̄ ∈ Nk. Thus � Φ(f(L)). So f(L) is f.-g..
Note that x ≥ 0 is a f.-g. formula, so f(L) ≥ 0.

4. There are only finitely many solutions of p(x, β) = 0 mod p & 0 ≤
x < p, so L not f.-g.. �

3.6 Remark. We would need to consider also the structure on the
field C with a predicate distinguishing Z and constants symbols i, ε and
p, call it (C,Z,Ωp), together with its non-standard version (∗C, ∗Z; Ωp).
It is easy to check that

A subset P ⊆ ∗Zn is definable in (∗C, ∗Z; Ωp) if and only if it is
definable in (∗Z; Ωp).

Thus in the definition above we can consider either of the struc-
tures.

Let F be the set of all Ωp definable functions f : ∗Z → ∗Z such that
f(N) ⊆ N.

Remark. We don’t know if F is a proper extension of F0, the set
of all functions 0-definable in arithmetic.

However, in more general setting, there is a nonstandard q ∈ ∗Z
such that the set Fq of all functions g : ∗Zk → ∗Z defined in (∗Z; +, ·, q)
and satisfying the condition g(Nk) ⊂ N is bigger than F0. Indeed, set

g(n) :=

{
pn, if pn|q (n-th prime)
0, otherwise

Using saturatedness one can, for any set Q of standard primes pn ∈ N,
find q ∈ ∗Z such that, for all n ∈ N,

pn ∈ Q⇔ pn|q

Clearly, there are Q ⊂ N which are not 0-definable in arithmetic. So
exists q and g ∈ Fq \ F0.
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3.7 Proposition. Assume (6)-(8) for some Ωp and l. Assume i2 +
1 6= p.

Then there exist a finite-generic l satisfying (6) together with the
condition: for each f ∈ F

∀a0 . . . ak ∈ ∗Z[−f(l) : f(l)] a0 6= 0→ a0i
k+a1i

k−1+. . .+ak 6= 0 mod p
(10)

In particular, independently on the condition i2 + 1 6= p, for each
f ∈ F :

i > f(l) and
p− 1

i
> f(l) (11)

Proof. Let, for M ∈ N,

PM (l) :=
∧
n≤M

∃m, j : n|m & m2 = l & m|j & j2 = i & i|(p− 1).

Clearly
∧
M∈N PM (l) is a type realisation l of which satisfies (6). One

can see that for any standard n ≥M,

(∗Z; Ωp) � PM ((n!)2)

That is the Ωp-formula

ΨM (n) := n ≥M → PM ((n!)2)

holds for all n ∈ N, that is ΨM is an f.-g,-formula. Let n ∈ ∗Z be
an infinite f.-.g. number. In particular, (∗Z; Ωp) �

∧
M∈N ΨM (n). Let

l := (n!)2, which is also an infinite f.-.g. number by 3. of 3.5.
Let Φf (x) be the Ωp-formula stating (10) when x := l. Lemma

3.2 states that this is a f.-g. formula. Then (∗Z; Ωp) � Φf (l) by our
definition of l, which proves (10).

In case i2 + 1 6= p (11) follows immediately. Otherwise we use the
fact that i > f(n) & p−1

i > f(n) for all n ∈ N. �

3.8 Notation/Corollary. We choose l, ε and i so that (6)-(8) and
(10) hold and l is finite-generic.

Denote
O(F) :=

⋃
f∈F

∗Z[−f(l) : f(l)],

O(l) :=
⋃
m∈N

∗Z[−ml : ml],

u :=
p− 1

il
and v :=

p− 1

l
= iu.
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3.9 Corollary. O(F) is a convex subring of ∗Z containing O(l) and
closed under every f ∈ F . In particular,

O(F) ≺ ∗Z

in the language of rings.

Also
O′(F) < O′(F) · u < O′(F) · v

for O′(F) := O(F) \ {0}.
Proof. The first follows from the definition and the fact that

O(F) is closed under all 0-definable maps in the structure (∗Z; +, ·)
with definable Skolem functions.

The second is a corollary of (11). �

3.10 Definition
′S′ := expp{O(l) · v}
′R′+ := expp{O(l) · u}

Note that since expp((n+ l) · v) = expp(n · v)

′S′ := expp{O(l) · v}

4 Embedding into ∗C.

4.1 Let π′ ∈ ∗C stand for a real number, possibly non-standard, such
that eπ

′
is transcendental (assuming Schanuel’s conjecture we can take

π′ := π).

We consider U = Up,l as an O(l)-module. Note that ∗Z ⊂ ∗C and
thus O(F) ⊂ ∗C and acts on ∗C by multiplication.

First we define the map

IU : U→ ∗C

on the 2-elements set {u, v} ⊂ U (see 3.8):

IU : u 7→ −2π′

l
; v 7→ −2πi

l

where i =
√
−1.
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For α, β ∈ O(l) define

IU : (α · u + β · v) 7→ −1

l
(2π′α+ 2πiβ). (12)

Note that by 3.7, u and v are linearly independent over O(l)). Hence
the map is well-defined and invertible.

Let U(l) be the 2-dimensional O(l)-submodule of U spanned by
{u, v} and let ∗C(l) ⊂ ∗C be the O(l)-submodule spanned by {2π′

l ,
2πi
l }

(12) defines
IU : U(l)→ ∗C(l)

as an O(l)-linear isomorphism.

4.2 Consider elements

1, expp(u), expp(v) ∈ Fp

(1 is 1mod p of Fp) and define a partial map IF : Fp → ∗C on the three
points:

IF : 1 7→ 1, expp(u) 7→ e−
2π′
l , expp(v) 7→ e−

2πi
l

and further, for any a ∈ O(F) and s, r ∈ O(l),

IF : a · 1 7→ a · 1, expp(ru) 7→ e−
2rπ′

l , expp(sv) 7→ e−
2sπi
l .

This is internally definable over respective elements by our as-
sumptions. Moreover, if a = ai, s = si and r = ri represent elements
of internally definable sequences, i ∈ I ⊂ ∗Z[0 : lm] then one can
definably extend to sequences

IF : ai · 1 7→ ai · 1, expp(riu) 7→ e−
2riπ

′
l , expp(siv) 7→ e−

2siπi

l .

Let

O(F) := {
∑
i∈I

ai expp(riu) expp(siv) : I ⊆ ∗Z[0 : lm] definable}

O(∗C) := {
∑
i∈I

aie
−2riπ

′
l e

−2siπi

l : I ⊆ ∗Z[0 : lm] definable}

These are rings containing O(F) and closed under internally definable
summation.

Extend
IF : O(F)→ O(∗C)

accordingly.
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4.3 Lemma. IF is well-defined and bijective.
Proof. It is enough to prove that∑
i∈I

ai expp(riu) expp(siv) = 0 iff
∑
i∈I

aie
−2riπ

′
l e

−2siπi

l = 0. (13)

Note that the left hand side equality can be expressed by a formula
Ψ(l, I) in (∗Z; Ωp).

Similarly, the right hand side equality can be expressed by a for-
mula Ψ̇(l, I) in (∗C, ∗Z; Ωp).

Consider the formula

Φ(l) := ∀I ⊂ ∗Z[0 : lm] Ψ(l, I)↔ Ψ̇(l, I).

We claim that, for all n ∈ N,

(∗C; ∗Z,Ωp) � Φ(n).

Indeed, the internally definable sequences on Z[0 : nm] have finite
values of parameters ai, ri, si and m and thus Φ(n) expresses the fact

that the algebraic dependence of some e
2riπ

′
k , e

2siπi

k with coefficients ai
takes place if and only if the algebraic dependence with coefficients ai

of expp(
ri(p−1)
ki ), expp(

si(p−1)
k ) takes place. And note that both e

2siπi

k

and expp(
si(p−1)

k ) are standard roots of unity in respective fields while

e
2riπ

′
k , expp(

ri(p−1)
ki ), are transcendental elements. It follows that the

equalities on the both side of (13) can only happen when all ai = 0.
Which proves Φ(n) and hence Φ(l). �

4.4 Remark.
acl(O(∗C)) 6= ∗C.

Indeed, elements of O(∗C)) are definable over l, e
π′
l and e

πi
l in (∗C; ∗Z,Ωp)

and thus can be reduced to elements of the ring Ol ⊂ C generated by

roots of unity of order l and elements of the form e
2π′i
l over l ∈ N in

a structure of the form (C;Z,Ωp). Hence any element of acl(O(∗C))
is in the ultraproduct of acl(Ol) such that l are the restrictions of l
to the index set of the ultraproduct. The statement follows from the
fact that acl(Ol) 6= C. �

The Lemma together with the statement in 4.1 prove:
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4.5 Theorem. The maps

IU : U(l)→ ∗C(l)

and
IF : O(F)→ O(∗C)

are bijections preserving internally definable summation and commute
with respective exponentiation maps

expp : U(l)→ O(F) and exp : ∗C(l)→ O(∗C)

4.6 Define F ⊂ Fp to be the fraction field of O(F).

Theorem 4.5 implies that IF extends to the embedding

IF : F ↪→ ∗C (14)

4.7 Corollary. There is an internally definable notion of complex
conjugation z 7→ z̄, z̄ = z−1, for z ∈ ′S′, and ȳ = y for y ∈ ′R′+ and
this determines an automorphism x 7→ x̄ on F.

Moreover,
IF(x̄) = IF(x)

(complex conjugation in ∗C on the right).
Proof. IF maps ′S′ to S and ′R′+ to positive reals of ∗C, thus com-

plex conjugation is correctly defined on ′S′ and ′R′+. The extension
to F is by internally definable summation and hence reduces read-
ily to finite sums, which satisfies the algebraic identities of complex
conjugation. �

Set
lmF := st ◦ IF

4.8 Lemma.
lmF : F � C̄

Proof. The surjectivity of lmF follows from the facts:

lmF : {expp(ru) : r ∈ O(l)} = R+

lmF : {expp(rv) : r ∈ O(l)} = S

and
lmF(l) =∞.

�
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4.9 Lemma. Let î = imodp ∈ Fp. Then

î2 = −1 or î /∈ acl(F).

Proof. Suppose towards a contradiction that î ∈ acl(F). It implies
that

c0î
k + c1î

k−1 + . . .+ ck = 0 (15)

for some c0, c1, . . . ck ∈ O(F), c0 6= 0, that is of the form∑
i∈I ai expp(riu) expp(siv) each, i.e. ci = ci(l) internally definable

in (∗Z; Ωp) over l. Note that if we substitute n ∈ N in place of l, c(n)

is in the ring generated by expp(
ri(p−1)
ki ), expp(

si(p−1)
k ) with finite ri, si

and k. That is c(n) is algebraically dependent on α = expp(
p−1
i ). It

follows that,

for all n ∈ N : c0(n)̂ik + c1(n)̂ik−1 + . . .+ ck(n) 6= 0 ∨
∧

0≤i≤k
ci(n) = 0

(16)
for otherwise î ∈ acl(α) in contradiction with 3.3 and 3.7.

Since l is finite-generic (16) implies the negation of (15), the con-
tradiction which proves our statement.�

Recall that
i = e

πi
2 .

4.10 Corollary. For some i′ ∈ ∗C such that i′− i is an infinitesimal
in ∗C, the embedding IF of (14) extends to the embedding

IF : Fp → ∗C; so that î 7→ i′

Thus,
lmF : Fp � C̄ (17)

lmF : î 7→ e
πi
2 and ĵ 7→ e

πi
4 . (18)

Proof. If î2 = −1 then set i′ = i. Otherwise, pick i′ ∈ ∗C in
the infinitesimal neighborhood of i but not in IF(acl(F)), which exists
because of 4.4.

The extension of IF to an embedding of Fp is by the routine alge-
braic construction using the fact that

tr.degFFp ≤ tr.degF
∗C

17



and ∗C is algebraically closed. �

Remark. Note that in terms of the embedding ∗Z[0 : p− 1] ↪→ Fp

one may identify î = i, ĵ = j and

lmF : i 7→ e
πi
2 and j 7→ e

πi
4 .

Remark An immediate consequence of the properties of the stan-
dard part map is that lmF as defined in (17) is a place of fields, that
is there is a local ring F0 of F such that the restriction

lmF : F0 � C

is a homomorphism of rings and, for x ∈ F \ F0, lmF(x) =∞.

4.11 Theorem. There is an additive surjective homomorphism

lmU : U(l) � C

such that, for u ∈ U(l) and x ∈ F

lmU(u) = st ◦ IU(u)

lmF(x) = st ◦ IF(x)

exp(lmU(u)) = lmF(expp(u))

and
lmU(iu) = i lmU(u).

Proof. Let
lmU(u) := st ◦ IU(u)

which is well-defined for u ∈ U(l) by 4.5, and satisfies the required
commutativity condition by the same Theorem.

(12) implies lmU(iu) = i lmU(u)
The surjectivity of lmU follows from the fact that

st(∗C(l)) = C

since by construction

st(
2π′ ·O(l)

l
) = R and st(

2πi ·O(l)

l
) = ıR.

�
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4.12 Order, distance and continuity. Following 4.5 we are going
to assume

F ⊂ ∗C. (19)

This allows to consider the inequality ≤ on the reals of F, the restric-
tion of the internally definable relation ≤ on the reals of ∗C.

More generally, suppose X ⊂ UM is a definable set with the struc-
ture of a ∗Q+-valued length-metric, namely there are internally defin-
able ternary predicates on ∗Q+ × X2, written as dq(x, y), which are
interpreted as “the distance between x and y is ≤ q”. Since X is
pseudo-finite the distance dist(x, y), equal to the minimum length of
the paths between the two points, is a well-defined value in ∗Q+.

A map g : X → F will be called (Lipschitz) pseudo-continuous
(with derivative bounded by c) if there exists positive c ∈ Q such that
for any x1, x2 ∈ X,

d 1
l
(x1, x2)→ |g(x1)− g(x2)| ≤ c

l
.

4.13 Lemma. Let
g : X → F

be pseudo-continuous with derivative bounded by c. Then for all M ∈
O(F) for all z1, z2 ∈ X

dM
l

(z1, z2) → |g(z1)− g(z2)| ≤ cM
l
.

Proof. Immediate from definition by induction on M. �

5 States and the Hilbert space

5.1 We will assume that V ⊆ UM introduced in 2.2 is a set with
some family ΩV of internally definable relations on it. In particular,
ΩV contains the predicates for the ∗Q-metric structure on V : this
is a family of binary predicates dq(x, y), 0 < q ∈ ∗Q, with intended
interpretation “the distance between x and y is ≤ q”.

A state on V is an internally definable map

ϕ : V→ F.

A ket-state on V is a pseudo-continuous state on V.
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Set H−V (F) to be the multisorted structure each sort being a state
on V. Equivalently, H−V (F) is the set of all states on V.

We denote N := #V, the (non-standard) number of elements in
V.

We say that V is tame if there is an internally definable embedding

V→ ∗Z[0 : lm].

It follows
N ≤ lm

for tame V.

5.2 Define now a special kind of states, the position states

u[r] : V→ {0, 1} ⊂ ′S′; r ∈ V

u[r](x) = δ(r − x) :=

{
1, if r = x
0, otherwise

Define, for a ket-state ϕ the inner product with u[r]

〈ϕ|u[r]〉 := ϕ(r)

and also
〈u[x]|u[r]〉 := δ(r − x)

It is immediate from the definition that

5.3 Lemma. Assume V is tame. Then H−V can be given the struc-
ture of F-linear space with an inner product defined as

〈ϕ|ψ〉 :=
∑
r∈V

ϕ(r) · ψ̄(r) ∈ F (20)

The definition is consistent with ϕ or/and ψ being position states.
The product is Hermitian, that is satisfies the sesquilinearity con-

dition and is positive definite.
Proof. By assumptions r 7→ ϕ(r) · ψ̄(r) can be identified as an

internally definable sequence from a subset of ∗Z[0 : lm]. Thus the
sum (20) is well-defined and belongs to F. The rest is immediate by
definitions. �
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Define the square of the norm

|ϕ|2 := 〈ϕ|ϕ〉 ∈ R+(F).

In terms of F-logical values the inner product estimates the equal-
ity “ϕ = ψ” for ϕ,ψ of norm 1. Indeed, “ψ = ψ” is given value 1.

Set the range of ϕ to be:

Range(ϕ) := {r ∈ V : 〈ϕ|u[r]〉 6= 0}

5.4 Lemma. Suppose |ϕ(r)| ≤ η for all r ∈ V. Then

|ϕ|2 := 〈ϕ|ϕ〉 ≤ η ·#Range(ϕ) (21)

Proof. By definition

〈ϕ|ϕ〉 =
∑
r∈V
|ϕ(r)|2 =

∑
r∈V
|〈ϕ(r)|u[r]〉|2

and since V is tame and the sum is internally definable in ∗C we can
lift the required inequality from the finite to pseudo-finite summation.
�

5.5 Let {ψi : s ∈ I} be an internally definable family of states on V
over an internally definable set I.

Then the sum
S =

∑
i∈I

ψi

is internally definable, the value S of the sum is an element of the
ultraproduct

∏
p∈I Fp/D such that S(p) =

∑
i∈I(p) ψi (finite sum) in

Fp along the ultrafilter.
Define HV(F) to be the smallest F-linear subspace of H−V (F) closed

under taking definable sums.

5.6 It follows from definitions that the set of all position states of V

Lu := {u[r] : r ∈ V}

is definable.
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Lemma. The set of position states forms a basis of HV with re-
gards to definable summation. This basis is orthonormal.

dimHV = N

Proof. For an arbitrary ψ ∈ HV,

ψ =
∑
r∈V

ψ(r) · u[r].

5.7 Corollary. The definition of inner product in (20) is applicable
to any pair of states in HV(F) with tame V.

From now on we consider HV := HV(F) as an N -dimensional inner
vector space.

5.8 Linear unitary operators on HV.
We are going to consider linear operators

A : HV1 → HV2

for V1,V2 ⊂ UM definable domains.
Call such an operator definable if

{Au[r] : r ∈ V1}

is a definable family of states on V2.
By definition

Au[r] =
∑
s∈V2

a(r, s) · u[s] (22)

with unitarity condition ∑
s∈V2

|a(r, s)|2 = 1 (23)

and we also require that the map

s 7→ a(r, s); V2 → F

be pseudo-continuous.
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5.9 Proposition. Let Lψ := {ψr : r ∈ V1} be a definable basis of
HV1 . Then

- there is a definable operator A such that

Au[r] = ψr; r ∈ V1

- for any definable operator B on HV2 the set

BLψ := {B ψr : r ∈ V1}

is definable.
Assuming that B is unitary the product operator B ·A is unitary.
Proof. The statement can be equivalently reformulated as a prop-

erty of finite dimensional vector spaces H(p), p ∈ P, along the ultra-
filter D. In this form it is obvious and

B ψs = (B · A) u[s]

the product of matrices. �

We only consider definable linear operators on HV. In applications
(as in 7.1) we do not assume that the operators are invertible but most
of the time we deal with operators such as the image of Lu is of size
N
k for some finite k. Moreover we have to deal with operators whose
domain is a proper subset of Lu of size Nk for some finite k.

5.10 Remarks.
1. Looking at states ψr and definable set of states Lψ := {ψr : r ∈

V} as structures, an operator

A : u[r] 7→ ψr

can be seen as an interpretation of Lψ in Lu.
Sums of states ϕ+ψ are just objects interpretable in Lϕ∪̇Lψ (with

the intended logical meaning “ϕ or ψ”).

2. In regards to model-theoretic formalism, HV is not considered
to be a universe of a structure. Instead, we consider the multisorted
structure on sorts Lψ with linear maps between these, together with
the Fp-linear space HV interpretable in the sorts.

3. The multisorted structure HV is by construction interpretable
in (U,Fp; Ωp).
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5.11 Proposition. (a) A bijective transformation σ : V → V in-
duces the linear unitary transformation of HV :

Uσ : ψ 7→ ψσ; ψσ(r) = ψ(σ(r))

(b) Let

G(V) := Aut(V) and G(HV) := {Uσ : σ ∈ G(V)}

Then G(HV) ⊆ SUN (F ) ⊂ GLN (F) is the unitary linear group
and

σ 7→ Uσ

is an injection.
In other words, the structure on V is reflected in the algebra of

linear operators on HV. .
Proof. (a) Linearity: for a1, a2 ∈ F, ψ1, ψ2 ∈ HV,

(a1 ·ψ1 +a2 ·ψ2)σ(r) = (a1 ·ψ1 +a2 ·ψ2)(σ(r)) = (a1 ·ψσ1 (r)+a2 ·ψσ2 (r).

Unitarity: it is enough to prove it for basis u[r] : r ∈ V.

〈u[r]|u[s]〉 = δr,s = δσ(r),σ(s) = 〈uσ[r]|uσ[s]〉.

(b) It is clear that σ 7→ Uσ is a homomorphism. Suppose that Uσ
is in the kernel. Then uσ[r] = u[r], which implies by definition of u
that σ(r) = r, for all r ∈ V, that is σ = idV. �

5.12 The dual to HV and model-theoretic Heq
V .

Every ψ ∈ HV gives rise to an F-linear map

Lψ : x 7→ 〈x|ψ〉, HV → F

By definition, Lψ is uniquely determined by its values on a basis,
that is

Lu
ψ : u[r] 7→ 〈u[r]|ψ〉, r ∈ V

determines the linear map Lψ. Clearly, Lu
ψ is definable and thus we can

treat Lψ (otherwise given by the Dirac delta-function) as a definable,
or interpretable in HV.

Set H∗V to be the F-vector space of interpretable F-linear maps
with a naturally induced Hermitian inner product structure. By con-
struction there is a natural embedding

H∗V ⊂ H
eq
V ; ψ 7→ Lψ

where the imaginary sorts are understood in the sense of internal de-
finability.
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6 Gaussian Hilbert space

6.1 Here we consider states over a domain V which is not assumed to
be tame. Until the last subsection of this section our domain is “one-
dimensional” that is V ⊆ U. In the last subsection we allow domains
VM ⊆ UM for M ∈ O(F) and then the respective Hilbert space is the
M -th tensor power of the Hilbert space for the present case.

We require V to be of the form

V = u · ∗Z[−N
2

:
N
2
− 1],

for some u ∈ U and N ∈ ∗Z such that N|(p−1),
√
N ∈ ∗Z and m|

√
N .

We treat ∗Z[−N2 : N2 − 1] with addition and multiplication as the
residue ring ∗Z/N and treat V as a ∗Z/N -module.

Let
e(

n

2N
) := expp((p− 1)

n

2N
).

and
G(N ) = {e(

n

N
) : nu ∈ V},

the cyclic subgroup of order 2N ,

We consider quadratic forms f(x, y) = ax2 +2bxy+cy2, a, b, c ∈ Z,
where x, y run in the ring ∗Z/N often represented by ∗Z[−N2 : N2 −1].

(The assumption that f is over Z rather than over Q is not restric-

tive because we can treat e(f(x,y)
kN ) as element of G(kN ). )

Denote

e(
f(x, y)

2N
) := expp(

p− 1

2N
f(x, y)) ∈ G(N ), for xu, yu ∈ V.

Note that

e(
f(x, y)

2N
) = e(

f(x′, y′)

2N
) if x = x′ & y = y′ mod N .

The following set of Gaussian coefficients play an important
role:

OG(N ) := { c√
N
· e(

n

2N
) : nu ∈ V, kc ∈ O(F), k ∈ Z}
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6.2 Gauss quadratic sums in Fp. Let M ∈ N, even, p > 2 and

ζ := e
πi
M ∈ C, primitive root of unity of order 2M. The classical Gauss

quadratic sums formula (the basic form) is∑
0<n≤M

ζn
2

=
√
M e

πi
4 .

Suppose in addition M is divisible by 4. Then

ζ
M
4 = e

πi
4 and

∑
0<n≤M

ζn
2

=
√
M ζ

M
4

Let Z[ζ] ⊂ C be the ring generated by ζ. By the above
√
M ∈ Z[ζ].

Let Fp := Z/p and let ξ ∈ Fp be a primitive 2M -root of 1 in Fp, that
is

ξ2M = 1̂ := 1modp, ord ξ = 2M

Then there is a ring homomorphism

h : Z[ζ]→ Fp such that ζ 7→ ξ

Clearly,

h : 1 7→ 1̂, M 7→ M̂,
√
M 7→

√
M̂

and ∑
0<n≤M

ξn
2

=
√
M̂ · e(

1

8
), where e(

k

m
) := ξ

kM
m .

Simple algebraic manipulation produce a more general version both
for characteristic zero and characteristic p, for a, b ∈ Z, assuming
±a > 0 and 4a|M,

∑
0<n≤M

|a|

e(
an2 + 2bn

2M
) =

{ √
M̂
|a|e(±1

8)e(− b2

2aM ) if a|b
0 otherwise

(24)

(Note that the function e(an
2+2bn
2M ) of n has period M

|a| . )

6.3 Gaussian summation over OG(N ).

In the context of states on V we can write (24) equivalently, for
±A > 0,

∑
nAu∈V

e(
An2 + 2Bn

2N
) =

{
e(±1

8)
√
N
|A| · e(− B2

2AN ), if A|B
0, otherwise (e.g. A = 0)

(25)
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which can be interpreted as a calculations over Vu in units of scales
Au, replacing Vu by AVu.

We say that a quadratic form over Z, f(u, v) = Au2 +2Buv+Cv2,
is admissible if A,C ≤ 0

Consider

f1(x, y) = A1x
2 + 2B1xy+C2y

2 and f2(x, y) = A2x
2 + 2B2xy+C2y

2

be quadratic forms over Z, A = A1 +A2, B = B1 +B2.∑
nAu∈V

e(
f1(n, p1)

2N
) · e(

f2(n, p2)

2N
) =

= e(
C1p

2
1 + C2p

2
2

2N
) ·

∑
nAu∈V

e(
(A1 +A2)n2 + 2(B1p1 +B2p2)n

2N
) =

= e(
C

2N
)
∑

nAu∈V
e(
An2 + 2Bn

2N
); C = C1p

2
1 + C2p

2
2.

This can be rewritten with normalising coefficients as

∑
nAu∈V

1√
N

e(
f1(n, p1)

2N
) · 1√
N

e(
f2(n, p2)

2N
) =

c√
N
·e(

C − B2

A

2N
) ∈ OG(N )

(26)
where

c =

{
e(±1

8)
√

1
|A| , if A|B

0, otherwise

6.4 Gaussian-ket states on V are definable sequences of elements
of Fp of the form

sf [p] := {cs · e(
f(r, p)

2N
) : ru ∈ V}, where pu ∈ V,

where f(r, p) is an admissible quadratic form over Z and cs ∈ OG(N ).
Equivalently these can be written as symbolic expressions of the

form

sf [p] := cs
∑
ru∈V

e(
f(r, p)

2N
) u[r], pu ∈ V

A Gaussian ket-sort is

Lf := {sf [p] : pu ∈ V}
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where sf is as above.
We also consider the positions sort

Lu := {u[r] : ru ∈ V}

Note that the definition of ket-states allows multiplication by ele-
ments of F. We consider HV as the F-linear space finitely generated
by elements of Gaussian ket-sorts Lf and position sort Lu.

6.5 Now we consider two possible formal inner product with val-
ues in Fp beween Gaussian ket-states. Let f1(x, y) and f2(x, y) be
quadratic forms as defined in 6.3.

formal-Euclidean inner product of ket-states is defined as

〈sf1 [p1] | sf2 [p2]〉E =

{
0, if A = A1 +A2 = 0

c1c2 ·
∑

rAu∈V e(f1(r,p1)
2N ) · e(f2(r,p2)

2N ) if A 6= 0

formal-Hermitian inner product of ket-states is defined as

〈sf1 [p1] | sf2 [p2]〉E =

{
0 if A = A1 −A2 = 0

c1c2 ·
∑

rAu∈V e(f1(r,p1)
2N ) · e(−f2(r,p2)

2N ) if A 6= 0

The Euclidean and Hermitian inner products between a ket-state
and a position state are both defined as

〈sf [p] |u[r]〉 := cs · e(
f(r, p)

2N
)

6.6 Lemma.
〈sf1 [p1] | sf2 [p2]〉 ∈ OG(N )

〈sf [p] |u[r]〉 ∈ OG(N )

both for Hermitian and Euclidean inner product.
Proof. Follows directly from (26) and calculations above. �

6.7 Consider a linear unirary operator A which is defined on Lu as

A : u[q] 7→ 1√
N

∑
ru∈V

e(
a(q, r)

2N
) u[r]
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a(u, v) a quadratic form over Z and cg ∈ OG(N ) and acts on Lf by
pseudo-finite linearity

A : sf [p] 7→ cs√
N

∑
qu∈V

e(
f(p, q)

2N
) · e(

a(q, r)

2N
)u[r] (27)

Remark. In general the image Asf [p] may fail to be pseudo-
continuous on V. Namely, the r-coordinate of Asf [p]

Asf [p](r) =
cs√
N

∑
qu∈V

e(
f(p, q)

2N
) · e(

a(q, r)

2N
)

is zero outside kV + d for some k = k(A, f), d = d(A, f, r) ∈ Z. These
k and d can be easily calculated from the coefficients for q2-terms in
a(q, r) and f(p, q) by formula (25). The same calculations also prove:

Either k(A, f) = 0 and Asf [p] is a bra-state or k(A, f) 6= 0 and
Asf [p] is pseudo-continuous on kV + d for some 0 ≤ d < k.

6.8 A (basic) Euclidean/Hermitian Gaussian Hilbert space
HV is the F-linear space finitely generated by Gaussian ket-states.
and position states. The inner product is defined as the formal Eu-
clidean, respectively, Hermitian inner product between ket-states and
ket-states and position states and extends uniquely to their linear
combination by bi-linearity law.

A general Euclidean/Hermitian Gaussian Hilbert space is a tensor
power H⊗NV of the basic Gaussian Hilbert space.

6.9 Corrsepondence of structures over u- and v-domains.
Let u and v be as defined in 3.8.
Set

Vv := v · ∗Z[− l

2
:
l

2
− 1] ⊂ U, Nv = l

and

Vu := u · ∗Z[− li

2
:
li

2
− 1] ⊂ U, Nu = li.

Note that
Vv ⊂ Vu and Vv = i · Vu. (28)

Indeed, any w ∈ Vv is of the form w = v · l, l ∈ ∗Z[− l
2 : l

2 − 1] and
v = i · u. That is

w = u · il ∈ u · ∗Z[− li

2
:
li

2
− 1] = Vu.
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Note also that

Nu = iNv and e(
if(r, p)

2Nu
) = e(

f(r, p)

2Nv
).

The embedding of domains agrees with the correspondence be-
tween the Gaussian states

{}i : sf [p] 7→ sif [p]

where

sf [p] = cs
∑
ru∈Vu

e(
f(r, p)

2Nu
) u[r] and sif [p] = jcs

∑
rv∈Vv

e(
if(r, p)

2Nu
) u[r]

(recall j =
√

i).
This can be extended to the F-linear surjective map

{}i : HVu → HVv .

Consider also the related map

{}i : OG(Nu)→ OG(Nv);
c√
Nu
· e(

f(r, p)

2Nu
) 7→ c√

Nv
· e(

f(r, p)

2Nv
)

Now for formal inner products calculation (26) gives:

〈sif1 [p1] | sif2 [p2]〉 = {〈sf1 [p1] | sf2 [p2]〉}i (29)

where the inner product is Euclidean on both sides or Hermitian on
both sides.

For a linear operator A of the form (27) on HVu define the operator
on HVv

Ai : sif1 [p] 7→ {A sf1 [p1]}i

6.10 Theorem. Under assumptions 6.9 the embedding

Vv ⊂ Vu

gives rise to a canonical surjective homomorphism of Euclidean/Hermitian
Gaussian Hilbert spaces equipped with Gaussian linear maps

{}i : HVu → HVv .
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The map can be uniquely and definably extended to M -dimensional
versions of domains

Vv ⊂ Vu ⊂ UM , M ∈ O(F)

and to M -tensor-power version of Hilbert spaces

{}i : H⊗MVu
→ H⊗MVv

.

Proof. The construction and the argument for the first statement
is in 6.9. The second statement is just consequence of the algebraic
property of finite tensor products. �

7 Examples

7.1 Example: 1-dimensional QM.
Set

V := Vv

as in 6.9.
Respectively we have position states

Lu = {u[r] : rv ∈ V}.

Define, for pv ∈ V the momentum state

v[p] : r 7→ 1√
N

e(−rp
N

)

Hence

v[p] :=
1√
N

∑
rv∈V

e(−rp
N

)u[r]

Clearly,

u[r] =
1√
N

∑
pv∈V

e(
rp

N
)v[p]

and we consider the definable sort

Lv = {v[p] : pv ∈ V}.

Thus HV is generated by both the orthogonal systems Lu and Lv
which are Fourier dual of each other:
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One considers the unitary operators U and V that in continuous
setting can be written as

U = eiQ and V = eiP

for the self-adjoint unbounded operators Q (position) and P (momen-
tum).

The operators in our (discrete) setting are defined by their action

U : v[p] 7→ v[p− 1]

and so acts on Lu by linearity as

U : u[r] 7→ 1√
N

∑
pv∈V

e(
rp

N
)v[p−1] =

1√
N

∑
pv∈V

e(
rp+ r

N
)v[p] = e(

r

N
)u[r]

and thus the u[r] are eigenvectors of the operator.

Similarly the unitary operator

V : u[r] 7→ u[r + 1], v[p] 7→ e(
p

N
)v[p]

has the v[p] ∈ Lv as its eigenvectors.
It is easy to check that

UV = qV U, for q = e(
1

N
) = expp(

1

N
), qN = 1.

Free particle. The time evolution operator for the free particle

is e
iP2

2
t, where t ∈ ∗Z/N , the unitary operator with the action on Lv

defined as

e
iP2

2
tv[p] := e(

p2

2N
t)v[p].

One can calculate

e
iP2

2
tu[r] = e

iP2

2
t 1√
N

∑
p∈V

e(
rp

N
)v[p] =

1√
N

∑
p∈V

e(
p2t+ 2rp

2N
)v[p] =

=
1√
N

∑
p∈V

e(
p2t+ 2rp

2N
)

1√
N

∑
s∈V

e(−sp
N

)u[s] =

=
1

N
∑
s∈V

∑
p∈V

e(
p2t+ 2p(r − s)

2N
)

u[s]
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By Gauss’ quadratic sums formula one gets

∑
pv∈V

e(
p2t+ 2p(r − s)

2N
=

{
e(−1

8)
√
N
t e( (r−s)2

2tN ), if t|(r − s)
0, otherwise

(note that e(1
8) = e

πi
4 when identifying F ⊂ ∗C).

Thus

e
iP2

2
tu[r] =

1√
tN

e(
1

8
)

∑
(r−s)v∈tV

e(−(r − s)2

2tN
)u[s] (30)

Note that the range of the state

Range

(
e
iP2

2
t

)
= tV− r

a proper subset of V, a coset of a “dense” subgroup.

The example of e
iP2

2
t and similar example ei

P2+ωQ2

2
t for the quan-

tum harmonic oscillator (particles with quadratic potential) can
be found in [6], sections 11 and 12, and in a more detailed form in [7],
section 6.

7.2 Example SM. (Statistical Mechanics) The setting of SM is even
more relevant to the theory above since by definition its physics setting
is an extremely large but finite model V.)

In general, models of statistical mechanics are good analogues of
models of quantum field theory, QFT, rather than quantum mechan-
ics. The similarity becomes apparent once one replaces QFT and QM
expressions like eiS(x) by eS(x) (Wick rotation). See [4] for a detailed
discussion on the topic.

We single out a more specific SM-setting of J.Zinn-Justin, [8], chap-
ter 4, Classical statistical physics: One dimension. A more general
setting which leads to a real Hilbert space formalism uses probability
density matrices can also be found in [9], chapter 9, and indeed in
many other sources.

[8] introduces a Hilbert space formalism in SM-context, position
and momentum operators (position states but not momentum states)
and the Gaussian (that is the quadratic case) transfer matrix, the
propagator between states q′ and q′′

T (q′, q′′) := eS(q′,q′′)
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T a real symmetric operator acting on a real Hilbert space H of
dimension N .

The continuous form of T (q′, q′′) presented in section 4.6 of [8] is in
full analogy with QM analogue (43) which we discuss below in section
8.9.

We introduce here the domain V := V1SM := Vu (as in 6.9) of the
1-dimensional statistical mechanics model which agrees with Zinn-
Justin’s in direct analogy with 7.1 and note that N := #V = li =
(mj)2 is not an element of F, so V1SM is not tame.

Now we introduce the ingredients of pseudo-real Gaussian Hilbert
space over V1SM.

Define, for ru ∈ V

u[r](x) = δ(x− r).

We set, for pu ∈ V

v[p] =
1√
N

∑
ru∈V

e(−rp
N

)u[r]

This makes v[p] Fourier-dual to u[r] and furnishes two orthonormal
bases of HV both of size N = li. (Note that the above definition of
momentum states and its Fourier-duality to position states requires
periodicity of V, which in our setting is isomorphic to the group of
period li, much larger scale than N of example 7.1.)

The Gauss quadaratic sums formula appropriate for the given V
is presented in (28) of Proposition 4.1 of [2], assuming the current
system of notations and moving m to LHS

1

m

∑
η∈aV

e(−aη
2

2
) = e(

1

8
)

j√
a

(31)

(bear in mind that j specialises by lmF into e(−1
8) and this brings the

RHS to the purely real value 1√
a
.)

8 Continuous logic setting for Gaus-

sian HV.

8.1 V in continuous logic CL.
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We use lmU : U → C̄ and lmF : F → C̄ to move the domain V
of states to a locally bounded metric space Vlm and the domain F of
logical values from F to C. Our V in this section is either Vu or Vv of
6.1.

Continuous logic and model theory is understood as in [5]. As in
5.1 V is assumed to be given with predicates determining non-standard
distance between points.

We define metric predicates on the domains assuming that both u
and v generate group lattices with the spacing 1

l .
Thus

dist(0, l · u) :=
l

l

dist(0, l · v) :=
l

l

In line with the standard boundedness assumptions [5] we distin-
guish the family of subdomains Vm ⊂ V, m ∈ N,

Vm = {x ∈ V : dist(0, x) ≤ m}.

Set
Vlm
m = lmU(Vm) and Vlm =

⋃
m∈N

Vlm
m .

Thus Vlm is covered by a family Vlm
m ⊆ Vlm of bounded complete metric

subspaces Vlm
m . Note that in general V 6=

⋃
m∈NVm.

It follows
Vlm
u
∼= Vlm

v
∼= R

as metric spaces and Vlm
m in both cases corresponds to R ∩ [−m : m].

However, note that since by our choices of parameters

Vv = iVu and lmU(iu) = i lmU(u),

more accurately, we have isomorphisms

Vlm
u
∼= R and Vlm

v
∼= iR (i =

√
−1) (32)

We use the fact that V has a structure of a K-module, for a subring
K ⊆ ∗Z of our choice. For most purposes we can consider K = Z or
slightly bigger subring of O(F). For k ∈ K, kV is a submodule and,
for r ∈ V, kV + r is a coset of the submodule,

#(kV + r) =
N
k

(33)
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and at the same time

lmU (kV + r) = Vlm (34)

(we say that kV is dense in V).
Let ϕ : V → F be a pseudo-continuous definable state on V. Set

for x ∈ Vm,

xlm := lmU(x) and ϕlm(xlm) := lmF(
√
Nϕ(x)). (35)

This is well-defined because of pseudo-continuity and defines a map

ϕlm : Vlm → C.

In the more general case we consider ϕ which is pseudo-continuous
on kV+r as above and apply the definition (35) to ϕ|k, the restriction
to kV + r. This is well-defined.

8.2 Lemma. Let ϕ be a ket state on V of norm 1 and ϕ|k its re-
striction on kV normalised to norm 1. Then

ϕlm
|k (xlm) = ϕlm(xlm) for x ∈ kV + r. (36)

More generally, the equality holds for any ket state ϕ on V when
setting ϕ|k : (kV + r)→ F

ϕ|k(x) :=
√
k · ϕ|k(x).

Proof. We may assume r = 0.
By definition

ϕ =
∑
s∈V

ϕ(s)u[s],

ϕ|k =
√
k
∑
s∈kV

ϕ(s)u[s]

and so
ϕ|k(s) =

√
kϕ(s).

Thus by (35), for s ∈ kV,

ϕlm
|k (slm) = lm

(√
N
k

√
kϕ(s)

)
= ϕlm(slm).

�
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The CL-state of the form ϕlm
|k we call CL-ket states. Lemma 8.2

allows us always to make reductions, if needed, to appropriate dense
subdomains.

Define inner product for CL-ket-states on Vlm, for ϕ,ψ, ϕ 6= ψ

〈ϕlm
F |ψlm〉 = lim

m→∞

∫
Vlm
m

ϕlm(x)ψ̄lm(x) dx (37)

If ϕ = ψ then set
〈ψlm|ψlm〉 := lmF|ψ|2. (38)

8.3 Proposition. 〈ϕlm|ψlm〉 has a well-defined value in C. More
precisely

〈ϕlm|ψlm〉 =

{
lmF(m〈ϕ|ψ〉E), if 〈ϕ|ψ〉E 6= 0 & V = Vu

lmF(m〈ϕ|ψ〉H), if 〈ϕ|ψ〉H 6= 0 & V = Vv
(39)

Proof. We assume without loss of generality that |ϕ| = 1 = |ψ|.
Then by assumptions we may write

ϕ(r) =
1√
N

e(−
Aφr

2 + 2Bφr

2N
) and ψ(r) =

1√
N

e(−
Aψr

2 + 2Bψ · r
2N

)

Aφ ≥ 0, Aψ ≥ 0.
Now assume that V = Vu and 〈ϕ|ψ〉E 6= 0 (N = Nu = li). The

second assumption implies by formula (25) that A := Aφ + Aψ > 0,
B = Bφ +Bψ is divisible by A and

〈ϕ|ψ〉E =
1

N
∑
rAu∈V

e(−Ar
2 + 2Br

2N
) =

1√
N

e(−1

8
)

√
1

A
e(−

B2

2A

N
)

and so, since
√
N = mj,

m·〈ϕ|ψ〉E = j−1e(−1

8
)

√
1

A
e(−

B2

A

N
) = j−1e(−1

8
)

√
1

A
expp(−

B2

A (p− 1)

li
) =

= j−1e(−1

8
)

√
1

A
expp(−

B2

A
u)

Hence, since by definition (see 4.2 - 4.10)

lmF : j 7→ ei
π
4 , e(−1

8
) 7→ ei

π
4 , expp(−

B2

A
u) 7→ 1,
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we obtain

lmF m · 〈ϕ|ψ〉E =

√
1

A

On the other hand, by definition, for x = rlm,

ϕlm(x) = e−π(Aφx
2+2Bφx) and ψlm(x) = e−π(Aψx

2+2Bψx)

and so we have the convergence for the integral∫
x∈R

ϕlm · ψ̄lm dx =

∫
x∈R

e−π(Ax2+2Bx)dx =

√
1

A

the classical Gauss integral. This proves the Euclidean case.

Now assume that V = Vv and 〈ϕ|ψ〉H 6= 0 (N = Nv = l). The
second assumption implies by formula (25) that A := Aφ − Aψ 6= 0,
B = Bφ −Bψ is divisible by 2A and (assuming for simplicity A > 0)

〈ϕ|ψ〉H =
1

N
∑
rAu∈V

e(−Ar
2 +Br

2N
) =

1√
N

e(−1

8
)

√
1

A
e(− B2

2AN
)

and so, since
√
N = m,

m · 〈ϕ|ψ〉H = e(−1

8
)

√
1

A
e(− B2

2AN
) = e(−1

8
)

√
1

A
expp(−

B2

2A

p− 1

l
) =

= e(−1

8
)

√
1

A
expp(−

B2

2A
v)

Since

lmF : expp(−
B2

2A
v) 7→ 1

we obtain

lmF m · 〈ϕ|ψ〉H = e
πi
4

√
1

A

On the other hand, by definition, for x = rlm,

ϕlm(x) = e−πi(Aφx
2+Bφx) and ψlm(x) = e−πi(Aψx

2+Bψx)

and so we see, for each m, the Fresnel integral∫
x∈Vlm

m

ϕlm · ψ̄lmdx =

∫
−m≤x≤m

e−πi(Ax
2+Bx)dx
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which has well-defined limit as m→∞,

lim
m→∞

∫
−m≤x≤m

e−πi(Ax
2+Bx)dx = e

πi
4

√
1

A

This proves the Hermitian case and finishes the proof. �

8.4 There will be a different treatment for position states u[r]

〈ϕlm |ulm[rlm]〉 := ϕlm(rlm)

See also (35).

8.5 Define for ket-sorts

Llmf := {slmf [p] : p ∈ Vlm}

For x ∈ Vlm

ulm[x] : p 7→ 〈vlm[p] |ulm[x]〉 = eipx; Llmv → C

is continuous in p and thus we may identify ulm[x] with an element of
the space of continuous maps

Llmv → C,

equivalently of continuos linear functionals on HVlm .

Using (37) and (38) we extend the definition of inner product to
finite linear combinations of elements of sorts Lφ for all φ.

Remark. Recall that bi-linear operators on the space of com-
pactly supported functions can be represented by integrals and com-
pactly supported functions are dense in the space of continuous func-
tions on a locally compact set, the definition (39) is in physics Dirac
calculus is represented as

〈f |g〉 =

∫
Vlm

f(x)ḡ(x)dx (40)

where f(x) = φlm(x), g(x) = ψlm(x) and the integration is over the
measure given by Dirac delta-function δDir.

In particular,

1

2π

∫
Vlm

ei(p1−p2)xdx = δDir(p1 − p2) (41)

A rigorous theory of Dirac integration (40) can be found e.g. in [10],
section 10.2.
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8.6 The ket-CL-Hilbert space HVlm is presented as a multisorted
structure with sorts Lψ for all ket ψ and binary CL-predicates (Dirac
inner product)

〈ϕ|ψ〉 : Lϕ × Lψ → C.
defined in (39).

A bra CL-state ψlm is the linear functional

ψlm : Llmϕ → C : for y ∈ Vlm, ψlm(y) := lm
√
N〈ψ|ϕy〉

This is well-defined by 5.7 and coincides with the product on kets
when the bra-state ψlm originates from a ket ψ.

8.7 Define the (full) Hermitian CL-Hilbert space HVlm as multi-
sorted structure with sorts Llmψ where ψ can be both bra- or ket-, with
Dirac inner product as binary CL-relation between sorts.

In this treatment of Hilbert-space formalism it is natural to con-
sider Heq

Vlm which contains finite linear combinations of elements of
HVlm .

8.8 Linear unitary operators on HVlm have form

Alm : Llmψ → Llmϕ
where

A : Lψ → Lϕ
is an operator on HV as described in 5.8 and 5.9 as

A : ψr 7→
∑
r∈V

(∑
s∈V

ψ(r, s) · α(s, r)

)
u[r]

and

Alm : ψlm
r 7→

(∑
r∈V

(∑
s∈V

ψ(r, s) · α(s, r))

)
u[r]

)lm

.

Note that
r 7→

∑
s∈V

ψ(r, s) · α(s, r) = 〈ψr|ᾱr〉

and thus the integral expression (40) for inner product brings us in
CL-setting to

Alm : ψlm
r 7→

∫
Vlm

ψlm(r, s) · αlm(s, r) ds (42)

the Dirac integral as a CL-quantifier bounded by condition α.
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8.9 Example. One-dimensional quantum mechanics
We follow 7.1. Note that we assume ~ = 1 and suppress some

normalising coefficients.
A momentum CL-state (ket-state) is

v[p] : x 7→ eipx, for x, p ∈ R

Respectively
Lv = {v[p] : p ∈ R}

A position state is a bra-state a map (that is a CL-unary predicate):

u[r] : Lv → S ⊂ C; v[p] 7→ 〈v[p]|u[r]〉 := eipr

and the sort Lu with the pairing (binary CL-predicate)

〈v[p]|u[r]〉 : Lv × Lu → S ⊂ C.

Both position and momentum are binary CL-predicates on R as
are general CL-states.

8.10 In [6] and [7] a number of calculations in Gaussian setting were
carried out. In [7] we calculated the propagator for the quantum
harmonic oscillator with frequency ω, the CL-value of reaching the
position x from position x0 in time t:

e−i
π
4

√
ω

2π~| sinωt|
exp iω

(x2 + x2
0) cosωt− 2xx0

2~ sinωt
(43)

This was demonstrated therein both by path integral calculation
(section 9) and by a more direct calculation (section 7, 7.13).

8.11 Conclusions. Equalities of the form

Alm(ψlm) = ϕlm,

for Gaussian ψ,ϕ and A, obtained as the result of the calculus de-
fined by (37) - (42) are CL-sentences which form a CL-theory with
the interpretation by pseudo-finite structures based on Vv or Vu.

This theory has quantifier-elimination to Gaussian predicates (states)
since by Gaussian summation formula the application of an A to a ψ
always results in a Gaussian state ϕ.

Wick rotation
{}i : HVu → HVv

described by 6.10 establishes an equaivalence between the theories based
on Vv or Vu.
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