Sections and towers

B.Zilber*

April 28, 2021

Abstract

We discuss the towers of finite étale covers which were essentially introduced by A.Tamagawa [5] and used e.g. in [4]. The statement about correspondence between sections and cofinal towers is a folklore but perhaps not in a very explicit form. The last section explains how the "injectivity statement" of Grothendieck section conjecture fails for abelian varieties, which is also known in some form from [2].

The paper is based on [1] which was aimed to reinterpret anabelian setting in model theory terms.

1 A short overview of structure $\tilde{\mathbf{X}}^{et}$

We start with an overview of the key structure introduced and studied in [1]. It is essentially the projective object - the Grothendieck universal étale cover of a smooth k-variety X.

^{*}Supported by the EPSRC program grant "Symmetries and Correspondences"

The diagram for $\tilde{\mathbf{X}}^{et}$.

Explaining the picture (see [1], 7.1-7.3 and Corollary 7.11)

- 1.1 All arrow diagrams commute.
- **1.2** Each \mathbb{X}_{ν,β_i} is an absolutely irreducible variety over the field $k[\beta_1] = \dots = k[\beta_k]$, a Galois extension of k. $\mathbb{X}_{\nu,\beta_i}(k^{alg})$ is the set of its k^{alg} -points, a subset of a projective space.
- **1.3** Each ν_{β_i} is an étale covering map $\nu_{\beta_i} : \mathbb{X}_{\nu,\beta_i}(\mathbf{k}^{alg}) \to \mathbb{X}(\mathbf{k}^{alg})$.
- **1.4** $\tilde{\mathbb{X}}(k^{alg})$ is a set with the regular action of a group Γ .
- 1.5 Each $\tilde{\mathbf{p}}_{\nu\beta_i}$ is a finite collection of surjective maps

$$p: \tilde{\mathbb{X}}(\mathbf{k}^{alg}) \to \mathbb{X}_{\nu\beta_i}(\mathbf{k}^{alg}).$$

In particular, if $\mathbb{X}_{\nu\beta_i}(\mathbf{k}^{alg}) = \mathbb{X}_{\mu\alpha_j}(\mathbf{k}^{alg})$ and $\nu_{\beta_i} = \mu_{\alpha_j}$ then $\tilde{\mathbf{p}}_{\nu\beta_i} = \tilde{\mathbf{p}}_{\mu\alpha_j}$. In case $\mathbb{X}_{\nu,\beta_i}(\mathbf{k}^{alg}) = \mathbb{X}(\mathbf{k}^{alg})$ the collection $\tilde{\mathbf{p}}_{\nu\beta_i}$ consists of one map \mathbf{p} . **1.6** Suppose there is a morphism $(\mu_{\alpha}^{-1}\nu_{\beta}): \mathbb{X}_{\nu,\beta}(\mathbf{k}^{alg}) \to \mathbb{X}_{\mu,\alpha}(\mathbf{k}^{alg})$ of étale covers (see notation in [1], section 4). Then for every $p \in \tilde{\mathbf{p}}_{\mu,\alpha}$ there is $q \in \tilde{\mathbf{p}}_{\nu,\beta}$ such that

$$(\mu_{\alpha}^{-1}\nu_{\beta}) = p \circ q^{-1},\tag{1}$$

and for every $q \in \tilde{\mathbf{p}}_{\nu,\beta}$ there is $p \in \tilde{\mathbf{p}}_{\mu,\alpha}$ such that (1) holds.

1.7 Given $p \in \tilde{\mathbf{p}}_{\nu\beta_i}$

$$\tilde{\mathbf{p}}_{\nu\beta_i} = \{g \circ p : g \in \mathrm{GDeck}(\mathbb{X}_{\nu\beta_i}/\mathbb{X})\}$$

where $GDeck(\mathbb{X}_{\nu\beta_i}/\mathbb{X})$ is the geometric deck-transformation group.

1.8 The fibres of \mathbf{p} are Γ -orbits. The fibres of $p \in \tilde{\mathbf{p}}_{\nu,\beta_i}$ are orbits by a finite index normal subgroup Δ_{ν,β_i} of Γ .

$$GDeck(\mathbb{X}_{\nu\beta_i}/\mathbb{X}) \cong \Gamma/\Delta_{\nu,\beta_i}$$
.

1.9 For each finite collection $\mathbb{X}_{\lambda_1 \gamma_1}, \dots \mathbb{X}_{\lambda_m \gamma_m}$, there is a ν_β such that

$$\Delta_{\nu,\beta} \le \bigcap_{0 < j \le m} \Delta_{\lambda_j,\gamma_j}.$$

1.10

$$\bigcap_{\text{all }\nu,\beta}\Delta_{\nu,\beta}=\{1\}.$$

1.11

$$\operatorname{Aut} \tilde{\mathbf{X}}^{et}(\mathbf{k}^{alg}) \cong \pi_1^{et}(\mathbb{X}, x)$$

2 Sections and towers

2.1 Let

$$T(X): X \leftarrow X_1 \leftarrow X_2 \leftarrow \dots X_i \leftarrow X_{i+1} \leftarrow \dots$$

be a tower of smooth complex algebraic varieties and unramified covers, all defined over k. Let

$$\Gamma_{T(\mathbb{X})} = \lim_{\leftarrow} \mathrm{GDeck}(\mathbb{X}_i/\mathbb{X}).$$

We call the tower **cofinal** if

$$\Gamma_{T(\mathbb{X})} \cong \hat{\pi}_1^{top}(\mathbb{X})$$

as profinite groups.

2.2 Proposition. Given X there is a cofinal chain

$$\Gamma > \Delta_1 > \dots \Delta_i > \Delta_{i+1} > \dots$$

of $\operatorname{Aut} \tilde{\mathbf{X}}^{et}(\mathbb{F})$ -invariant normal finite index subgroups of $\hat{\pi}_1^{top}(\mathbb{X}) = \Gamma$. Given a section s and a cofinal chain $\{\Delta_i\}$ of $\operatorname{Aut} \tilde{\mathbf{X}}^{et}(\mathbb{F})$ -invariant normal finite index subgroups of Γ there exists a tower $T_s(\mathbb{X})$ over k such that

$$GDeck(X_i/X) \cong \Gamma/\Delta_i$$
.

Proof. Let $\Gamma := \hat{\pi}_1^{top}(\mathbb{X})$. $sGal_k$ acts on Γ since group Γ is definable in $\tilde{\mathbf{X}}^{et}$, In particular, $sGal_k$ acts on the set of all finite index subgroups.

Claim 1. There exists a decreasing sequence $\{\Delta_n : n \in \mathbb{N}\}$ (depending on \mathbb{X} only) of $\operatorname{Aut} \tilde{\mathbf{X}}^{et}(\mathbb{F})$ -invariant normal subgroups of Γ of finite index with $\bigcap_n \Delta_n = \{1\}$.

Proof. For each $\mu \in \mathcal{M}_{\mathbb{X}}$ consider the subgroup $\Delta_{\mu} < \Gamma$

$$\Delta_{u} = \{ \gamma \in \Gamma : \forall p \in \tilde{\mathbf{p}}_{u} \forall u \in \mathbb{U} \ p^{\gamma}(u) = p(u) \}$$

where p^{γ} is the map $u \mapsto p(\gamma \cdot u)$.

By 4.15 of [1]

$$\Delta_{\mu} = \bigcup_{\alpha \in \operatorname{Zerosf}_{\mu}} \Delta_{\mu,\alpha},$$

the intersection of subgroups of periods of the maps $p: \mathbb{U} \to \mathbb{X}_{\mu,\alpha}$ which are finite index. Hence Δ_{μ} is of finite index in Γ . It also follows that the intersection of the Δ_{μ} is trivial. It remains to choose a linearly ordered cofinal subset $\Delta_n: n \in \mathbb{N}$ in $\Delta_{\mu}: \mu \in \mathcal{M}_{\mathbb{X}}$. Claim proved.

Let

$$\mathbb{U}_n := \Delta_n \backslash \mathbb{U}, \ \bar{\mathbf{p}}_n : \mathbb{U} \to \mathbb{X}, \ \bar{\mathbf{p}}_{n,m} : \mathbb{U}_n \to \mathbb{U}_m$$
 (2)

where $\bar{\mathbf{p}}_n$ is the covering map induced by $\mathbf{p}: \mathbb{U} \to \mathbb{X}$ on \mathbb{U}_n (recall that fibres of \mathbf{p} are Γ -orbits) and $\bar{\mathbf{p}}_{n,m}$ is the map induced by the embedding $\Delta_n \leq \Delta_m$.

Note that the \mathbb{U}_n , $\bar{\mathbf{p}}_n$ and $\bar{\mathbf{p}}_{n,m}$ are $\operatorname{Aut} \tilde{\mathbf{X}}^{et}(\mathbb{F})$ -invariant and so the action of $s\operatorname{Gal}_k$ on \mathbb{U} induces the action on the tower

$$\mathbb{U}_1 \leftarrow \mathbb{U}_2 \leftarrow \dots$$

Claim 2. The \mathbb{U}_n can be given structure of smooth projective algebraic varieties defined over k.

Proof. By the argument in the proof of Claim 1, $\Delta_n = \Delta_{\mu,\alpha} = \operatorname{Per} p$, for some μ_{α} , $p: \mathbb{U} \to \mathbb{X}_{\mu,\alpha}$. Set $p_n: \mathbb{U}_n \to \mathbb{X}_{\mu,\alpha}$ be the bijective map induced by p on \mathbb{U}_n . We may assume that the set $\mathbb{X}_{\mu,\alpha}(\mathbb{F})$ and the map p are $s\operatorname{Gal}_{\mathbf{k}[\alpha]}$ -invariant, by possibly extending $\mathbf{k}[\alpha]$ without changing the set and the map. Call $i_{n,\alpha}$ the map $p_n^{-1}: \mathbb{X}_{\mu,\alpha}(\mathbb{F}) \to \mathbb{U}(\mathbb{F})$. Note that by applying Galois conjugation we obtain a finite family

$$\{i_{n,\alpha}: \mathbb{X}_{\mu,\alpha}(\mathbb{F}) \to \mathbb{U}(\mathbb{F}); \ \alpha \in \mathrm{Zeros}\mathbf{f}_{\mu}\}$$

of bijections.

Let

$$\mathbb{Y}_n = \{\langle x, \alpha \rangle : x \in \mathbb{X}_{\mu, \alpha} \& \alpha \in \mathrm{Zeros}\mathbf{f}_{\mu}\}$$

the disjoint union of $k[\alpha]$ -varieties isomorphic to $\mathbb{X}_{\mu,\alpha}$. Let $i_n : \mathbb{Y} \to \mathbb{U}_n$ be the surjective map defined as

$$i_n(y) = u \leftrightarrow \exists \alpha \exists x \in \mathbb{X}_{\mu,\alpha} \ y = \langle x, \alpha \rangle \ \& \ i_{n,\alpha}(x) = u.$$

By construction \mathbb{Y}_n and i_n are Gal_k -invariant.

Let G be the group $Gal(k[\alpha]:k)$ (recall that by our assumptions $k[\alpha]:k$ is Galois. For each $u \in \mathbb{U}_n$, define the action of G on $i_n^{-1}(u)$. Note that by construction

$$i_n^{-1}(u) = \{\langle x_\alpha, \alpha \rangle : \alpha \in \operatorname{Zeros} \mathbf{f}_\mu \}$$

for some $x_{\alpha} \in \mathbb{X}_{\mu,\alpha}$. For $\sigma \in G$ set

$$\sigma: \langle x_{\alpha}, \alpha \rangle \mapsto \langle x_{\sigma(\alpha)}, \sigma(\alpha) \rangle.$$

By construction $G\backslash \mathbb{Y}_n$ is in bijective k-definable correspondence with $i_n(\mathbb{Y}_n)$ that is with \mathbb{U}_n , that is

$$\mathbb{U}_n \cong G \backslash \mathbb{Y}_n$$
.

The object on the right is the quotient of smooth projective variety (reducible, in general) by a regular action of a finite group. Hence $G\backslash \mathbb{Y}_n$ is isomorphic¹ to a smooth projective variety \mathbb{X}_n over k via a surjective map $t_n: \mathbb{Y}_n \to \mathbb{X}_n$ with fibres which are G-orbits. Thus there is a $sGal_k$ -invariant bijective map onto the k-variety

$$\mathbf{i}_n: \mathbb{U}_n \to \mathbb{X}_n$$
.

¹Reference?

Claim proved.

Note that $t_{n,\alpha}$, the restriction of t_n to $\mathbb{X}_{\mu,\alpha} \times \{\alpha\}$, a component of \mathbb{Y}_n , is a biregular isomorphism $t_{n,\alpha} : \langle x, \alpha \rangle \mapsto G \cdot \langle x, \alpha \rangle$ on \mathbb{X}_n defined over $k[\alpha]$. Consider the map

$$t'_{n,\alpha}: x \mapsto G \cdot \langle x, \alpha \rangle, \ \mathbb{X}_{\mu,\alpha} \to \mathbb{X}_n$$

which for simplicity of notation we call $t_{n,\alpha}$ as well. By construction

$$t_{n,\alpha} \circ p_n = \mathbf{i}_n$$
.

Define $\mathbf{j}_{n,m}: \mathbb{X}_n \to \mathbb{X}_m$ to be $\mathbf{j}_{n,m} = \mathbf{i}_m \circ \bar{\mathbf{p}}_{nm} \circ \mathbf{i}_n^{-1}$. This is definable over k since \mathbf{i}_m , $\bar{\mathbf{p}}_{nm}$ and \mathbf{i}_n are $s\mathrm{Gal}_k$ -invariant. This is also a Zariski regular map since by above

$$\mathbf{j}_{n,m} = t_{m,\beta} \circ p_m \circ \bar{\mathbf{p}}_{n,m} \circ p_n^{-1} \circ t_{n,\alpha}^{-1} = t_{m,\beta} \circ (\nu_\beta^{-1} \mu_\alpha) \circ t_{n,\alpha}^{-1}$$

where $(\nu_{\beta}^{-1}\mu_{\alpha}): \mathbb{X}_{\mu,\alpha} \to \mathbb{X}_{\nu,\beta}$ is an intermediate regular map which can be presented as $p_m \circ \bar{\mathbf{p}}_{n,m} \circ p_n^{-1}$.

This gives us the cofinal tower

$$T_s(\mathbb{X}): \mathbb{X} \leftarrow \mathbb{X}_1 \leftarrow \mathbb{X}_2 \leftarrow \dots \mathbb{X}_i \leftarrow \mathbb{X}_{i+1} \leftarrow \dots$$

where the arrows $X_{i+1} \to X_i$ stand for the regular maps $\mathbf{j}_{i+1,i}$. \square

2.3 Corollary (of the proof). Given s and the tower $\{\Delta_i : i \in \mathbb{N}\}$ of (2) the tower $T_s(\mathbb{X})$ is determined uniquely up to isomorphism over k. The system of bijections \mathbf{i}_i

$$\mathbb{X} \leftarrow \mathbb{U}_1 \leftarrow \mathbb{U}_2 \leftarrow \dots \mathbb{U}_i \leftarrow \mathbb{U}_{i+1} \leftarrow \dots$$

$$\downarrow \mathbf{i} \quad \downarrow \mathbf{i}_1 \quad \downarrow \mathbf{i}_2 \dots \quad \downarrow \mathbf{i}_i \dots \downarrow \mathbf{i}_{i+1} \dots$$

$$\mathbb{X} \leftarrow_{j_1} \mathbb{X}_1 \leftarrow_{j_2} \mathbb{X}_2 \leftarrow \dots \mathbb{X}_i \leftarrow_{j_{i+1}} \mathbb{X}_{i+1} \leftarrow_{j_{i+2}} \dots$$

furnishes isomorphism between the structure on the tower of the \mathbb{U}_i induced by the action of $sGal_k$ and the tower $T_s(\mathbb{X})$.

Given any other such sGal_k-invariant tower

$$T'_s(\mathbb{X}): \mathbb{X} \leftarrow \mathbb{X}'_1 \leftarrow \mathbb{X}'_2 \leftarrow \dots \mathbb{X}'_i \leftarrow \mathbb{X}'_{i+1} \leftarrow \dots$$

with covering maps $\mathbf{j}'_{i+1}: \mathbb{X}_{i+1} \to \mathbb{X}_i$ there are isomorphism $q_i: \mathbb{X}_i \to \mathbb{X}'_i$ over k such that

$$q_i \circ \mathbf{j}_{i+1} = \mathbf{j}'_{i+1} \circ q_{i+1}.$$

2.4 Proposition. Let

$$\mathcal{T}(\mathbb{X}) = \{T(\mathbb{X}) : \{\Delta_i : i \in \mathbb{N}\} - towers\}$$

the set of all $\{\Delta_i : i \in \mathbb{N}\}\$ - towers over k. Let

$$\mathcal{S}(\mathbb{X}) = \{s : \operatorname{Gal}_{k} \to \operatorname{Aut} \tilde{\mathbf{X}}^{et}(k^{alg})\}$$

the set of all sections of $\operatorname{pr}:\operatorname{Aut} \tilde{\mathbf{X}}^{et}(k^{alg}) \to \operatorname{Gal}_k$.

Then the map

$$s \mapsto T_s(\mathbb{X})$$

induces a bijection

$$\mathcal{S}(\mathbb{X})_{/conj} \to \mathcal{T}(\mathbb{X})_{/iso}$$

between the set of section modulo conjugation and the set of towers modulo isomorphisms over k.

Proof. The map $s \mapsto T_s(\mathbb{X})_{\text{iso}}$ is constructed above, see 2.3. We construct the inverse map

$$T(\mathbb{X})_{\mathrm{iso}} \mapsto s_{\mathrm{/conj}}; \quad \mathcal{T}(\mathbb{X})_{\mathrm{iso}} \to \mathcal{S}(\mathbb{X})_{\mathrm{/conj}}.$$

Let $T(\mathbb{X})$ be a Gal_k-invariant $\{\Delta_i : i \in \mathbb{N}\}$ - tower. By the construction of $\tilde{\mathbf{X}}^{et}$ the tower can be embedded into $\tilde{\mathbf{X}}^{et}$, that is $\mathbb{X}_i = \mathbb{X}_{\mu_i,\alpha_i}$ for some $\mu_i \in \mathcal{M}_{\mathbb{X}}$, $\alpha_i \in \mathbf{f}_{\mu_i}$ and the \mathbf{j}_{i+1} are appropriate intermediate morphisms. Since the tower is over k we can drop α_i . We also write i for μ_i .

Now we consider the respective sets of covering maps $p: \mathbb{U} \to \mathbb{X}_i$, $p \in \tilde{\mathbf{p}}_i$ for each $i \in \mathbb{N}$.

Claim 1. There is a sequence $\mathbf{p}_i \in \tilde{\mathbf{p}}_i, i \in \mathbb{N}$ of covering maps $\mathbf{p}_i : \mathbb{U} \to \mathbb{X}_i$ such that

$$\mathbf{j}_{i+1} \circ \mathbf{p}_{i+1} = \mathbf{p}_i, \text{ all } i \in \mathbb{N}. \tag{3}$$

Proof. By induction. For i=0, set $\mathbb{X}_0:=\mathbb{X}$ and $\mathbf{p}_0:=\mathbf{p}$. Suppose $\mathbf{p}_n,\ n\leq i$ have been constructed satisfying the requirement. We can choose \mathbf{p}_{i+1} by property 1.6. Claim proved

Claim 2. Suppose $\{\mathbf{p}_i': i \in \mathbb{N}\}$ is another sequence satisfying (3). Then there is $\gamma \in \Gamma$ such that

$$\mathbf{p}_i' = \mathbf{p}_i^{\gamma}$$
, all $i \in \mathbb{N}$,

That is $\mathrm{GDeck}(\mathbb{X}_i/\mathbb{X}) \cong \Gamma/\Delta_i$. Have to assume here that the tower $\mathrm{GDeck}(\mathbb{X}_l/\mathbb{X})$ has unique, up to isomorphism of Γ , presentation in the form Γ/Δ_i .

where $\mathbf{p}_{i}^{\gamma}(u) \coloneqq \mathbf{p}_{i}(\gamma \cdot u)$ for all $u \in \mathbb{U}$.

Proof. Choose $u \in \mathbb{U}$ and set $u_i := \mathbf{p}_i(u)$. First we prove that for each $n \in \mathbb{N}$ there exists $u' \in \mathbb{U}$ such that $\mathbf{p}'_i(u') = u_i$ for all $i \leq n$. And for that it is enough to find u' such that $\mathbf{p}'_n(u') = u_n$, since then

$$\mathbf{p}'_{n-1}(u') = \mathbf{j}_n(\mathbf{p}'_n(u')) = u_{n-1}, \dots \mathbf{p}'_{n-2}(u') = \dots$$

Note that u' = u when $\mathbf{p}'_0 = \mathbf{p} = \mathbf{p}_0$.

By induction we assume that $\mathbf{p}'_n(u') = u_n$ and need to find u'' such that $\mathbf{p}'_{n+1}(u'') = u_{n+1}$. Note that by (3) $\mathbf{j}_{n+1}(\mathbf{p}'_{n+1}(u')) = u_n$ and so

$$\mathbf{p}'_{n+1}(u') = g \cdot u_{n+1}$$
 for some $g \in \mathrm{GDeck}(\mathbb{X}_{n+1}/\mathbb{X}_n)$.

We can find $\gamma \in \Gamma$ such that

$$\mathbf{p}'_{n+1}(\gamma^{-1}u') = g^{-1}\mathbf{p}'_{n+1}(u') = u_{n+1}.$$

Hence $u'' = \gamma^{-1}u'$ satisfies the required.

Since the structure $\tilde{\mathbf{X}}^{et}$ is compact in the profinite topology there is an u' which satisfies $\mathbf{p}'_i(u') = u_i$ for all $i \in \mathbb{N}$. Clealrly, u and u' are in the same fibre of \mathbf{p} and thus $u' = \gamma \cdot u$ for some $\gamma \in \Gamma$. Hence

$$\mathbf{p}_i'(u) = \mathbf{p}_i^{\gamma}(u) = g_i \cdot \mathbf{p}_i(u).$$

It follows³ that the equality holds for all u. Claim proved.

Claim 3. Any two sequences $\{\mathbf{p}_i\}$ and $\{\mathbf{p}_i'\}$ satisfying (3) satisfy the same type over the sort \mathbb{F} .

Proof. By Claim 2 the sequence are conjugated by an element of $\gamma \in \Gamma$. By construction the map $u \mapsto \gamma \cdot u$ is an automorphism of Aut $\tilde{\mathbf{X}}^{et}(\mathbb{F})$ fixing all elements of sort \mathbb{F} .

Claim 4. Let $\tilde{\mathbf{X}}_{\{\mathbf{p}_i\}}^{et}(\mathbb{F})$ be the structure $\tilde{\mathbf{X}}^{et}(\mathbb{F})$ with $\{\mathbf{p}_i\}$ named. The definable relation on the sort \mathbb{F} in the structure are exactly those which are definable in $\mathbb{F}_{|\mathbf{k}}$, the field with constants for elements of \mathbf{k} .

Proof. By [1], Theorem 7.5, it is enough to prove that the definable relations on \mathbb{F} in $\tilde{\mathbf{X}}^{et}_{\{\mathbf{p}_i\}}(\mathbb{F})$ are the same as in $\tilde{\mathbf{X}}^{et}(\mathbb{F})$.

Let $\varphi(\bar{x}, \mathbf{p}_1, \dots, \mathbf{p}_n)$ be a formula in the language $\mathcal{L}_{\mathbb{X}}(\{\mathbf{p}_i\})$ (the language of structure $\tilde{\mathbf{X}}_{\{\mathbf{p}_i\}}^{et}(\mathbb{F})$), \bar{x} a tuple of variables of sort \mathbb{F} . By Claim 3 there is a formula $\psi_n(p_1, \dots, p_n)$ in language $\mathcal{L}_{\mathbb{X}}$ which is equivalent to a complete type of $\langle \mathbf{p}_1, \dots, \mathbf{p}_n \rangle$ over \mathbb{F} . We may assume that

$$\varphi(\bar{x}, p_1, \dots, p_n) \to \psi_n(p_1, \dots, p_n).$$

³Use the fact that groups of periods of both \mathbf{p}_i and \mathbf{p}'_i are Δ_i .

Now it is easy to see that in $\tilde{\mathbf{X}}^{et}_{\{\mathbf{p}_i\}}(\mathbb{F})$

$$\varphi(\bar{x}, \mathbf{p}_1, \dots, \mathbf{p}_n) \equiv \exists p_1, \dots, p_n \psi_n(p_1, \dots, p_n) \& \varphi(\bar{x}, p_1, \dots, p_n)$$

The formula on the right of \equiv is in the language $\mathcal{L}_{\mathbb{X}}$ and defines the relation $\varphi(\bar{x}, \mathbf{p}_1, \dots, \mathbf{p}_n)$ in terms of $\tilde{\mathbf{X}}^{et}(\mathbb{F})$. Claim proved.

Claim 5. Let $T(\mathbb{X}) \in \mathcal{T}(\mathbb{X})$ and $\{\mathbf{p}_i\}$ an associated sequence satisfying (3). Any automorphism σ of $\mathbb{F}_{|\mathbf{k}|}$ induces a unique automorphism $s(\sigma)$ of $\tilde{\mathbf{X}}_{[\mathbf{p}_i]}^{et}$ (\mathbb{F}).

Proof. First note that σ , being an automorphism of the field \mathbb{F} , defines a transformation $\hat{\sigma}$ on algebraic sorts of $\tilde{\mathbf{X}}^{et}_{\{\mathbf{p}_i\}}(\mathbb{F})$,

$$\hat{\sigma}: \mathbb{X}_{\mu,\alpha}(\mathbb{F}) \to \mathbb{X}_{\mu,\sigma(\alpha)}.$$

This transformation is an elementary monomorphism of $\tilde{\mathbf{X}}_{\{\mathbf{p}_i\}}^{et}(\mathbb{F})$, i.e. it preserves the relation induced on the algebraic sorts in the structure $\tilde{\mathbf{X}}_{\{\mathbf{p}_i\}}^{et}(\mathbb{F})$. Indeed, by Claim 4 these relations are just the relations definable in terms of $\mathbb{F}_{[k]}$.

In particular $\hat{\sigma}$ acts on $\mathbb{X}_i(\mathbb{F})$ of $T(\mathbb{X}(\mathbb{F}))$ as an automorphism of $T(\mathbb{X}(\mathbb{F}))$. Now we want to extend the action $\hat{\sigma}$ to the whole of $\tilde{\mathbf{X}}_{\{\mathbf{p}_i\}}^{et}(\mathbb{F})$. Note that by (3) the sequence of maps \mathbf{j}_i is definable in $\tilde{\mathbf{X}}_{\{\mathbf{p}_i\}}^{et}(\mathbb{F})$, It follows that $\mathbb{U}_i(\mathbb{F}) \subseteq \operatorname{dcl}(\mathbb{X}_i(\mathbb{F}))$ and thus the elementary monomorphism $\hat{\sigma}$ extends uniquely to all the sorts $\mathbb{U}_i(\mathbb{F})$. Now the extension of $\hat{\sigma}$ to $\mathbb{U}(\mathbb{F})$ follows from the fact that $\mathbb{U}(\mathbb{F})$ is the projective limit of the $\mathbb{U}_i(\mathbb{F})$ along $\bar{\mathbf{p}}_i$; each $u \in \mathbb{U}(\mathbb{F})$ is the limit of the sequence $\bar{\mathbf{p}}_i(u) \in \mathbb{U}_i(\mathbb{F})$.

Set $s(\sigma) := \hat{\sigma}$. Claim proved.

It follows that s is a homomorphism of $\operatorname{Aut}(\mathbb{F}_{|k})$ into $\operatorname{Aut} \tilde{\mathbf{X}}^{et}_{\{\mathbf{p}_i\}}(\mathbb{F}) \subset \operatorname{Aut} \tilde{\mathbf{X}}^{et}(\mathbb{F})$. Thus we have

$$s: \operatorname{Aut}(\mathbb{F}_{|\mathbf{k}}) \to \operatorname{Aut} \tilde{\mathbf{X}}^{et}(\mathbb{F})$$

a section associated with T(X).

3 Abelian varieties

Let \mathbb{X} be an abelian variety of dimension g over k, (in particular, $\mathbb{X}(k) \neq \emptyset$) and $J(\mathbb{X})$ the Jacobi variety of \mathbb{X} .

⁴Need also that the tower GDeck(\mathbb{X}_l/\mathbb{X}) has unique presentation in the form Γ/Δ_i .

Our aim here is to construct a class of non-isomorphic cofinal towers T(X) over k.

3.1 For $n \in \mathbb{N}$ and $e \in \mathbb{X}(k)$ define the map

$$[n]_e : \mathbb{X} \to \mathbb{X}; \ e + x \mapsto e + n \cdot x.$$

Also fix an element $o \in \mathbb{X}(k)$ and let

$$\mathcal{E}_{\mathbb{X}} = \mathbb{X}(\mathbf{k})^{\mathbb{N}} = \{ \{ e_i \in \mathbb{X}(\mathbf{k}) : i \in \mathbb{N} \}, e_0 = o \}$$

the set of all sequences of elements of $\mathbb{X}(k)$ beginning with o. For each $\mathbf{e} = \{e_i\} \in \mathcal{E}_{\mathbb{X}}$ set

$$\mathbb{X}_0 = \mathbb{X}, \ \mathbb{X}_i = \mathbb{X} \text{ and } \mathbf{j}_i \coloneqq [i]_{e_i}; \mathbb{X}_i \to \mathbb{X}_{i-1}, i \in \mathbb{N}.$$

Clearly,

$$GDeck(X_i/X_{i-1}), GDeck(X_i/X) \subset J(X),$$

$$\operatorname{GDeck}(\mathbb{X}_i/\mathbb{X}_{i-1}) \cong (\mathbb{Z}/i\mathbb{Z})^{2g}, \quad \operatorname{GDeck}(\mathbb{X}_i/\mathbb{X}) \cong (\mathbb{Z}/i!\mathbb{Z})^{2g},$$

the 2g-cartesian powers of cyclic groups of orders i and i! respectively. It follows,

$$T_{\mathbf{e}}(\mathbb{X}): \mathbb{X} \leftarrow_{j_{e_1}} \mathbb{X}_1 \leftarrow_{j_{e_2}} \mathbb{X}_2 \leftarrow \dots \mathbb{X}_i \leftarrow_{j_{e_{i+1}}} \mathbb{X}_{i+1} \leftarrow_{j_{e_{i+2}}} \dots$$

is a cofinal Δ_i - tower over k for

$$\Delta_i = i! \cdot \Gamma$$
, where $\Gamma = \hat{\pi}_1^{top}(\mathbb{X}(\mathbb{C}))$.

3.2 Lemma. Suppose $T_{\mathbf{e}}(\mathbb{X}) \cong T_{\mathbf{e}'}(\mathbb{X})$. Then $(e_i - e'_i) \in \text{Tors J}(\mathbb{X})$ for all $i \in \mathbb{N}$.

Proof. Let $f_i: \mathbb{X}_i \to \mathbb{X}'_i$, $i \in \mathbb{N}$, be the system of isomorphisms which realise the isomorphism $T_{\mathbf{e}}(\mathbb{X}) \cong T_{\mathbf{e}'}(\mathbb{X})$. By definitions, $\mathbb{X}_i = \mathbb{X}'_i = \mathbb{X}$

$$f_{i-1} \circ [i]_{e_i} = [i]_{e_i'} \circ f_i \tag{4}$$

Note that f_i can be seen also as an isomorphism of étale covers $\mathbb{X}_i \to \mathbb{X}_0$ and $\mathbb{X}'_i \to \mathbb{X}_0$ given by compositions $j_1 \circ \ldots \circ j_i$ and $j'_1 \circ \ldots \circ j'_i$, respectively. It follows that f_i has the form $f_i(x) = x + t_i$ for some $t \in \text{Tors}(J(\mathbb{X}))$.

Applying both sides of (4) to x we get, for i = 1, 2, ...

$$f_{i-1}(i(x-e_i)+e_i)=i\cdot (f_i(x)-e_i')+e_i'.$$

in particular,

$$f_{i-1}(e_i) = i \cdot (f_i(e_i) - e'_i) + e'_i$$

and so

$$e_i + t_{i-1} = i \cdot (e_i + t_i - e'_i) + e'_i$$

and finally

$$(i-1)(e_i-e_i')=t_{i-1}-i\cdot t_i\in \operatorname{Tors}(J(\mathbb{X})).$$

It follows $e_i - e'_i \in \text{Tors}(J(X))$. \square

3.3 Corollary. Assume that the group of k-rational points of \mathbb{X} contains non-torsion points. Then there are continuum-many non-isomorphic towers $T_e(\mathbb{X})$ and respectively continuum-many non-conjugated sections of the projection $\pi_1(\mathbb{X}) \to \operatorname{Gal}_k$.

References

- [1] R.Abdolahzadi and B.Zilber, Definability, interpretations and étale fundamental groups arixiv
- [2] M. Ciperiani and J.Stix, Galois sections for abelian varieties over number fields, Journal de Théorie des Nombres de Bordeaux 27 (2015), no. 1, 47-52.
- [3] J.Silverman, **The arithmetic of elliptic curves**, 2nd Ed., Springer, 2009
- [4] M.Saäidi, AROUND THE GROTHENDIECK ANABELIAN SECTION CONJECTURE, arxiv1010.1314 (2010)
- [5] A.Tamagawa, The Grothendieck conjecture for affine curves. Compositio Math. 109. (1997), no. 2, 135–194