Sections and towers

B.Zilber*

April 28, 2021

Abstract

We discuss the towers of finite étale covers which were essentially introduced by A.Tamagawa [5] and used e.g. in [4]. The statement about correspondence between sections and cofinal towers is a folklore but perhaps not in a very explicit form. The last section explains how the "injectivity statement" of Grothendieck section conjecture fails for abelian varieties, which is also known in some form from [2].

The paper is based on [1] which was aimed to reinterpret anabelian setting in model theory terms.

1 A short overview of structure $\tilde{\mathbf{X}}^{e t}$

We start with an overview of the key structure introduced and studied in [1]. It is essentially the projective object - the Grothendieck universal étale cover of a smooth k-variety \mathbb{X}.

[^0]

The diagram for $\tilde{\mathbf{X}}^{\text {et }}$.

Explaining the picture (see [1], 7.1-7.3 and Corollary 7.11)
1.1 All arrow diagrams commute.
1.2 Each $\mathbb{X}_{\nu, \beta_{i}}$ is an absolutely irreducible variety over the field $\mathrm{k}\left[\beta_{1}\right]=\ldots=\mathrm{k}\left[\beta_{k}\right]$, a Galois extension of $\mathrm{k} . \mathbb{X}_{\nu, \beta_{i}}\left(\mathrm{k}^{\text {alg }}\right)$ is the set of its $\mathrm{k}^{\text {alg }}$-points, a subset of a projective space.
1.3 Each $\nu_{\beta_{i}}$ is an étale covering map $\nu_{\beta_{i}}: \mathbb{X}_{\nu, \beta_{i}}\left(\mathrm{k}^{\text {alg }}\right) \rightarrow \mathbb{X}\left(\mathrm{k}^{\text {alg }}\right)$.
$1.4 \tilde{X}\left(\mathrm{k}^{a l g}\right)$ is a set with the regular action of a group Γ.
1.5 Each $\tilde{\mathbf{p}}_{\nu \beta_{i}}$ is a finite collection of surjective maps

$$
p: \tilde{\mathbb{X}}\left(\mathrm{k}^{a l g}\right) \rightarrow \mathbb{X}_{\nu \beta_{i}}\left(\mathrm{k}^{a l g}\right)
$$

In particular, if $\mathbb{X}_{\nu \beta_{i}}\left(\mathrm{k}^{a l g}\right)=\mathbb{X}_{\mu \alpha_{j}}\left(\mathrm{k}^{\text {alg }}\right)$ and $\nu_{\beta_{i}}=\mu_{\alpha_{j}}$ then $\tilde{\mathbf{p}}_{\nu \beta_{i}}=\tilde{\mathbf{p}}_{\mu \alpha_{j}}$. In case $\mathbb{X}_{\nu, \beta_{i}}\left(\mathrm{k}^{\text {alg }}\right)=\mathbb{X}\left(\mathrm{k}^{\text {alg }}\right)$ the collection $\tilde{\mathbf{p}}_{\nu \beta_{i}}$ consists of one map \mathbf{p}.
1.6 Suppose there is a morphism $\left(\mu_{\alpha}^{-1} \nu_{\beta}\right): \mathbb{X}_{\nu, \beta}\left(\mathrm{k}^{a l g}\right) \rightarrow \mathbb{X}_{\mu, \alpha}\left(\mathrm{k}^{\text {alg }}\right)$ of étale covers (see notation in [1], section 4). Then for every $p \in \tilde{\mathbf{p}}_{\mu, \alpha}$ there is $q \in \tilde{\mathbf{p}}_{\nu, \beta}$ such that

$$
\begin{equation*}
\left(\mu_{\alpha}^{-1} \nu_{\beta}\right)=p \circ q^{-1}, \tag{1}
\end{equation*}
$$

and for every $q \in \tilde{\mathbf{p}}_{\nu, \beta}$ there is $p \in \tilde{\mathbf{p}}_{\mu, \alpha}$ such that (1) holds.
1.7 Given $p \in \tilde{\mathbf{p}}_{\nu \beta_{i}}$

$$
\tilde{\mathbf{p}}_{\nu \beta_{i}}=\left\{g \circ p: g \in \operatorname{GDeck}\left(\mathbb{X}_{\nu \beta_{i}} / \mathbb{X}\right)\right\}
$$

where $\left.\operatorname{GDeck}\left(\mathbb{X}_{\nu \beta_{i}} / \mathbb{X}\right)\right\}$ is the geometric deck-transformation group.
1.8 The fibres of \mathbf{p} are Γ-orbits. The fibres of $p \in \tilde{\mathbf{p}}_{\nu, \beta_{i}}$ are orbits by a finite index normal subgroup $\Delta_{\nu, \beta_{i}}$ of Γ.

$$
\operatorname{GDeck}\left(\mathbb{X}_{\nu \beta_{i}} / \mathbb{X}\right) \cong \Gamma / \Delta_{\nu, \beta_{i}} .
$$

1.9 For each finite collection $\mathbb{X}_{\lambda_{1} \gamma_{1}}, \ldots \mathbb{X}_{\lambda_{m} \gamma_{m}}$, there is a ν_{β} such that

$$
\Delta_{\nu, \beta} \leq \bigcap_{0<j \leq m} \Delta_{\lambda_{j}, \gamma_{j}}
$$

1.10

$$
\bigcap_{\text {all } \nu, \beta} \Delta_{\nu, \beta}=\{1\} \text {. }
$$

1.11

$$
\operatorname{Aut} \tilde{\mathbf{X}}^{e t}\left(\mathrm{k}^{a l g}\right) \cong \pi_{1}^{e t}(\mathbb{X}, x)
$$

2 Sections and towers

2.1 Let

$$
T(\mathbb{X}): \mathbb{X} \leftarrow \mathbb{X}_{1} \leftarrow \mathbb{X}_{2} \leftarrow \ldots \mathbb{X}_{i} \leftarrow \mathbb{X}_{i+1} \leftarrow \ldots
$$

be a tower of smooth complex algebraic varieties and unramified covers, all defined over k. Let

$$
\Gamma_{T(\mathbb{X})}=\lim _{\leftarrow} \operatorname{GDeck}\left(\mathbb{X}_{i} / \mathbb{X}\right) .
$$

We call the tower cofinal if

$$
\Gamma_{T(\mathbb{X})} \cong \hat{\pi}_{1}^{t o p}(\mathbb{X})
$$

as profinite groups.

2.2 Proposition. Given \mathbb{X} there is a cofinal chain

$$
\Gamma>\Delta_{1}>\ldots \Delta_{i}>\Delta_{i+1}>\ldots
$$

of $\operatorname{Aut} \tilde{\mathbf{X}}^{\text {et }}(\mathbb{F})$-invariant normal finite index subgroups of $\hat{\pi}_{1}^{t o p}(\mathbb{X})=\Gamma$.
Given a section s and a cofinal chain $\left\{\Delta_{i}\right\}$ of Aut $\tilde{\mathbf{X}}^{\text {et }}(\mathbb{F})$-invariant normal finite index subgroups of Γ there exists a tower $T_{s}(\mathbb{X})$ over k such that

$$
\operatorname{GDeck}\left(\mathbb{X}_{i} / \mathbb{X}\right) \cong \Gamma / \Delta_{i} .
$$

Proof. Let $\Gamma:=\hat{\pi}_{1}^{t o p}(\mathbb{X}) . s \mathrm{Gal}_{\mathrm{k}}$ acts on Γ since group Γ is definable in $\tilde{\mathbf{X}}^{e t}$, In particular, $s \mathrm{Gal}_{\mathrm{k}}$ acts on the set of all finite index subgroups.

Claim 1. There exists a decreasing sequence $\left\{\Delta_{n}: n \in \mathbb{N}\right\}$ (depending on \mathbb{X} only) of $\operatorname{Aut} \tilde{\mathbf{X}}^{e t}(\mathbb{F})$-invariant normal subgroups of Γ of finite index with $\cap_{n} \Delta_{n}=\{1\}$.

Proof. For each $\mu \in \mathcal{M}_{\mathbb{X}}$ consider the subgroup $\Delta_{\mu}<\Gamma$

$$
\Delta_{\mu}=\left\{\gamma \in \Gamma: \forall p \in \tilde{\mathbf{p}}_{\mu} \forall u \in \mathbb{U} p^{\gamma}(u)=p(u)\right\}
$$

where p^{γ} is the map $u \mapsto p(\gamma \cdot u)$.
By 4.15 of [1]

$$
\Delta_{\mu}=\bigcup_{\alpha \in \operatorname{Zerosf}_{\mu}} \Delta_{\mu, \alpha},
$$

the intersection of subgroups of periods of the maps $p: \mathbb{U} \rightarrow \mathbb{X}_{\mu, \alpha}$ which are finite index. Hence Δ_{μ} is of finite index in Γ. It also follows that the intersection of the Δ_{μ} is trivial. It remains to choose a linearly ordered cofinal subset $\Delta_{n}: n \in \mathbb{N}$ in $\Delta_{\mu}: \mu \in \mathcal{M}_{\mathbb{X}}$. Claim proved.

Let

$$
\begin{equation*}
\mathbb{U}_{n}:=\Delta_{n} \backslash \mathbb{U}, \overline{\mathbf{p}}_{n}: \mathbb{U} \rightarrow \mathbb{X}, \overline{\mathbf{p}}_{n, m}: \mathbb{U}_{n} \rightarrow \mathbb{U}_{m} \tag{2}
\end{equation*}
$$

where $\overline{\mathbf{p}}_{n}$ is the covering map induced by $\mathbf{p}: \mathbb{U} \rightarrow \mathbb{X}$ on \mathbb{U}_{n} (recall that fibres of \mathbf{p} are Γ-orbits) and $\overline{\mathbf{p}}_{n, m}$ is the map induced by the embedding $\Delta_{n} \leq \Delta_{m}$.

Note that the $\mathbb{U}_{n}, \overline{\mathbf{p}}_{n}$ and $\overline{\mathbf{p}}_{n, m}$ are $\operatorname{Aut} \tilde{\mathbf{X}}^{e t}(\mathbb{F})$-invariant and so the action of $s \mathrm{Gal}_{\mathrm{k}}$ on \mathbb{U} induces the action on the tower

$$
\mathbb{U}_{1} \leftarrow \mathbb{U}_{2} \leftarrow \ldots
$$

Claim 2. The \mathbb{U}_{n} can be given structure of smooth projective algebraic varieties defined over k .

Proof. By the argument in the proof of Claim $1, \Delta_{n}=\Delta_{\mu, \alpha}=\operatorname{Per} p$, for some $\mu_{\alpha}, p: \mathbb{U} \rightarrow \mathbb{X}_{\mu, \alpha}$. Set $p_{n}: \mathbb{U}_{n} \rightarrow \mathbb{X}_{\mu, \alpha}$ be the bijective map induced by p on \mathbb{U}_{n}. We may assume that the set $\mathbb{X}_{\mu, \alpha}(\mathbb{F})$ and the map p are $s \mathrm{Gal}_{\mathrm{k}[\alpha]}$-invariant, by possibly extending $\mathrm{k}[\alpha]$ without changing the set and the map. Call $i_{n, \alpha}$ the map $p_{n}^{-1}: \mathbb{X}_{\mu, \alpha}(\mathbb{F}) \rightarrow \mathbb{U}(\mathbb{F})$. Note that by applying Galois conjugation we obtain a finite family

$$
\left\{i_{n, \alpha}: \mathbb{X}_{\mu, \alpha}(\mathbb{F}) \rightarrow \mathbb{U}(\mathbb{F}) ; \alpha \in \operatorname{Zerosf}_{\mu}\right\}
$$

of bijections.
Let

$$
\mathbb{Y}_{n}=\left\{\langle x, \alpha\rangle: x \in \mathbb{X}_{\mu, \alpha} \& \alpha \in \operatorname{Zerosf}_{\mu}\right\}
$$

the disjoint union of $\mathrm{k}[\alpha]$-varieties isomorphic to $\mathbb{X}_{\mu, \alpha}$. Let $i_{n}: \mathbb{Y} \rightarrow \mathbb{U}_{n}$ be the surjective map defined as

$$
i_{n}(y)=u \leftrightarrow \exists \alpha \exists x \in \mathbb{X}_{\mu, \alpha} y=\langle x, \alpha\rangle \& i_{n, \alpha}(x)=u
$$

By construction \mathbb{Y}_{n} and i_{n} are $\mathrm{Gal}_{\mathrm{k}}$-invariant.
Let G be the group $\operatorname{Gal}(\mathrm{k}[\alpha]: \mathrm{k})$ (recall that by our assumptions $\mathrm{k}[\alpha]: \mathrm{k}$ is Galois. For each $u \in \mathbb{U}_{n}$, define the action of G on $i_{n}^{-1}(u)$. Note that by construction

$$
i_{n}^{-1}(u)=\left\{\left\langle x_{\alpha}, \alpha\right\rangle: \alpha \in \operatorname{Zerosf}_{\mu}\right\}
$$

for some $x_{\alpha} \in \mathbb{X}_{\mu, \alpha}$. For $\sigma \in G$ set

$$
\sigma:\left\langle x_{\alpha}, \alpha\right\rangle \mapsto\left\langle x_{\sigma(\alpha)}, \sigma(\alpha)\right\rangle
$$

By construction $G \backslash \mathbb{Y}_{n}$ is in bijective k-definable correspondence with $i_{n}\left(\mathbb{Y}_{n}\right)$ that is with \mathbb{U}_{n}, that is

$$
\mathbb{U}_{n} \cong G \backslash \mathbb{Y}_{n}
$$

The object on the right is the quotient of smooth projective variety (reducible, in general) by a regular action of a finite group. Hence $G \backslash \mathbb{Y}_{n}$ is isomorphic ${ }^{1}$ to a smooth projective variety \mathbb{X}_{n} over k via a surjective map $t_{n}: \mathbb{Y}_{n} \rightarrow \mathbb{X}_{n}$ with fibres which are G-orbits. Thus there is a $s \mathrm{Gal}_{\mathrm{k}}$-invariant bijective map onto the k -variety

$$
\mathbf{i}_{n}: \mathbb{U}_{n} \rightarrow \mathbb{X}_{n}
$$

[^1]Claim proved.
Note that $t_{n, \alpha}$, the restriction of t_{n} to $\mathbb{X}_{\mu, \alpha} \times\{\alpha\}$, a component of \mathbb{Y}_{n}, is a biregular isomorphism $t_{n, \alpha}:\langle x, \alpha\rangle \mapsto G \cdot\langle x, \alpha\rangle$ on \mathbb{X}_{n} defined over $\mathrm{k}[\alpha]$. Consider the map

$$
t_{n, \alpha}^{\prime}: x \mapsto G \cdot\langle x, \alpha\rangle, \quad \mathbb{X}_{\mu, \alpha} \rightarrow \mathbb{X}_{n}
$$

which for simplicity of notation we call $t_{n, \alpha}$ as well. By construction

$$
t_{n, \alpha} \circ p_{n}=\mathbf{i}_{n} .
$$

Define $\mathbf{j}_{n, m}: \mathbb{X}_{n} \rightarrow \mathbb{X}_{m}$ to be $\mathbf{j}_{n, m}=\mathbf{i}_{m} \circ \overline{\mathbf{p}}_{n m} \circ \mathbf{i}_{n}^{-1}$. This is definable over k since $\mathbf{i}_{m}, \overline{\mathbf{p}}_{n m}$ and \mathbf{i}_{n} are $s \mathrm{Gal}_{\mathrm{k}}$-invariant. This is also a Zariski regular map since by above

$$
\mathbf{j}_{n, m}=t_{m, \beta} \circ p_{m} \circ \overline{\mathbf{p}}_{n, m} \circ p_{n}^{-1} \circ t_{n, \alpha}^{-1}=t_{m, \beta} \circ\left(\nu_{\beta}^{-1} \mu_{\alpha}\right) \circ t_{n, \alpha}^{-1}
$$

where $\left(\nu_{\beta}^{-1} \mu_{\alpha}\right): \mathbb{X}_{\mu, \alpha} \rightarrow \mathbb{X}_{\nu, \beta}$ is an intermediate regular map which can be presented as $p_{m} \circ \overline{\mathbf{p}}_{n, m} \circ p_{n}^{-1}$.

This gives us the cofinal tower

$$
T_{s}(\mathbb{X}): \mathbb{X} \leftarrow \mathbb{X}_{1} \leftarrow \mathbb{X}_{2} \leftarrow \ldots \mathbb{X}_{i} \leftarrow \mathbb{X}_{i+1} \leftarrow \ldots
$$

where the arrows $\mathbb{X}_{i+1} \rightarrow \mathbb{X}_{i}$ stand for the regular maps $\mathbf{j}_{i+1, i}$.
2.3 Corollary (of the proof). Given s and the tower $\left\{\Delta_{i}: i \in \mathbb{N}\right\}$ of (2) the tower $T_{s}(\mathbb{X})$ is determined uniquely up to isomorphism over k . The system of bijections \mathbf{i}_{i}

$$
\begin{gathered}
\mathbb{X} \leftarrow \mathbb{U}_{1} \leftarrow \mathbb{U}_{2} \leftarrow \ldots \mathbb{U}_{i} \leftarrow \mathbb{U}_{i+1} \leftarrow \ldots \\
\downarrow \mathbf{i} \downarrow \mathbf{i}_{1} \quad \downarrow \mathbf{i}_{2} \ldots \downarrow \mathbf{i}_{i} \ldots \downarrow \mathbf{i}_{i+1} \ldots \\
\mathbb{X} \leftarrow{ }_{j_{1}} \mathbb{X}_{1} \leftarrow j_{2} \mathbb{X}_{2} \leftarrow \ldots \mathbb{X}_{i} \leftarrow j_{i+1} \mathbb{X}_{i+1} \leftarrow j_{i+2} \ldots
\end{gathered}
$$

furnishes isomorphism between the structure on the tower of the \mathbb{U}_{i} induced by the action of $s \mathrm{Gal}_{\mathrm{k}}$ and the tower $T_{s}(\mathbb{X})$.

Given any other such $s \mathrm{Gal}_{\mathrm{k}}$-invariant tower

$$
T_{s}^{\prime}(\mathbb{X}): \mathbb{X} \leftarrow \mathbb{X}_{1}^{\prime} \leftarrow \mathbb{X}_{2}^{\prime} \leftarrow \ldots \mathbb{X}_{i}^{\prime} \leftarrow \mathbb{X}_{i+1}^{\prime} \leftarrow \ldots
$$

with covering maps $\mathbf{j}_{i+1}^{\prime}: \mathbb{X}_{i+1} \rightarrow \mathbb{X}_{i}$ there are isomorphism $q_{i}: \mathbb{X}_{i} \rightarrow \mathbb{X}_{i}^{\prime}$ over k such that

$$
q_{i} \circ \mathbf{j}_{i+1}=\mathbf{j}_{i+1}^{\prime} \circ q_{i+1} .
$$

2.4 Proposition. Let

$$
\mathcal{T}(\mathbb{X})=\left\{T(\mathbb{X}):\left\{\Delta_{i}: i \in \mathbb{N}\right\}-\text { towers }\right\}
$$

the set of all $\left\{\Delta_{i}: i \in \mathbb{N}\right\}$ - towers over $\mathrm{k} .^{2}$ Let

$$
\mathcal{S}(\mathbb{X})=\left\{s: \operatorname{Gal}_{\mathrm{k}} \rightarrow \operatorname{Aut} \tilde{\mathbf{X}}^{e t}\left(\mathrm{k}^{a l g}\right)\right\}
$$

the set of all sections of $\mathrm{pr}: \operatorname{Aut} \tilde{\mathbf{X}}^{e t}\left(\mathrm{k}^{\text {alg }}\right) \rightarrow \mathrm{Gal}_{\mathrm{k}}$.
Then the map

$$
s \mapsto T_{s}(\mathbb{X})
$$

induces a bijection

$$
\mathcal{S}(\mathbb{X})_{/ \text {conj } \rightarrow \mathcal{T}(\mathbb{X})_{/ i s o} .}
$$

between the set of section modulo conjugation and the set of towers modulo isomorphisms over k .

Proof. The map $s \mapsto T_{s}(\mathbb{X})_{\text {/iso }}$ is constructed above, see 2.3 . We construct the inverse map

$$
T(\mathbb{X})_{/ \mathrm{iso}} \mapsto s_{/ \mathrm{conj}} ; \quad \mathcal{T}(\mathbb{X})_{/ \mathrm{iso}} \rightarrow \mathcal{S}(\mathbb{X})_{/ \mathrm{conj}}
$$

Let $T(\mathbb{X})$ be a $\operatorname{Gal}_{\mathrm{k}}$-invariant $\left\{\Delta_{i}: i \in \mathbb{N}\right\}$ - tower. By the construction of $\tilde{\mathbf{X}}^{\text {et }}$ the tower can be embedded into $\tilde{\mathbf{X}}^{\text {et }}$, that is $\mathbb{X}_{i}=\mathbb{X}_{\mu_{i}, \alpha_{i}}$ for some $\mu_{i} \in \mathcal{M}_{\mathbb{X}}, \alpha_{i} \in \mathbf{f}_{\mu_{i}}$ and the \mathbf{j}_{i+1} are appropriate intermediate morphisms. Since the tower is over k we can drop α_{i}. We also write i for μ_{i}.

Now we consider the respective sets of covering maps $p: \mathbb{U} \rightarrow$ $\mathbb{X}_{i}, \quad p \in \tilde{\mathbf{p}}_{i}$ for each $i \in \mathbb{N}$.

Claim 1. There is a sequence $\mathbf{p}_{i} \in \tilde{\mathbf{p}}_{i}, i \in \mathbb{N}$ of covering maps $\mathbf{p}_{i}: \mathbb{U} \rightarrow \mathbb{X}_{i}$ such that

$$
\begin{equation*}
\mathbf{j}_{i+1} \circ \mathbf{p}_{i+1}=\mathbf{p}_{i}, \text { all } i \in \mathbb{N} \tag{3}
\end{equation*}
$$

Proof. By induction. For $i=0$, set $\mathbb{X}_{0}:=\mathbb{X}$ and $\mathbf{p}_{0}:=\mathbf{p}$. Suppose $\mathbf{p}_{n}, n \leq i$ have been constructed satisfying the requirement. We can choose \mathbf{p}_{i+1} by property 1.6. Claim proved

Claim 2. Suppose $\left\{\mathbf{p}_{i}^{\prime}: i \in \mathbb{N}\right\}$ is another sequence satisfying (3). Then there is $\gamma \in \Gamma$ such that

$$
\mathbf{p}_{i}^{\prime}=\mathbf{p}_{i}^{\gamma}, \text { all } i \in \mathbb{N}
$$

[^2]where $\mathbf{p}_{i}^{\gamma}(u):=\mathbf{p}_{i}(\gamma \cdot u)$ for all $u \in \mathbb{U}$.
Proof. Choose $u \in \mathbb{U}$ and set $u_{i}:=\mathbf{p}_{i}(u)$. First we prove that for each $n \in \mathbb{N}$ there exists $u^{\prime} \in \mathbb{U}$ such that $\mathbf{p}_{i}^{\prime}\left(u^{\prime}\right)=u_{i}$ for all $i \leq n$. And for that it is enough to find u^{\prime} such that $\mathbf{p}_{n}^{\prime}\left(u^{\prime}\right)=u_{n}$, since then
$$
\mathbf{p}_{n-1}^{\prime}\left(u^{\prime}\right)=\mathbf{j}_{n}\left(\mathbf{p}_{n}^{\prime}\left(u^{\prime}\right)\right)=u_{n-1}, \ldots \mathbf{p}_{n-2}^{\prime}\left(u^{\prime}\right)=\ldots
$$

Note that $u^{\prime}=u$ when $\mathbf{p}_{0}^{\prime}=\mathbf{p}=\mathbf{p}_{0}$.
By induction we assume that $\mathbf{p}_{n}^{\prime}\left(u^{\prime}\right)=u_{n}$ and need to find $u^{\prime \prime}$ such that $\mathbf{p}_{n+1}^{\prime}\left(u^{\prime \prime}\right)=u_{n+1}$. Note that by (3) $\mathbf{j}_{n+1}\left(\mathbf{p}_{n+1}^{\prime}\left(u^{\prime}\right)\right)=u_{n}$ and so

$$
\mathbf{p}_{n+1}^{\prime}\left(u^{\prime}\right)=g \cdot u_{n+1} \text { for some } g \in \operatorname{GDeck}\left(\mathbb{X}_{n+1} / \mathbb{X}_{n}\right) .
$$

We can find $\gamma \in \Gamma$ such that

$$
\mathbf{p}_{n+1}^{\prime}\left(\gamma^{-1} u^{\prime}\right)=g^{-1} \mathbf{p}_{n+1}^{\prime}\left(u^{\prime}\right)=u_{n+1} .
$$

Hence $u^{\prime \prime}=\gamma^{-1} u^{\prime}$ satisfies the required.
Since the structure $\tilde{\mathbf{X}}^{\text {et }}$ is compact in the profinite topology there is an u^{\prime} which satisfies $\mathbf{p}_{i}^{\prime}\left(u^{\prime}\right)=u_{i}$ for all $i \in \mathbb{N}$. Clealrly, u and u^{\prime} are in the same fibre of \mathbf{p} and thus $u^{\prime}=\gamma \cdot u$ for some $\gamma \in \Gamma$. Hence

$$
\mathbf{p}_{i}^{\prime}(u)=\mathbf{p}_{i}^{\gamma}(u)=g_{i} \cdot \mathbf{p}_{i}(u) .
$$

It follows ${ }^{3}$ that the equality holds for all u. Claim proved.
Claim 3. Any two sequences $\left\{\mathbf{p}_{i}\right\}$ and $\left\{\mathbf{p}_{i}^{\prime}\right\}$ satisfying (3) satisfy the same type over the sort \mathbb{F}.

Proof. By Claim 2 the sequence are conjugated by an element of $\gamma \in \Gamma$. By construction the map $u \mapsto \gamma \cdot u$ is an automorphism of Aut $\tilde{\mathbf{X}}^{e t}(\mathbb{F})$ fixing all elements of sort \mathbb{F}.

Claim 4. Let $\tilde{\mathbf{X}}_{\left\{\mathbf{p}_{i}\right\}}^{e t}(\mathbb{F})$ be the structure $\tilde{\mathbf{X}}^{e t}(\mathbb{F})$ with $\left\{\mathbf{p}_{i}\right\}$ named. The definable relation on the sort \mathbb{F} in the structure are exactly those which are definable in $\mathbb{F}_{\mid \mathrm{k}}$, the field with constants for elements of k .

Proof. By [1], Theorem 7.5, it is enough to prove that the definable relations on \mathbb{F} in $\tilde{\mathbf{X}}_{\left\{\mathbf{p}_{i}\right\}}^{e t}(\mathbb{F})$ are the same as in $\tilde{\mathbf{X}}^{e t}(\mathbb{F})$.

Let $\varphi\left(\bar{x}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right)$ be a formula in the language $\mathcal{L}_{\mathbb{X}}\left(\left\{\mathbf{p}_{i}\right\}\right)$ (the language of structure $\left.\tilde{\mathbf{X}}_{\left\{\mathbf{p}_{i}\right\}}^{e t}(\mathbb{F})\right), \bar{x}$ a tuple of variables of sort \mathbb{F}. By Claim 3 there is a formula $\psi_{n}\left(p_{1}, \ldots, p_{n}\right)$ in language $\mathcal{L}_{\mathbb{X}}$ which is equivalent to a complete type of $\left\langle\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right\rangle$ over \mathbb{F}. We may assume that

$$
\varphi\left(\bar{x}, p_{1}, \ldots, p_{n}\right) \rightarrow \psi_{n}\left(p_{1}, \ldots, p_{n}\right)
$$

[^3]Now it is easy to see that in $\tilde{\mathbf{X}}_{\left\{\mathbf{p}_{i}\right\}}^{e t}(\mathbb{F})$

$$
\varphi\left(\bar{x}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right) \equiv \exists p_{1}, \ldots, p_{n} \psi_{n}\left(p_{1}, \ldots, p_{n}\right) \& \varphi\left(\bar{x}, p_{1}, \ldots, p_{n}\right)
$$

The formula on the right of \equiv is in the language $\mathcal{L}_{\mathbb{X}}$ and defines the relation $\varphi\left(\bar{x}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right)$ in terms of $\tilde{\mathbf{X}}^{e t}(\mathbb{F})$. Claim proved.

Claim 5. Let $T(\mathbb{X}) \in \mathcal{T}(\mathbb{X})$ and $\left\{\mathbf{p}_{i}\right\}$ an associated sequence satisfying (3). Any automorphism σ of $\mathbb{F}_{\mid \mathrm{k}}$ induces a unique automorphism $s(\sigma)$ of $\tilde{\mathbf{X}}_{\left\{\mathbf{p}_{i}\right\}}^{e t}(\mathbb{F})$.

Proof. First note that σ, being an automorphism of the field \mathbb{F}, defines a transformation $\hat{\sigma}$ on algebraic sorts of $\tilde{\mathbf{X}}_{\left\{\mathbf{p}_{i}\right\}}^{e t}(\mathbb{F})$,

$$
\hat{\sigma}: \mathbb{X}_{\mu, \alpha}(\mathbb{F}) \rightarrow \mathbb{X}_{\mu, \sigma(\alpha)}
$$

This transformation is an elementary monomorphism of $\tilde{\mathbf{X}}_{\left\{\mathbf{p}_{i}\right\}}^{e t}(\mathbb{F})$, i.e. it preserves the relation induced on the algebraic sorts in the structure $\tilde{\mathbf{X}}_{\left\{\mathbf{p}_{i}\right\}}^{e t}(\mathbb{F})$. Indeed, by Claim 4 these relations are just the relations definable in terms of $\mathbb{F}_{\mid \mathrm{k}}$.

In particular $\hat{\sigma}$ acts on $\mathbb{X}_{i}(\mathbb{F})$ of $T(\mathbb{X}(\mathbb{F}))$ as an automorphism of $T(\mathbb{X}(\mathbb{F}))$. Now we want to extend the action $\hat{\sigma}$ to the whole of $\tilde{\mathbf{X}}_{\left\{\mathbf{p}_{i}\right\}}^{e t}(\mathbb{F})$. Note that by (3) the sequence of maps $\mathbf{j}_{\mathbf{i}}$ is definable in $\tilde{\mathbf{X}}_{\left\{\mathbf{p}_{\mathbf{i}}\right\}}^{e t}(\mathbb{F})$, It follows that $\mathbb{U}_{i}(\mathbb{F}) \subseteq \operatorname{dcl}\left(\mathbb{X}_{i}(\mathbb{F})\right)$ and thus the elementary monomorphism $\hat{\sigma}$ extends uniquely to all the sorts $\mathbb{U}_{i}(\mathbb{F})$. Now the extension of $\hat{\sigma}$ to $\mathbb{U}(\mathbb{F})$ follows from the fact that $\mathbb{U}(\mathbb{F})$ is the projective limit of the $\mathbb{U}_{i}(\mathbb{F})$ along $\overline{\mathbf{p}}_{i}$; each $u \in \mathbb{U}(\mathbb{F})$ is the limit of the sequence $\overline{\mathbf{p}}_{i}(u) \in \mathbb{U}_{i}(\mathbb{F})$.

Set $s(\sigma):=\hat{\sigma}$. Claim proved.
It follows that s is a homomorphism of $\operatorname{Aut}\left(\mathbb{F}_{\mid \mathrm{k}}\right)$ into $\operatorname{Aut} \tilde{\mathbf{X}}_{\left\{\mathbf{p}_{i}\right\}}^{e t}(\mathbb{F}) \subset$ Aut $\tilde{\mathbf{X}}^{e t}(\mathbb{F})$. Thus we have

$$
s: \operatorname{Aut}\left(\mathbb{F}_{\mid \mathrm{k}}\right) \rightarrow \operatorname{Aut} \tilde{\mathbf{X}}^{e t}(\mathbb{F})
$$

a section associated with $T(\mathbb{X}) .{ }^{4}$

3 Abelian varieties

Let \mathbb{X} be an abelian variety of dimension g over k , (in particular, $\mathbb{X}(\mathrm{k}) \neq \varnothing)$ and $\mathrm{J}(\mathbb{X})$ the Jacobi variety of \mathbb{X}.

[^4]Our aim here is to construct a class of non-isomorphic cofinal towers $T(\mathbb{X})$ over k.
3.1 For $n \in \mathbb{N}$ and $e \in \mathbb{X}(\mathrm{k})$ define the map

$$
[n]_{e}: \mathbb{X} \rightarrow \mathbb{X} ; e+x \mapsto e+n \cdot x
$$

Also fix an element $o \in \mathbb{X}(\mathrm{k})$ and let

$$
\mathcal{E}_{\mathbb{X}}=\mathbb{X}(\mathrm{k})^{\mathbb{N}}=\left\{\left\{e_{i} \in \mathbb{X}(\mathrm{k}): i \in \mathbb{N}\right\}, e_{0}=o\right\}
$$

the set of all sequences of elements of $\mathbb{X}(\mathrm{k})$ beginning with o.
For each $\mathbf{e}=\left\{e_{i}\right\} \in \mathcal{E}_{\mathbb{X}}$ set

$$
\mathbb{X}_{0}=\mathbb{X}, \mathbb{X}_{i}=\mathbb{X} \text { and } \mathbf{j}_{i}:=[i]_{e_{i}} ; \mathbb{X}_{i} \rightarrow \mathbb{X}_{i-1}, i \in \mathbb{N}
$$

Clearly,

$$
\begin{gathered}
\operatorname{GDeck}\left(\mathbb{X}_{i} / \mathbb{X}_{i-1}\right), \operatorname{GDeck}\left(\mathbb{X}_{i} / \mathbb{X}\right) \subset \mathrm{J}(\mathbb{X}), \\
\operatorname{GDeck}\left(\mathbb{X}_{i} / \mathbb{X}_{i-1}\right) \cong(\mathbb{Z} / i \mathbb{Z})^{2 g}, \quad \operatorname{GDeck}\left(\mathbb{X}_{i} / \mathbb{X}\right) \cong(\mathbb{Z} / i!\mathbb{Z})^{2 g},
\end{gathered}
$$

the $2 g$-cartesian powers of cyclic groups of orders i and i ! respectively. It follows,

$$
T_{\mathbf{e}}(\mathbb{X}): \mathbb{X} \leftarrow j_{e_{1}} \mathbb{X}_{1} \leftarrow j_{e_{2}} \mathbb{X}_{2} \leftarrow \ldots \mathbb{X}_{i} \leftarrow j_{e_{i+1}} \mathbb{X}_{i+1} \leftarrow j_{e_{i+2}} \ldots
$$

is a cofinal Δ_{i} - tower over k for

$$
\Delta_{i}=i!\cdot \Gamma, \text { where } \Gamma=\hat{\pi}_{1}^{t o p}(\mathbb{X}(\mathbb{C})) .
$$

3.2 Lemma. Suppose $T_{\mathbf{e}}(\mathbb{X}) \cong T_{\mathbf{e}^{\prime}}(\mathbb{X})$. Then $\left(e_{i}-e_{i}^{\prime}\right) \in \operatorname{Tors} \mathbf{J}(\mathbb{X})$ for all $i \in \mathbb{N}$.

Proof. Let $f_{i}: \mathbb{X}_{i} \rightarrow \mathbb{X}_{i}^{\prime}, i \in \mathbb{N}$, be the system of isomorphisms which realise the isomorphism $T_{\mathbf{e}}(\mathbb{X}) \cong T_{\mathbf{e}^{\prime}}(\mathbb{X})$. By definitions, $\mathbb{X}_{i}=$ $\mathbb{X}_{i}^{\prime}=\mathbb{X}$

$$
\begin{equation*}
f_{i-1} \circ[i]_{e_{i}}=[i]_{e_{i}^{\prime}} \circ f_{i} \tag{4}
\end{equation*}
$$

Note that f_{i} can be seen also as an isomorphism of étale covers $\mathbb{X}_{i} \rightarrow$ \mathbb{X}_{0} and $\mathbb{X}_{i}^{\prime} \rightarrow \mathbb{X}_{0}$ given by compositions $j_{1} \circ \ldots \circ j_{i}$ and $j_{1}^{\prime} \circ \ldots \circ j_{i}^{\prime}$, respectively. It follows that f_{i} has the form $f_{i}(x)=x+t_{i}$ for some $t \in \operatorname{Tors}(\mathrm{~J}(\mathbb{X}))$.

Applying both sides of (4) to x we get, for $i=1,2, \ldots$

$$
f_{i-1}\left(i\left(x-e_{i}\right)+e_{i}\right)=i \cdot\left(f_{i}(x)-e_{i}^{\prime}\right)+e_{i}^{\prime} .
$$

in particular,

$$
f_{i-1}\left(e_{i}\right)=i \cdot\left(f_{i}\left(e_{i}\right)-e_{i}^{\prime}\right)+e_{i}^{\prime}
$$

and so

$$
e_{i}+t_{i-1}=i \cdot\left(e_{i}+t_{i}-e_{i}^{\prime}\right)+e_{i}^{\prime}
$$

and finally

$$
(i-1)\left(e_{i}-e_{i}^{\prime}\right)=t_{i-1}-i \cdot t_{i} \in \operatorname{Tors}(\mathrm{~J}(\mathbb{X}))
$$

It follows $e_{i}-e_{i}^{\prime} \in \operatorname{Tors}(\mathrm{J}(\mathbb{X}))$.
3.3 Corollary. Assume that the group of k -rational points of \mathbb{X} contains non-torsion points. Then there are continuum-many nonisomorphic towers $T_{e}(\mathbb{X})$ and respectively continuum-many non-conjugated sections of the projection $\pi_{1}(\mathbb{X}) \rightarrow$ Gal $_{k}$.

References

[1] R.Abdolahzadi and B.Zilber, Definability, interpretations and étale fundamental groups arixiv
[2] M. Ciperiani and J.Stix, Galois sections for abelian varieties over number fields, Journal de Théorie des Nombres de Bordeaux 27 (2015), no. 1, 47-52.
[3] J.Silverman, The arithmetic of elliptic curves, 2nd Ed., Springer, 2009
[4] M.Saäidi, AROUND THE GROTHENDIECK ANABELIAN SECTION CONJECTURE, arxiv1010.1314 (2010)
[5] A.Tamagawa, The Grothendieck conjecture for affine curves. Compositio Math. 109. (1997), no. 2, 135-194

[^0]: *Supported by the EPSRC program grant "Symmetries and Correspondences"

[^1]: ${ }^{1}$ Reference?

[^2]: ${ }^{2}$ That is $\operatorname{GDeck}\left(\mathbb{X}_{i} / \mathbb{X}\right) \cong \Gamma / \Delta_{i}$. Have to assume here that the tower $\operatorname{GDeck}(\mathbb{X} / / \mathbb{X})$ has unique, up to isomorphism of Γ, presentation in the form Γ / Δ_{i}.

[^3]: ${ }^{3}$ Use the fact that groups of periods of both \mathbf{p}_{i} and \mathbf{p}_{i}^{\prime} are Δ_{i}.

[^4]: ${ }^{4}$ Need also that the tower $\operatorname{GDeck}\left(\mathbb{X}_{l} / \mathbb{X}\right)$ has unique presentation in the form Γ / Δ_{i}.

