
Quasi-Lorentz group acting on a Minkowski
space-time lattice

Boris Zilber

November 25, 2024

Abstract

We use the notion of structural approximation to represent the
Lorentz-invariant Minkowski space-time as a limit of finite cyclic lat-
tices with the action of finite quasi-Lorentz groups

1 Introduction

1.1 A physical theory is an approximation to reality. But what is an
approximation? In [1] we discussed this problem from the perspective
of model theory. This results in the definition of structural approx-
imation which we use here along with a more advanced recent paper
[2] which sets the general background for applications in Foundations
of Physics.

The idea behind the definition is that a structural approximation
preserves the structure, e.g. a sequence of finite groups approximates a
continuous group (or more often a “compactified” version of a group).

In the paper we construct a pseudo-finite group, a model-theoretic
limit (= an ultraproduct) of a sequence of finite groups, which approx-
imates the Lorentz group, along with a pseudo-finite cyclic lattice on
which this quasi-Lorentz group acts, which approximates Minkowski
space.

We suggest this construction as a form of discretisation of space-
time with Lorentzian symmetry, a problem discussed in various pub-
lications, see e.g. [3]. In some sense our mathematical techniques is
not dissimilar to ones proposed in [4] and some other publications re-
lying on the p-adic number system. The pseudo-finite resudue ring K
underlying our construction, is quite similar to the ring of adeles.
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1.2 A structural approximation is a surjective map between two
structures in the same language

lm : ∗M � M (1)

which has the property

S ⊂ ∗Mn closed⇒ lm(S) ⊂Mn closed,

where “closed” means defined by positive quantifier-free formulas.
Two elements a, a′ ∈ Mn are seen to be “infinitesimally close” if
lm a = lm a′.

Here ∗M is a structure obtained by taking an ultraproduct of a
sequence Mi of structures along a certain ultrafilter D. As it happens,
below, most of the time Mi, M and ∗M are rings or groups and
“closed” equivalently means closed in Zariski topology: a subset
P ⊂Mn is closed if it is the set of solutions of a system of algebraic
equations in n-variables with parameters in M.

In fact, as established in [1], M has to be quasi-compact in order
for it to appear in (1) for non-trivial sequences Mi. In particular, the
field C is not quasi-compact but its compactification C̄ := C∪{∞} =
P1(C) is. Theorem 5.2(i) of [1] proves that for any uncountable zero-
characteristic pseudo-finite field E there exists a structural approxi-
mation

lmE : E � C̄. (2)

Such an approximation can not be explained in terms of non-standard
analysis. It is far of being unique but we can pick ones with some
specific and useful properties as in [2].

On the other hand, the notion is quite restrictive in another sense:
it is proved in Theorem 5.2(ii) of [1] that C is the only locally compact
field for which an approximation by finite fields is possible. This part
of the theorem is much more subtle.

1.3 Scales and scale-dependenve of approximation.
The interplay between the domain and the range of the approxi-

mation map lmE as in (2) brings in some features not encountered in
the limit construction with inherent metrics. By its nature field E is
of pseudo-finite characteristic p (an infinite non-standard prime p, and
more generally we also consider pseudo-finite residue rings E = ∗Z/N
) while C is characteristic zero field with a natural metric.
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It is clear by algebraic considerations that

lmE : {1, 2, 3, . . .} 7→ {1, 2, 3, . . .}

where {1, 2, 3, . . .} include all usual (standard) integers and maybe
some more. Moreover,

lmE : {1

2
,
1

3
,
1

4
, . . .} 7→ {1

2
,
1

3
,
1

4
. . .}

and in the limit we can see the approximate reals emerging in E. In
other words, an observer which has only access to small scale elements
of E can think of E as being R. Define

Ereal = {x ∈ E : lmE(x) ∈ R}.

So the remark we made is that small-scale elements of E are in Ereal.
However, as we continue along the natural cyclic order 1, 2, 3, . . .

of E, inevitably, we will encounter an element i ∈ E such that

lmE : i 7→ ı =
√
−1; i · Ereal → ıR

and so with other complex numbers.
Again by (2), we will also have a non-empty domain

E∞ = {x ∈ E : lmE(x) =∞}.

So, an observer which has tools to explore the global characteristics
of E has to think of E as a Riemann sphere C̄.

It is clear that Ereal, iEreal and E∞ should be considered of “dif-
ferent scales”, perhaps in some context related to “low energy – high
energy” philosophy. In [2], section 3, we introduce a formal notion
which allows us to speak about scales and use it in constructing ap-
proximations with prescribed properties.

1.4 Below we construct a structural approximation of the Minkowski
space by finite 4-dim lattices along with an approximation of the
Lorentz group SO+(1, 3) by finite groups acting on the lattices re-
spectively and preserving the Minkowski metric.

Note that unlike other approximations of Lorentz action, we have
an actual group G acting on the discrete spaceM so that the group G
approximates the Lorentz group and the space M approximates the
Minkowski space with Minkowski metric. See 2.8 and (9).

For the reasons explained above the limit Minkowski space has to
be compactified and also complexified which happens in a natural way
somewhat similar to the construction of the twistor space,
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2 Pseudo-finite rings and groups and

their limits

2.1 It is well-known that SL(2,C) is a double cover of the Lorentz
group SO+(1, 3) and it acts in agreement with this on the Minkowski
space .

More precisely (see e.g. [5]): represent a vector with components
(t, x, y, z) ∈ R4 (Minkowski space) as a 2× 2 matrix

X :=

(
t+ z x− iy
x+ iy t− z

)
with X† = X and det(X) = t2 − x2 − y2 − z2, consider

X 7→MXM † with M ∈ SL(2,C). (3)

This preserves detX and thus the Minkowski metric, which leads to
the proof that (3) is a Lorentz transformation and all Lorentz trans-
formations can be expressed in this way. The fact that ±M both give
the same transformation of X corresponds to the fact that SL(2,C) is
the double cover of the Lorentz group, that is

SO+(1, 3) ∼= SL(2,C)/Z2 (4)

We denote
(M(R), SL(2,C)/Z2)

the structure which consists of R-linear Minkowski space M(R) with
metric given by X 7→ detX along with the group SL(2,C)/Z2 acting
on the space as describe in (3).

We note that the isomorphism of groups induces the isomorphism
of structures

(M(R),SL(2,C)/Z2) ∼=
(
M(R), SO+(1, 3)

)
(5)

As in [2] let ∗Z be an ℵ0-saturated model of arithmetic, N ∈ ∗Z
divisible by all standard integers and K = KN := ∗Z/N be the (non-
standard) residue ring.1

1Note that
K ∼=

∏
p|N primes

∗Z/pηp

where ηp ∈ ∗Z positive, and so, for all standard primes ηp >> 1. It follows that in the
limit ∗Z/pηp will be seen as the ring Zp of p-adic integers (see [1]) and the whole K as the
ring AZ,fin of finite integral adeles.
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Let C̄ = C ∪ {∞} which we will treat as a Zariski structure, that
is the set with Zariski closed relations R ⊂ C̄n on it.

2.2 There is a surjective homomorphism lmK of Zariski structures

lmK : K→ C̄.

In particular,

lmK(x+ y) = lmK x+ lmK y, if lmx 6=∞ and lm y 6=∞

lmK(x · y) = lmK x · lmK y, if lmK x 6=∞ and lmK y 6=∞

lmK is the composition of two Zariski homomorphisms

prK,E : K � E and lmE : E � C̄

where E is a pseudo-finite field.

The subsets

Kfin = {x ∈ K : lmx 6=∞} and Kreal = {x ∈ K : lmx ∈ R}

are subrings of K.
For every positive n ∈ N

nx = 0⇒ lmx = 0

Proof. Since N , the order of K, is divisible by every standard
prime q, there is a ring-homomorphism pr : K � Eq, for an infinite
non-standard q. It follows that if a polynomial P (X) over Z has a
zero in K then it has a zero in Eq, a field of characteristic 0, and so in
C. Now one constructs lm by the same back-and-forth procedure as in
the proof of Proposition 5.2(i) of [1] using the fact that the cardinality
of K is not smaller than that of C.

The statements about Kfin and Kreal follow from the fact that lm
preserves + and · of K.

Finally, assume that nx = 0 for x ∈ K. Note that since lm is
surjective lm 0 = 0 and lmn · 1 = n for 1 ∈ K. Clearly, if lmx 6= ∞
then 0 = lmnx = nlmx and so lmx = 0. But if lmx =∞ then by the
law on multiplication lm (n ·1 ·x) =∞ which contradicts the fact that
n · 1 · x = 0.

�
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2.3 Complexification of a ring. Let A be a commutative unitary
ring. Define

A(2) be the unitary ring obtained from the ring A as follows:

A(2) := {(a, b) ∈ A×A};

(a1, b1)+(a2, b2) := (a1+a2, b1+b2), (a1, b1)·(a2, b2) := (a1a2−b1b2, a1b2+a2b1).

Clearly, a 7→ (a, 0) is an embedding of A into A(2) as a subring
(A, 0) and

(a, b) 7→ (a,−b) an automorphism of A(2).

2.4 Let M(2, A(2)) be the set of 2×2 matrices overA(2) which we treat
as an 8-dim A-module and let SL(2, A(2)) be the group of matrices of
determinant 1.

A Minkowski A-lattice is the A-submoduleM(A) of M(2, A(2))
consisting of matrices Xt,x,y,z over A(2) of the form

Xt,x,y,z = X :=

(
(t+ z, 0) (x,−y)
(x, y) (t− z, 0)

)
, t, x, y, z ∈ A.

We have

det(X) = (t2 − x2 − y2 − z2, 0) ∈ A× {0}

and this defines Minkowski A-metric length of (t, x, y, z).
For the general A(2)-matrix

Y =

(
(a1, a2) (b1, b2)
(c1, c2) (d1, d2)

)
define the adjoint matrix

Y † :=

(
(a1,−a2) (c1,−c2)
(b1,−b2) (d1,−d2)

)
Clearly, X† = X for X ∈M(A). In general

(Y Z)† = Z†Y †.

In particular, Y is self-adjoint (Y = Y †) iff a2 = 0 = d2 and b1 = c1,
b2 = −c2.
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It follows that for any M ∈ SL(2, A(2)), X ∈M(A)

MXM † ∈M(A) and detX = detMXM † (6)

Let

C = {M ∈M(A) : MXM † = X for all X ∈M(A).}

Let M0 ∈ C. In particular, M0M
†
0 = I. It is equivalent to M †0 = M−1

0

and thus M0XM
−1
0 = X for all X ∈M(A). This readily implies that

M0 is diagonal, in the centre of SL(2, A(2)) and so

C = {M =

(
(a1, a2) 0
0 (a1, a2)

)
; a2

1 − a2
2 = 1 & a1a2 = 0} (7)

Thus we have established:

2.5 Proposition. The 2-sorted structure(
M(A),SL(2, A(2))/C

)
is interpretable in the ring A along with the group action X 7→MXM †

and A-Minkowski metric.
The action and Minkowski metric are defined by systems of poly-

nomial equations over Z.
In particular, SL(2,K(2))/C is the group of K-linear transforma-

tions of M(K) preserving Minkowski K-valued metric.

2.6 Lemma.
SL(2,C(2))/C ∼= SO(4,C)

where C is the centre of SL(2,C(2)) and

C ∼= Z2 × Z2.

Proof. By the Proposition SL(2,C(2))/C is the group of transfor-
mations of M(C) preserving Minkowski C-valued metric, that is the
form x2

0 +x2
1 +x2

2 +x2
3. But this is also the definition of group SO(4,C).

The form of C is determined by (7). �

7



2.7 Compactification of C-structures. ConsiderM(C) and SO(4,C)
as complex quasi-projective algebraic varieties, in particular we have

M(C)× SO(4,C) ⊂ P

where P is a projective variety (not uniquely determined). Note that

M(C)× SO(4,C)×M(C) ↪→ P×P

and so the graph of the action of SO(4,C) on M(C) is also a quasi-
projective subvariety of P×P.

Define the compactification of the structure (M(C),SO(4,C)) ,

(M(C),SO(4,C))P ⊇ (M(C),SO(4,C))

to be the structure defined by the relevant Zariski closed subsets and
relations in cartesian powers of P.

2.8 Theorem. There is a Zariski homomorphism of structures

Lm :
(
M(K), SL(2,K(2))/C)

)
� (M(C), SO(4,C))P (8)

Its restriction to the structure over Kreal is a Zariski homomorphism

Lm :
(
M(Kreal),SL(2,K

(2)
real)/C

)
�
(
M(R), SO+(1, 3)

)
(9)

Proof. By 2.2 we have an induced Zariski homomorphism

lmK :
(
M(K), SL(2,K(2))/C

)
�
(
M(C), SL(2,C(2))/C

)P
which by 2.6 is the same as (8).

The restriction of limit maps to the structure over Kreal by con-
struction has the form(

M(Kreal),SL(2,K
(2)
real)/C

)
� (M(R),SL(2,C)/C)

which becomes (9) when one takes into account (4). �

2.9 Commentary.
The statement in (9) can be interpreted as the statement that at

low scale the pseudo-finite space looks like the canonical Minkowski
space M(R) with the action of the Lorentz group SO+(1, 3).
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2.10 Relation between the discrete Minkowski space M(K)
and the discrete universe U of [2].

Recall that the 1-dimensional universe U of [2] is defined as the
additive group of the residue ring

K = ∗Z/N , where N = (p− 1)l,

p non-standard prime and l a highly divisible non-standard integer.
Thus U can also be considered a 1-dimensional K-module, where we
can now identify K with the one from previous sections, introduced in
2.1.

Thus, for the Minkowski K-space M(K) one establishes an iso-
momrphism

M(K) ∼= U4

as K-modules, and the constructions above define the action of the
quasi-Lorentz group SL(2,K(2))/C on U4 along with the Minkowski
K-valued metric invariant under SL(2,K(2))/C.

In [2] we identified in the universe U and its cartesian powers Un

subdomains which correspond to the scales of quantum mechanics
and statistical mechanics and developed elements of these theories in
the model on U which unified the two theories. The current work
demonstrates that the same model can incorporate special relativity.
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