
Geometric stability and Zariski geometries

B. Zilber

University of Oxford

July 28, 2010



Lecture I

Generalities:
I Model theory allows us to explore the landscape of

mathematics and beyond.

I Zariski geometries is the class of structures discovered in
this exploration.

I Zariski geometries are on the very top of stability hierarchy,
so, in the very centre of mathematics.
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Noetherian Zariski structures: The idea

We think essentially about finite Morley rank structures (often,
strongly minimal ones) in a more specific context:

we want to treat differently P and ¬P.

Example. Algebraic Geometry is a model theory of
(algebraically closed) fields with the emphasis on positively
quantifier-free definable sets (Zariski-closed sets).
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Noetherian Zariski structures: Definition and Axioms

Let M be a structure and let C be a distinguished sub-collection
of the definable subsets of Mn, n = 1,2, . . .. The sets in C are
called (definable) closed. The relations corresponding to the
sets are the basic (primitive) relations of the language we will
work with. 〈M, C〉, or M, is a topological structure if it satisfies
axioms:

(L) Topological Language: The primitive n-ary relations of the
language are exactly the ones that distinguish definable closed
subsets of Mn, all n (that is the ones in C), and every
quantifier-free positive formula in the language defines a closed
set (so is equivalent to an atomic one).
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Noetherian Zariski structures: Definition and Axioms
More precisely:

1. the intersection of a finite family of closed sets is closed;
2. finite unions of closed sets are closed;
3. the domain of the structure is closed;
4. the graph of equality is closed;
5. any singleton of the domain is closed;

6. Cartesian products of closed sets are closed;

7. the image of a closed S ⊆ Mn under a permutation of
coordinates is closed;

8. for a ∈ Mk and S a closed subset of Mk+l defined by a
predicate S(x , y) the fibre over a

S(a,M l) = {b ∈ M l : M |= S(a,b)}

is closed.



Noetherian Zariski structures: Definition and Axioms
Remarks
L6 assumes that, for S1 ⊆ Mn and S2 ⊆ Mm closed, S1 × S2 is
canonically identified with a subset of Mn+m which is closed in
the latter.
The canonical identification is

〈〈x1, . . . , xk 〉, 〈y1, . . . , ym〉〉 7→ 〈x1, . . . , xk , y1, . . . , ym〉.

A projection

pri1,...,im : 〈x1, . . . , xn〉 7→ 〈xi1 , . . . , xim〉, i1, . . . , im ∈ {1, . . . ,n}.

is a continuous map, by L6:
the inverse image of a closed set S is closed. Indeed,

pr−1
i1,...,imS = S ×Mn−m

up to the order of coordinates.
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Noetherian Zariski structures: Definition and Axioms
Constructible sets are the Boolean combinations of members
of C.

equivalently, finite unions of sets Si , such that Si ⊆cl Ui ⊆op Mn.

A subset of Mn will be called projective if it is a finite union of
sets of the form pr Si , for some Si ⊆cl Ui ⊆op Mn+ki and
projections pr (i) : Mn+ki → Mn.
Note that any constructible set is projective with trivial
projections in its definition

A topological structure is said to be complete if
(P) Properness of projections condition holds:
the image pri1,...,imS of a closed subset S ⊆cl Mn is closed.

A topological structure M will be called quasi-compact (or just
compact) if it is complete and satisfies
(QC) For any finitely consistent family {Ct : t ∈ T} of closed
subsets ⋂

t∈T

Ct is non-empty.
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Noetherian Zariski structures: Definition and Axioms

A topological structure is called Noetherian if it also satisfies:
(DCC) Descending chain condition for closed subsets: for
any closed

S1 ⊇ S2 ⊇ . . .Si ⊇ . . .

there is i such that for all j ≥ i , Sj = Si .

A definable set S is called irreducible if there are no relatively
closed subsets S1 ⊆cl S and S2 ⊆cl S such that S1 ( S2,
S2 ( S1 and S = S1 ∪ S2.
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Noetherian Zariski structures: Definition and Axioms
Good dimension

We assume that to any non-empty projective S a non-negative
integer called the dimension of S, dim S, is attached.
We postulate the following properties of a good dimension
notion:
(DP) Dim of a point is 0;
(DU) Dim of unions: dim(S1 ∪ S2) = max{dim S1,dim S2};
(SI) Strong irreducibility: For any irreducible S ⊆cl U ⊆op Mn

and its closed subset S1 ⊆cl S, if S1 6= S then dim S1 < dim S;
(AF) Addition formula: For any irreducible S ⊆cl U ⊆op Mn

and a projection map pr : Mn → Mm,

dim S = dim pr (S) + min
a∈pr (S)

dim(pr−1(a) ∩ S).

(FC) Fibre condition: For any irreducible S ⊆cl U ⊆op Mn and
a projection map pr : Mn → Mm there exists V ⊆op pr S
(relatively open) such that

min
a∈pr (S)

dim(pr−1(a)∩S) = dim(pr−1(v)∩S), for any v ∈ V∩pr (S).



Noetherian Zariski structures: Definition and Axioms

Complete Noetherian topological structures with good
dimension will be called complete (Noetherian) Zariski
structures.

More generally we replace (P) by

(SP) semi-Properness of projection mappings: given a closed
irreducible subset S ⊆cl Mn and the projection map
pr : Mn → Mk , there is a proper closed subset F ⊂ pr S such
that pr S \ F ⊆ pr S.

Noetherian topological structures with good dimension and
satisfying (SP) will be called (Noetherian) Zariski structures.
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Noetherian Zariski structures: Definition and Axioms
In many cases we assume that a Zariski structure satisfies also
(EU) Essential uncountability: If a closed S ⊆ Mn is a union
of countably many closed subsets, then there are finitely many
among the subsets, the union of which is S.

The following is an extra condition crucial for developing a rich
theory for Zariski structures.

(PS) Presmoothness: For any closed irreducible S1,S2 ⊆ Mn,
for any irreducible component S0 of S1 ∩ S2,

dim S0 ≥ dim S1 + dim S2 − dim Mn.

1-dimensional presmooth Noetherian Zariski structure
satisfying (EU) is called (1-dim Noetherian) Zariski geometry.

This can be generalised to a definition of a (n-dim Noetherian)
Zariski geometry.
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Noetherian Zariski geometries: Examples

1. Smooth algebraic varieties over an uncountable algebraically
closed field, in the natural language (1990).

"Uncountable" needed to satisfy (EU).
Natural language: C consists of Zariski-closed subsets of Mn.

2. Compact complex manifolds, in the natural language (1993).

3. Definable substructures of DCF0(n) of finite Morley rank.
(2001)

4. "Quantum geometries".
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2. Compact complex manifolds, in the natural language (1993).

3. Definable substructures of DCF0(n) of finite Morley rank.
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More precisely: every definable substructure of finite Morley
rank can be made Zariski in a natural language by removing a
subset of smaller rank.

4. "Quantum geometries".
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Model theory of Noetherian Zariski structures

Let M = (M, C) be a Noetherian Zariski structure.

Theorem 1 The theory of M allows quantifier elimination.

Theorem 2 The theory of M is ω-stable of finite Morley rank,
assuming M satisfies (EU).

Theorem 3 Assume M satisfies (EU). Given M′�M one can
naturally extend the topology to M ′ so that M′ becomes a
Noetherian Zariski structure satisfying (EU).
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Model theory of Noetherian Zariski structures

Let M = (M, C) be a Noetherian Zariski structure.

Theorem 1 The theory of M allows quantifier elimination.

Proof.We need to see that pr(S1 \ S2) is constructible
(S1,S2 ∈ C, S2 ⊂ S1). We know that pr S1 and pr S2 are.

pr(S1 \ S2) ⊆ pr S1

Clearly, pr(S1 \ S2) \ pr S2 = pr S1 \ pr S2 is constructible, so all
the difficulty is in

pr(S1 \ S2) ∩ pr S2.

Using axioms, dim pr S2 < dim pr(S1 \ S2) and so the above can
be understood by induction hypothesis on dimension.
All axioms are needed.
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assuming M satisfies (EU).

Proof. Use Theorem 1 to show by induction on dim Q,
constructible Q, that Mrk Q ≤ dim Q.
(EU) provides ℵ0-saturation for countable fragments of the
language.
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Model theory of Noetherian Zariski structures

Theorem 3 Assume M satisfies (EU). Given M′�M one can
naturally extend the topology to M ′ so that M′ becomes a
Noetherian Zariski structure satisfying (EU).

Proof. We declare subsets of the form P(a,M′) in M′ closed if
P is positive quantifier free.
Define dim P(a,M′) ≥ k if a satisfies the formula that says so
(given by (FC)).
The main difficulties are in checking axioms (SI: strong
irreducibility) and (DCC: descending chain condition).
Again, (EU) is essential in providing a saturation.
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(given by (FC)).
The main difficulties are in checking axioms (SI: strong
irreducibility) and (DCC: descending chain condition).
Again, (EU) is essential in providing a saturation.
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Specialisations and infinitesimal calculus
Given a topological structure M and M′�M, a specialisation is
a surjective homomorphism

π : M′ → M.

Note:
π preserves closed subsets.

π is the identity on M, since every element of M is named.

Example. The field of reals R is a topological structure in a
natural language and, for R′�R a specialisation, π : R′ → R is
the standard part map.

Proposition. Suppose M is a quasi-compact structure, M′�M.
Then there is a total specialisation π : M′ → M. Moreover, any
partial specialisation can be extended to a total one.
The inverse also holds for a right choice of topology on M.
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Specialisations and infinitesimal calculus
Given a ∈ Mn we call π−1(a) the infinitesimal neighbourhood of
a (in M′). Also denoted Va(M′) or just Va.

This depends strongly on M′ and π.

A specialisation π : ∗M→ M, for ∗M�M, is said to be universal
if:
for any M′�∗M�M, any finite subset A ⊂ M ′ and a
specialisation π′ : A ∪ ∗M → M extending π, there is an
elementary embedding α : A→ ∗M, over A ∩ ∗M, such that

π′ = π ◦ α on A.

Proposition. Every specialisation π0 : M0 → M can be
extended to a universal one π : ∗M→ M.

Proof. Straightforward Fraissé argument.

Assuming π is universal, the geometric properties of Va are
independent on π and ∗M.
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Specialisations and infinitesimal calculus
Proposition. Given irreducible S ⊆cl Mn and a ∈ S, the
intersection S(∗M) ∩ Va contains a generic point.

Proof. Easy. Use universality of π.

Corollary. If irreducile S1,S2 ⊆cl Mn coincide in an infinitesimal
neighbourhood, then S1 = S2.

Theorem (Implicit Function Theorem) Given a Zariski geometry
M and an irreducible constructible presmooth D ⊆ Mn suppose
an irreducible F ⊆cl D ×Mk projects onto D with finite fibres
(finite covering of D).
Let a ∈ D, 〈a,b〉 ∈ F and a′ ∈ Va ∩ D(∗M).
Then
1. There exists b′ ∈ Vb such that 〈a′,b′〉 ∈ F (∗M).

The maximal number of possible such b′ for a given a′ ∈ Va will
be called the multiplicity of F at a: multa(F/D).

2. There is an open subset Reg F/D ⊆op D such that
multa(F/D) = 1 iff a ∈ Reg F/D.
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Specialisations and infinitesimal calculus

Corollary. For a ∈ Reg F/D and 〈a,b〉 ∈ F the set
F ∩ (Va × Vb) is the graph of a function ϕ : Va → Vb (local
function).



Specialisations and infinitesimal calculus
Let L1,L2 and P be constructible irreducible presmooth sets
and Ii ⊆cl Li × P, i = 1,2, irreducible. We will call a curve
coded by ` ∈ Li the set

ˆ̀ = {p ∈ P : 〈`,p〉 ∈ Ii}.

Assume that for each ` ∈ Li , dim ˆ̀ = 1 and for any generic
〈`1, `2〉 ∈ L1 × L2, ˆ̀1 ∩ ˆ̀2 is non-empty and finite.
Then, using the notion of multiplicity we can define the relation

T (p, `1, `2) := `1 and `2 are tangent at point p ∈ ˆ̀1 ∩ ˆ̀2

As a corollary we can define the jet of curves from L1
passing through p ∈ P and tangent to generic ` ∈ L2: [`]p.

Lemma. Given a family of curves L on P as above, the set of
jets [L]p through p is definable (interpretable) and under certain
assumptions can be identified with a Zariski constructible set.
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Classification of 1-dim non-locally modular Noetherian
Zariski geometries

Proposition. Non-local modularity implies: some irreducible
P ⊆op M ×M, some Zariski irreducible presmooth set L in M
and I ⊆cl L× P define a 2-dimensional family of curves on P.

At a generic point 〈a,b〉 ∈ M2 a generic curve `1 locally (i.e. in
infinitesimal neighbourhood) is the graph of a local function

λ1 : Va → Vb.

Given `1 and `2 the local function

λ−1
1 ◦ λ2 : Va → Va

corresponds to a new curve through 〈a,a〉 (rather a branch of
a curve).
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Classification of 1-dim non-locally modular Noetherian
Zariski geometries

Proposition.
I The set Γ of all local functions γ : Va → Va obtained in this

way is definable.

I The set of jets [Γ] can be defined as a Zariski
1-dimensional irreducible set.

I For any generic pair γ1, γ2 ∈ Γ there is a generic γ ∈ Γ
such that

[γ1 ◦ γ2] = [γ].

That is [Γ] has a structure of a pre-group.

Corollary. There is a group structure (G, ◦) definable by
Zariski-closed predicates on a 1-dim irreducible Zariski set G.
(Copy the proof of Weil’s group chunk theorem).
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Zariski-closed predicates on a 1-dim irreducible Zariski set G.
(Copy the proof of Weil’s group chunk theorem).
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With more work one obtains

I There is a field structure (K ,+, ·) definable by
Zariski-closed predicates on a 1-dim Zariski set K .

I The projective spaces Pn(K ) obtain a structure of a
complete Zariski geometry.

I The theory of multiplicities can be applied to get an
intersection theory in projective spaces. In particular, the
following generalisation of Bezout’s theorem holds:
given in P2(K ) a curve ` and an algebraic curve `alg

#mult(` ∩ `alg) = deg ` · deg `alg,

where deg ` is defined as a number of point in the
intersection of a generic straight line in P2(K ) with `.

I The latter implies that any S ⊆cl Pn(K ) must be algebraic
(generalisation of Chow’s theorem).
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Classification of 1-dim non-locally modular Noetherian
Zariski geometries

I Since M is not orthogonal to K , there is a finite-to-finite
correspondence between M and K .

I This can be converted into a non-constant partial map
f : M → K (meromorphic map) and to a total
Zariski-continuous function f̄ : M → P1(K ).

I In general, such functions can be seen as co-ordinate
functions and given f = 〈f̄1, . . . , f̄n〉 we obtain a map

f : M → [P1(K )]n ⊆ PN(K ).

f(M) is a quasi-projective curve C ⊆ PN(K ) and

f : M → C

is a Zariski-continuous finite covering of the algebraic
curve C.

I The latter classifies M up to the finite fibres f−1(a), a ∈ C.
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New geometric objects
Example. Let M be the set

{〈x , ε〉 : x , ε ∈ K , ε2 = 1}

for K an algebraically closed field of characteristic 0.

We have
binary predicate E on M interpreted as the eqivalence relation

〈x , ε〉E〈x ′, ε′〉 iff x = x ′.

So, the set K = M/E is definable and we have all polynomially
defined relations on K , lifted to relations on M, in our language.
Let R ⊆ K \ {0} be a subset with the property:

y ∈ R iff − y /∈ R.

Introduce a new ternary relation A ∈ C, A ⊆ M ×M × K :

A(〈x1, ε1〉, 〈x2, ε2〉, y) iff x2 = x1 + 1 &y2 = x2
1 &

& ((y ∈ R & ε1 = ε2) ∨ (y /∈ R &y 6= 0 & ε1 6= ε2) ∨ y = 0)
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New geometric objects

Proposition. (i) M is a 1-dimensiona Noetherian Zariski
geometry which (ii) can not be identified with an algebraic
curve. Moreover, M is not definable (not interpretable) in an
algebraically closed field.

Proof. (i)
I every formula is a Boolean combination of ∃-formulas.
I Closed sets are defined as given by positive ∃-formulas of

a certain form.
I With some work, check all the Zariski axioms.

(ii)
I Use the well-known fact: If an ACF0 K is interpretable in an

ACFp F , then K is definably isomorphic to F .
I Consider Galois theory of (K (〈x , ε〉) : K ) and prove that

one can not interprete 〈x , ε〉 as a tuple in a field extension
of K .
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New geometric objects
Reinterpretation.

Think of 〈x ,1〉 and〈x ,−1〉 as "vectors" ex
and −ex , a pair for each value of x ∈ K .
The 1-dimensional space generated by ex consists of formal
pairs y .ex , for y ∈ K , equivalently, z.(−ex ), z ∈ K , with
assumption y .ex = (−y).(−ex ).

Given ex we will have, by assumptions, a y =
√

x such that
A(ex ,ex+1, y) and A(ex ,−ex+1,−y) hold.
Interpret this as a map a : ex 7→ y .ex+1
or a linear operator on 1-dimensional spaces:

a : z.ex 7→ yz.ex+1.

The same A(ex ,ex+1, y) can be given the interpretation

a† : z.ex+1 7→ yz.ex .

We have two linear operators a and a† acting in the linear
space generated by the ex which satisfy

(a†a− aa†)ex = ex .
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Co-ordinate algebra for M.
1. Want to explain a geometric object M in terms of

co-ordinates in K .

2. For "non-classical" M the algebra K [M] of
Zariski-continuous functions can not separate points in M :
K [M] = K [CM] (same as for the algebraic curve).

3. Extend K [M] ⊆ H[M], bigger algebra, to include enough
auxiliary function M → K .
This will separate points but

I H[M] and its elements are not canonically definable from M.
I H[M] does not "see" relations and operations on M.

4. Consider the algebra A(M) of linear operators on H[M]
generated by ones of the form

I ψ(t)→ f (t) · ψ(t), ψ, f ∈ H[M],
I ψ(t)→ ψ(bt), b : M → M operation on M.

We also define formal adjoint X ∗ for operators X in A(M),
depending on the structure of M.

5. (A(M), ∗) does not depend on H(M), only on M. One
recovers the whole of structure M from A(M).
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Co-ordinate algebras: Quantum algebras at roots of
unity

A canonical correspondence

M ↔ A(M)

is well-established only for special class of algebras A and
structures M.

A K -algebra A will be called an algebra at root of unity if it
satisfies:

1. A is finitely generated Noetherian.
2. A is a finite-dimensional module over its centre Z (A).

3. Further assumptions (that might be redundant).
Examples

I The algebra T 2
q generated by U and V with defining

relation
UV = qVU, in case qN = 1.

I Many other algebras, e.g. quantum groups SL(2,K )q,
Uslq(2,K ).
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Co-ordinate algebras: Quantum algebras at roots of
unity

Theorem. There is a canonical procedure that puts in
correspondence to any K -algebra A at root of unity, K
algebraically closed, a Zariski geometry M, so that A can be
canonically recovered from M.

Construction. Consider the affine variety V = V (A)
corresponding to the affine commutative algebra Z (A). To each
point of V corresponds a unique, up to isomorphism,
N-dimensional A-module. The bundle of such modules over V
is M(A).

The procedure extends the classical duality between an affine
algebraic variety and its co-ordinate algebra.
Question. What to do for a general value of q?
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Lecture IV



Trichotomy conjecture and Hrushovski
counterexamples

Classical first-order λ-categorical structures for uncountable
λ :

1. Structures with trivial geometry
2. Linear (locally-modular) structures: (Abelian divisible

torsion-free groups; Abelian groups of prime exponent;
Vector spaces over a given division ring ...)

3. Algebraically closed fields.

Trichotomy Conjecture: Every strongly minimal structure is
reducible to 1,2 or 3.

False in general (Hrushovski, 1988).
Almost true for Zariski geometries (HZ,1993).
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Hrushovski counterexamples: construction

I Given a class of structures M with a dimension notions d1,
and d2 we want to consider a new function f on M.

I On (M, f ) introduce a predimension

δ(X ) = d1(X ∪ f (X ))− d2(X ).

I Consider structures (M, f ) which satisfy the Hrushovski
inequality:

δ(X ) ≥ 0 for any finite X ⊂ M.

I Amalgamate all such structures to get a universal and
homogeneous structure in the class.

I The resulting structure (M̃, f ) will have a good dimension
notion and a nice geometry.
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Example of Hrushovski’s construction

I Given a class of fields (K ,+, ·) we want to consider a new
function f on K .

I On (K , f ) introduce a predimension

δ(X ) = tr.d.(X ∪ f (X ))− |X |.

I Consider structures (K , f ) which satisfy the Hrushovski
inequality:

δ(X ) ≥ 0 for any finite X ⊂ K .

I Amalgamate all such structures to get a universal and
homogeneous structure in the class.

I The resulting structure (K̃ , f ) is ω-stable and with some
extra work (collapse) one can get a new uncountably
categorical structure from (K̃ , f ).
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Are Hrushovski structures mathematical pathologies?

Observation: If K is a field and we want f = ex to be a group
homomorphism

ex(x1 + x2) = ex(x1) · ex(x2)

then the predimension must be

δ(X ) = tr.d.(X ∪ ex(X ))− lin.d.Q(X ) ≥ 0.

The Hrushovski inequality, in the case of the complex numbers,
ex = exp, is equivalent to:

tr.d.(x1, . . . , xn,ex1 , . . . ,exn ) ≥ n

assuming that x1, . . . , xn are linearly independent.

This is the Schanuel conjecture.
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Pseudo-exponentiation

Consider the class of fields of characteristic 0 with a function
ex: Kex = (K ,+, ·, ex) satisfying
EXP1: ex(x1 + x2) = ex(x1) · ex(x2)
EXP2: ker ex = πZ, some π ∈ K .
Consider the subclass satisfying the Schanuel condition

SCH : tr.d.(X ∪ ex(X ))− lin.d.(X ) ≥ 0.

Amalgamation process produces an algebraically-exponentially
closed field with pseudo-exponentiation, Kex(λ), of
cardinality λ.
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Pseudo-exponentiation

Algebraic-exponential closedness (existential closedness)
takes the form:

EC: For any non-overdetermined irreducible system of
polynomial equations

P(x1, . . . , xn, y1, . . . , yn) = 0

there exists a generic solution satisfying

yi = ex(xi) i = 1, . . . ,n.

Also we have the Countable Closure property:

CC: Analytic subsets of n of dimension 0 are countable.

ACF0 : Axioms for algebraically closed fields of characteristic 0.
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Pseudo-exponentiation

Main Theorem Given an uncountable cardinal λ, there is a
unique, up to isomorphism, structure Kex of cardinality λ
satisfying

ACF0 + EXP + SCH + EC + CC

Conjecture The field of complex numbers Cexp is isomorphic to
the unique field with exponentiation Kex of cardinality 2ℵ0 .

Equivalently: Cexp satisfies SCH + EC.
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Pseudo-exponentiation
The Main Theorem is a consequence of:

Theorem A The Lω1,ω(Q)-sentence

ACF0 + EXP + SCH + EC + CC
is axiomatising a quasi-minimal
excellent class.

Theorem B (Essentially S.Shelah 1983) A quasi-minimal
excellent class is categorical in any uncountable cardinality.

The proof of Theorem A uses:
1. The Galois and Kummer theory.
2. The structure of the multiplicative group F ∗ for global fields

F .
3. The new fact (with M.Bays): Let L1, . . . ,Ln be algebraically

closed fields mutually linearly disjoint over their
intersections. Then, for the multiplicative group of their
composite,
(L1 · . . . · Ln)∗ ∼= L∗1 · . . . · L∗n × A,
for a free abelian group A.
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Conclusion

Hrushovski’s counter-examples are not pathologies.
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Analytic Zariski geometries

Definition. We say that M = (M, C) is a pre-analytic Zariski
structure if:

I M = (M, C) is a topological structure with good dimension
notion.

I (case dim M = 1) given F ⊆cl V ⊆op Mn+k with the
projection pr : Mn+k → Mn such that dim pr F = n, there
exists D ⊆op Mn such that D ⊆ pr F .

I For every S ⊆cl U ⊆op Mn there are at most countably
many constructible irreducible sets Si ⊆ Mn, I ∈ N, with

S =
⋃

Si .
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Analytic Zariski geometries

Definition (continued) A pre-analytic Zariski M is said to be
analytic if

I Given a subset S ⊆cl U ⊆op Mn the natural number U(S),
(analytic rank) is well-defined by:

1. U(S) = 0 iff S = ∅;
2. U(S) ≤ k + 1 iff there is a set S′ ⊆cl S such that U(S′) ≤ k ,

and the set S0 = S \ S′ is a countable union of irreducible
closed subsets.

A subset S ⊆cl U ⊆op Mn is said to be analytic if U(S) = 1.
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Model theory of pre-analytic Zariski structures

Let M be an analytic Zariski structure of dimension 1.
We choose a large enough countable fragment C0 ⊆ C
(including constants) closed under certain properties.

Theorem 1 Every L∞,ω(C0)-type realised in M is equivalent to a
type consisting of existential (first-order) formulas and the
negations of existential formulas (non-elementary
near-model-completeness).

Theorem 2. There are only countably many L∞,ω(C0)-types
realised in M (non-elementary ω-stability).
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Model theory of analytic Zariski structures

How the proof works.

For finite X ⊆ M we define the C0-predimension

δ(X ) = min{dim S : ~X ∈ S, S ⊆cl U ⊆op Mn,

S is C0-definable}

and dimension

d(X ) = min{δ(XY ) : finite Y ⊂ M}.

For X ⊆ M finite, we say that X is self-sufficient and write
X ≤ M, if d(X ) = δ(X ).
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Model theory of analytic Zariski structures

How the proof works.

Lemma 1 For a projective P ⊆ Mn

dim P = max{d(X ) : ~X ∈ P}.

Lemma 2. Given X ,X ′,XY all finite self-sufficient, suppose
X ≡qftp X ′. Then there is Y ′ such that XY ≡qftp X ′Y ′.
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Model theory of analytic Zariski structures
Pregeometry on M

Set, for finite X ⊆ M,

(X ) = {y ∈ M : d(Xy) = d(X )}.

Theorem 3 (M, ) is an ω-homogeneous pregeometry with
countable closure property. I.e.

1. X ⊆ Y ⇒ (X ) ⊆ (Y );

2. ((X )) = (X );

3. z ∈ (X , y) \ (X )⇒ y ∈ (X , z);

4. (X ) is countable for a countable X ;

5. Y ≡∃(X) Y ′ ⇒ exists an elementary monomorphism over
(X ), (XY )→ (XY ′).

In other words, M is quasi-minimal ω-homogeneous over
submodels.
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Model theory of analytic Zariski structures

Is M excellent?

Fact. For all natural analytic Zariski M, when the answer is
known: yes.

Theorem 4 Suppose M is excellent. Then for every κ > cardM
there is a (pre)analytic Zariski M′ of cardinality κ,

M ≤ M′.

This M′ is unique up to isomorphism.



Model theory of analytic Zariski structures

Is M excellent?

Fact. For all natural analytic Zariski M, when the answer is
known: yes.

Theorem 4 Suppose M is excellent. Then for every κ > cardM
there is a (pre)analytic Zariski M′ of cardinality κ,

M ≤ M′.

This M′ is unique up to isomorphism.



Model theory of analytic Zariski structures

Is M excellent?

Fact. For all natural analytic Zariski M, when the answer is
known: yes.

Theorem 4 Suppose M is excellent. Then for every κ > cardM
there is a (pre)analytic Zariski M′ of cardinality κ,

M ≤ M′.

This M′ is unique up to isomorphism.



Examples of analytic Zariski geometries

1. Abstract covers of the algebraic torus K ∗, for an
uncountable algebraically closed field K , any
characteristic.

2. Universal covers of complex abelian varieties in
Gavrilovich’s language.

3. Some structures obtained via Hrushovski construction, as
pre-analytic structures.

4. Pseudo-exponentiation, as a pre-analytic structure (?)
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