The automorphism group

Covers of modular curves, categoricity and Drinfeld's GT

B.Z. joint with C.Daw

University of Oxford

June, 2020

B.Z. joint with C.Daw

University of Oxford

Some history

- The $L_{\omega_{1},\omega}$ -theory of the universal cover $\exp : \mathbb{C} \to \mathbb{G}_{m}(\mathbb{C})$ is categorical. (B.Z. 2004, B.Z. and M.Bays 2011)

Required Kummer theory and Dedekind theory of Galois action on $\mu_\infty.$

Some history

- The $L_{\omega_{1,\omega}}$ -theory of the universal cover $\exp : \mathbb{C} \to \mathbb{G}_{m}(\mathbb{C})$ is categorical. (B.Z. 2004, B.Z. and M.Bays 2011)

Required Kummer theory and Dedekind theory of Galois action on $\mu_\infty.$

- The $L_{\omega_1,\omega}$ -theory of the universal cover of an elliptic curve is categorical. (M.Bays 2012 using M.Gavrilovich 2007)

Required Kummer-Bashmakov theory and Serre's open image theorem (on Galois action on torsion of the elliptic curve).

Categoricity of pseudo-analytic AEC	The structure on F	The automorphism group	Categoricity

Some history

- The $L_{\omega_1,\omega}$ -theory of the universal cover of an abelian variety is categorical conditional on extension of Serre's open image theorem on torsion(= $\hat{\pi}_1^{top}$) of the abelian variety (Bays-Hart-Pillay 2015 based on Bays 2013)

Requires Kummer-Ribet-Larsen theory.

Image: A matrix

Categoricity of pseudo-analytic AEC	The structure on F	The automorphism group	Categoricity

Some history

- The $L_{\omega_1,\omega}$ -theory of the universal cover of an abelian variety is categorical conditional on extension of Serre's open image theorem on torsion(= $\hat{\pi}_1^{top}$) of the abelian variety (Bays-Hart-Pillay 2015 based on Bays 2013)

Requires Kummer-Ribet-Larsen theory.

- The $L_{\omega_1,\omega}$ -theory of the cover $j_{\Gamma} : \mathbb{H} \to \mathbb{Y}(\Gamma)$ with fixed $\mathrm{GL}^+(2,\mathbb{Q})$ - action is categorical (A.Harris 2013, A.Harris and C.Daw 2014)

Requires Serre's open image theorem for tuples of elliptic curves without CM.

Problems

Formulate a geometrically natural $L_{\omega_1,\omega}$ -theory of $\tilde{\mathbb{X}}^{an}(\mathbb{C})$ for hyperbolic curves (and more general), in particular, for $\mathbb{X} = \mathbf{P}^1(\mathbb{C}) \setminus \{0, 1, \infty\}.$

Formulate necessary and sufficient conditions for categoricity of this theory.

Image: A matrix

Problems

Formulate a geometrically natural $L_{\omega_1,\omega}$ -theory of $\tilde{\mathbb{X}}^{an}(\mathbb{C})$ for hyperbolic curves (and more general), in particular, for $\mathbb{X} = \mathbf{P}^1(\mathbb{C}) \setminus \{0, 1, \infty\}.$

Formulate necessary and sufficient conditions for categoricity of this theory.

Why: A categorical theory is a **complete formal invariant** of a geometric structure.

The		

Categoricity

Motivating Claims

Claim 1. The necessary condition for categoricity of $\tilde{\mathbb{X}}^{an}$ $\mathbb{X} = \mathbf{P}^1 \setminus \{0, 1, \infty\}$, is to identify GT, the Grothendieck -Teichmuller group: the Galois action on the $\hat{\mathrm{Fr}}_2$ (Esquisse de un programme) **Drinfeld's conjecture** (1990) identifies GT.

B.Z. joint with C.Daw

University of Oxford

Categoricity

Motivating Claims

Claim 1. The necessary condition for categoricity of $\tilde{\mathbb{X}}^{an}$ $\mathbb{X} = \mathbf{P}^1 \setminus \{0, 1, \infty\}$, is to identify GT, the Grothendieck -Teichmuller group: the Galois action on the $\hat{\mathrm{Fr}}_2$ (Esquisse de un programme) **Drinfeld's conjecture** (1990) identifies GT.

Claim 2. The categoricity of the structure $\tilde{\mathbb{Y}}_{mod}^{an}$ is a weaker version of the case above:

 $\mathbb{Y} = \mathbb{Y}(1) = \Gamma \setminus \mathbb{H}$, the modular curve, $\Gamma = SL(2, \mathbb{Z})/(-I)$, and $\tilde{\mathbb{Y}}_{mod}^{an}$ includes finite covers by modular curves only

$$\mathbb{Y}(n) \to \mathbb{Y}(1).$$

Note: $\mathbb{Y}(2) = \mathbf{P}^1 \setminus \{0, 1, \infty\}.$

・ロト ・回ト ・ヨト ・ヨト

Categoricity

Motivating Claims

Claim 1. The necessary condition for categoricity of $\tilde{\mathbb{X}}^{an}$ $\mathbb{X} = \mathbf{P}^1 \setminus \{0, 1, \infty\}$, is to identify GT, the Grothendieck -Teichmuller group: the Galois action on the $\hat{\mathrm{Fr}}_2$ (Esquisse de un programme) **Drinfeld's conjecture** (1990) identifies GT.

Claim 2. The categoricity of the structure $\tilde{\mathbb{Y}}_{mod}^{an}$ is a weaker version of the case above:

 $\mathbb{Y} = \mathbb{Y}(1) = \Gamma \setminus \mathbb{H}$, the modular curve, $\Gamma = SL(2, \mathbb{Z})/(-I)$, and $\tilde{\mathbb{Y}}_{mod}^{an}$ includes finite covers by modular curves only

$$\mathbb{Y}(n) \to \mathbb{Y}(1).$$

Note: $\mathbb{Y}(2) = \mathbf{P}^1 \setminus \{0, 1, \infty\}.$

・ロト ・回ト ・ヨト ・ヨト

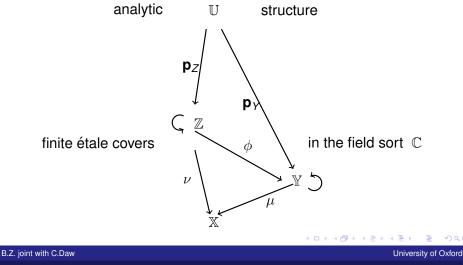
Categoricity of pseudo-analytic AEC

The structure on F

The automorphism group

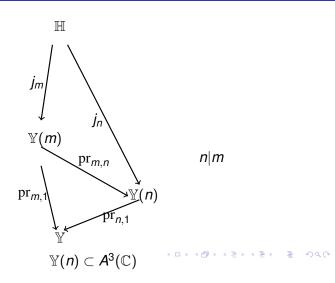
Categoricity

The universal cover $\tilde{\mathbb{X}}^{an}(\mathbb{C})$ with given $\operatorname{Gal}_k \hookrightarrow \pi_1^{et}$

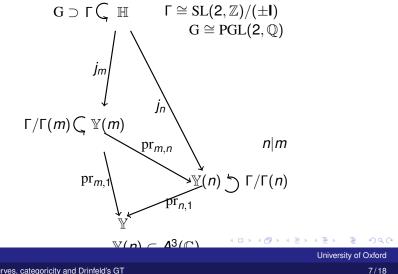


The automorphism group

The cover of $\mathbb{Y} = \mathbb{Y}(1) = A^1$ by modular curves over \mathbb{Q}



The cover of $\mathbb{Y} = \mathbb{Y}(1) = A^1$ by modular curves over \mathbb{Q}



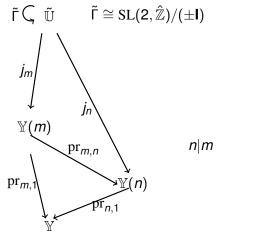
Covers of modular curves, categoricity and Drinfeld's GT

B.Z. joint with C.Daw

The automorphism group

Categoricity

An adelic version of the modular cover

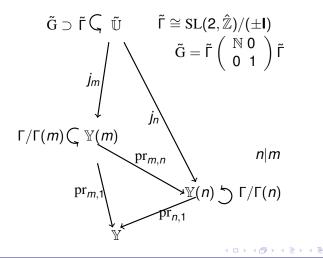


◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

The automorphism group

Categoricity

An adelic version of the modular cover



University of Oxford

The	structure	on	Г
00)		

Two multisorted structures

Let $\mathbb{X}(n) = \overline{\mathbb{Y}}(n) = j_n(\mathbb{H}^*)$. $\infty_n = j_n(\infty) \in \mathbb{X}(n) \setminus \mathbb{Y}(n)$. UT $= g \in \Gamma : g \cdot \infty = \infty$. **Proposition.** $(\widetilde{\mathbb{U}}, \widetilde{G}, \widetilde{\mathrm{UT}}, \widetilde{\Gamma}(n))_{n \in \mathbb{N}}$

and

$$(\mathbb{X}(n), \operatorname{pr}_{n,n/d}, \infty_n, \Psi_{m,n})_{n \in \mathbb{N}, d|n}$$

are bi-interpretable (in L_{ω_1,ω_1}).
where $\Psi_{m,n}(x_1, x_2, y_1, y_2) \subset \mathbb{X}(n)^4$:
 $\exists g \in G_{\det=m} \exists u, v \in \mathbb{H}^*$:
 $\langle x_1, x_2 \rangle = \langle j_n(u), j_n(gu) \rangle \& \langle y_1, y_2 \rangle = \langle j_n(v), j_n(gv) \rangle$

B.Z. joint with C.Daw

University of Oxford

The structure on Γ ○●○ The automorphism group

The CM-substructure

 $(\tilde{\mathbb{U}}, \tilde{\mathrm{G}}, \tilde{\mathrm{UT}}, \tilde{\Gamma}(\textbf{\textit{n}}))_{\textbf{\textit{n}} \in \mathbb{N}}$

is determined by

$$(\tilde{G}, \tilde{\mathrm{UT}}, \tilde{\Gamma}(n))_{n \in \mathbb{N}}$$
 and $\tilde{\mathrm{E}} = \{ \boldsymbol{e} \in \tilde{\mathrm{G}} : \exists u_{\boldsymbol{e}} \ \boldsymbol{e} \cdot u_{\boldsymbol{e}} = u_{\boldsymbol{e}} \}$

the elliptic transformation.

B.Z. joint with C.Daw

University of Oxford

The structure on Γ ○●○ The automorphism group

Categoricity

The CM-substructure

 $(\tilde{\mathbb{U}}, \tilde{G}, \tilde{UT}, \tilde{\Gamma}(\textbf{n}))_{\textbf{n} \in \mathbb{N}}$

is determined by

$$(\tilde{G}, \tilde{UT}, \tilde{\Gamma}(n))_{n \in \mathbb{N}}$$
 and $\tilde{E} = \{ e \in \tilde{G} : \exists u_e \ e \cdot u_e = u_e \}$

the elliptic transformation.

$$(\tilde{G}, \tilde{UT}, \tilde{E}, \tilde{\Gamma}(n))_{n \in \mathbb{N}} \cong_{bi-int} (CM_*, \Psi_*)$$

B.Z. joint with C.Daw

University of Oxford

The structure on Γ ○●○ The automorphism group

Categoricity

The CM-substructure

 $(\tilde{\mathbb{U}}, \tilde{G}, \tilde{UT}, \tilde{\Gamma}(\textbf{n}))_{\textbf{n} \in \mathbb{N}}$

is determined by

$$(\tilde{G}, \tilde{\mathrm{UT}}, \tilde{\Gamma}(n))_{n \in \mathbb{N}}$$
 and $\tilde{\mathrm{E}} = \{ e \in \tilde{G} : \exists u_e \ e \cdot u_e = u_e \}$

the elliptic transformation.

$$(\tilde{G}, \tilde{UT}, \tilde{E}, \tilde{\Gamma}(n))_{n \in \mathbb{N}} \cong_{bi-int} (CM_*, \Psi_*)$$

$$\operatorname{Aut}(\tilde{G}, \tilde{UT}, \tilde{E}, \tilde{\Gamma}(n))_{n \in \mathbb{N}} = \operatorname{Aut}(\operatorname{CM}_{*}, \Psi_{*})$$

B.Z. joint with C.Daw

University of Oxford

Galois action

Theorem. There is a subgroup

$$\operatorname{Out}_*\tilde{\Gamma}\subseteq\operatorname{Out}\tilde{\Gamma}$$

and an isomorphism

$$\operatorname{Aut}(\tilde{G}, \tilde{\operatorname{UT}}, \tilde{E}, \tilde{\Gamma}(n))_{n \in \mathbb{N}} \cong \operatorname{Out}_* \tilde{\Gamma}$$

Moreover, there is an embedding

$$\mathfrak{h}: \text{Gal}(\mathbb{Q}(\text{CM}_*):\mathbb{Q}) \hookrightarrow \text{Out}_*\tilde{\mathsf{\Gamma}}$$

B.Z. joint with C.Daw

University of Oxford

Galois action

Theorem. There is a subgroup

 $\text{Out}_*\tilde{\Gamma}\subseteq \text{Out}\,\tilde{\Gamma}$

and an isomorphism

$$\operatorname{Aut}(\tilde{\mathrm{G}}, \tilde{\mathrm{UT}}, \tilde{\mathrm{E}}, \tilde{\Gamma}(n))_{n \in \mathbb{N}} \cong \operatorname{Out}_* \tilde{\Gamma}$$

Moreover, there is an embedding

 $\mathfrak{h}: \text{Gal}(\mathbb{Q}(\text{CM}_*):\mathbb{Q}) \hookrightarrow \text{Out}_*\tilde{\Gamma}$

Conjecture (GT/CM). h is an isomorphism.

B.Z. joint with C.Daw

University of Oxford

The group $Out_*\tilde{\Gamma}$

Theorem. Let

$$\mathbf{t} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ \mathbf{t}_{-} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \ \mathbf{t}^{\lambda} = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}, \ \mathbf{s} = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}.$$

Any automorphism $\phi \in \operatorname{Out}_*\widetilde{\Gamma}$ has the form

$$\phi_{\lambda, {oldsymbol x}}: {f t} \mapsto {f t}^\lambda, \;\; {f s} \mapsto {f s} {f f}, \;\; {f t}_- \mapsto {f f}^{-1} {f t}_-^\lambda {f f}$$

where

$$\mathbf{f} = \mathbf{f}_{\lambda, x} = \left(\begin{array}{c} \lambda^{-1} & x \\ x & (1+x^2)\lambda \end{array}\right), \ \lambda \in \hat{\mathbb{Z}}^*, \ x, \lambda - 1 \in 2\hat{\mathbb{Z}}.$$

B.Z. joint with C.Daw

University of Oxford

Categoricity of pseudo-analytic AEC	

The structure on F	The automorphism group	Cate
	0000	

The group $Out_*\tilde{\Gamma}$

Moreover, in terms of the canonical free generators X, Y of $\tilde{\Gamma}(2)$, the (limit) word $\mathbf{f} = \mathbf{f}(X, Y)$ satisfies

$$\mathbf{f}(Y,X)=\mathbf{f}(X,Y)^{-1}$$

and, for Z such that XYZ = I, $\mu = \frac{\lambda - 1}{2}$, we the identity holds:

$$\mathbf{f}(\boldsymbol{Z},\boldsymbol{X})\,\boldsymbol{Z}^{\mu}\,\mathbf{f}(\boldsymbol{Y},\boldsymbol{Z})\,\boldsymbol{Y}^{\mu}\,\mathbf{f}(\boldsymbol{X},\boldsymbol{Y})\,\boldsymbol{X}^{\mu}=\mathbf{I}.$$

B.Z. joint with C.Daw

University of Oxford

Drinfeld's associator f

Drinfeld defined a subgroup of the automorphism group of $\hat{\mathrm{Fr}}_2$ on generators *X*, *Y* :

$$GT := \{ \phi \in \operatorname{Aut} \hat{\operatorname{Fr}}_{2} : \phi(X) = X^{\lambda}, \ \phi(Y) = \mathfrak{f}^{-1} Y^{\lambda} \mathfrak{f} \}$$

where $\lambda \in \hat{\mathbb{Z}}^{*}, \ \lambda - 1 \in 2\hat{\mathbb{Z}},$

$$\mathfrak{f} = \mathfrak{f}(X, Y) = \mathfrak{f}(Y, X)^{-1} \in \widehat{\mathrm{Fr}}_2$$

and, for $\mu = (\lambda - 1)/2$, once XYZ = 1, it is assumed to hold:

 $\mathfrak{f}(Z,X)Z^{\mu}\mathfrak{f}(Y,Z)Y^{\mu}\mathfrak{f}(X,Y)X^{\mu}=1.$

B.Z. joint with C.Daw

1

University of Oxford

Drinfeld's associator f

Drinfeld defined a subgroup of the automorphism group of $\hat{\mathrm{Fr}}_2$ on generators *X*, *Y* :

$$\begin{split} \mathrm{GT} &:= \{ \phi \in \mathrm{Aut}\, \hat{\mathrm{Fr}}_2 : \phi(X) = X^{\lambda}, \; \phi(Y) = \mathfrak{f}^{-1}\,Y^{\lambda}\mathfrak{f} \} \\ \text{where } \lambda \in \hat{\mathbb{Z}}^*, \, \lambda - 1 \in 2\hat{\mathbb{Z}}, \end{split}$$

$$\mathfrak{f} = \mathfrak{f}(X, Y) = \mathfrak{f}(Y, X)^{-1} \in \widehat{\mathrm{Fr}}_2$$

and, for $\mu = (\lambda - 1)/2$, once XYZ = 1, it is assumed to hold:

 $\mathfrak{f}(Z,X)Z^{\mu}\mathfrak{f}(Y,Z)Y^{\mu}\mathfrak{f}(X,Y)X^{\mu}=1.$

Drinfeld's Theorem There is an embedding

 $\mathfrak{h}_{Dr}:Gal_{\mathbb{Q}}\hookrightarrow GT.$

B.Z. joint with C.Daw

University of Oxford

イロト イヨト イヨト イヨト

Drinfeld's associator f

Drinfeld defined a subgroup of the automorphism group of $\hat{\mathrm{Fr}}_2$ on generators *X*, *Y* :

$$\begin{split} \mathrm{GT} &:= \{ \phi \in \mathrm{Aut}\, \hat{\mathrm{Fr}}_2 : \phi(X) = X^{\lambda}, \; \phi(Y) = \mathfrak{f}^{-1}\,Y^{\lambda}\mathfrak{f} \} \\ \text{where } \lambda \in \hat{\mathbb{Z}}^*, \, \lambda - 1 \in 2\hat{\mathbb{Z}}, \end{split}$$

$$\mathfrak{f} = \mathfrak{f}(X, Y) = \mathfrak{f}(Y, X)^{-1} \in \widehat{\mathrm{Fr}}_2$$

and, for $\mu = (\lambda - 1)/2$, once XYZ = 1, it is assumed to hold:

 $\mathfrak{f}(Z,X)Z^{\mu}\mathfrak{f}(Y,Z)Y^{\mu}\mathfrak{f}(X,Y)X^{\mu}=1.$

Drinfeld's Theorem There is an embedding

$$\mathfrak{h}_{Dr}: Gal_{\mathbb{Q}} \hookrightarrow GT.$$

Drinfeld's conjecture: \mathfrak{h}_{Dr} is an isomorphism,

B.Z. joint with C.Daw

University of Oxford

The automorphism group

Categoricity

The comparison statement

Proposition. There are natural surjective homomorphisms γ and g:

 $Gal_{\mathbb{O}} \hookrightarrow$

 $\begin{array}{c} \gamma \downarrow \qquad \qquad \downarrow \boldsymbol{g} \\ \operatorname{Gal}(\mathbb{Q}(\operatorname{CM}_*):\mathbb{Q}) \hookrightarrow \operatorname{Out}_*\tilde{\mathsf{\Gamma}} \end{array}$

GT

such that the diagram commutes.

B.Z. joint with C.Daw

University of Oxford

The automorphism group

Image: A matrix

Categoricity

The comparison statement

Proposition. There are natural surjective homomorphisms γ and g:

 $\operatorname{Gal}_{\mathbb{O}} \hookrightarrow$

 $\gamma \downarrow \qquad \qquad \downarrow g$ $Gal(\mathbb{Q}(CM_*):\mathbb{Q}) \hookrightarrow Out_*\widetilde{\mathsf{\Gamma}}$

GT

such that the diagram commutes.

Drinfeld's Conjecture implies the GT/CM Conjecture.

Categoricity of pseudo-analytic AEC	The structure on Γ οοο	The automorphism group	Categoricity ●00

Axioms

Group axioms:

$$(G, \Gamma) \cong (PGL^+(2, \mathbb{Q}), PSL^+(2, \mathbb{Z})).$$

Action axiom:

G acts on U;
$$\forall e \in G (\exists u \ e \cdot u = u \leftrightarrow e \in E)$$

Algebraically closed field of characteristic 0 and sorts $\mathbb{Y}(n)$:

 $F \vDash ACF_0$

and

$$\mathbb{Y}(n) \subset \mathrm{F}^{M}; \ \mathrm{pr}_{n.m}: \mathbb{Y}(n) \to \mathbb{Y}(m); \ \Psi_{m,n} \subset \mathbb{Y}(n)^{4}$$

are given by specific equations over \mathbb{Q} .

B.Z. joint with C.Daw

Covers of modular curves, categoricity and Drinfeld's GT

A B >
A B >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

The structure	on Г	The automor

Axioms (cont.)

Functional equations:

$$\Psi_{m,n}(x_1, x_2, y_1, y_2) \Leftrightarrow \exists g \in \mathrm{G}_{\mathsf{det}=m} \langle x_1, x_2 \rangle, \langle y_1, y_2 \rangle \in C_{g,n} \subset \mathbb{Y}(n)^2$$

where $C_{g,n} = j_n(\operatorname{graph} g)$.

Fibre formula:

$$\forall u, v \in \mathbb{U} \ j_n(u) = j_n(v) \leftrightarrow \exists \gamma \in \Gamma(n) \ v = \gamma \cdot u$$

B.Z. joint with C.Daw

University of Oxford

The automorphism group

Categoricity

The caterocity statement

Theorem Assuming GT/CM-conjecture, the $L_{\omega_{1},\omega}$ -sentence determines an uncountably categorical class.

B.Z. joint with C.Daw

University of Oxford