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Abstract

We treat the canonical commutation relations and the conventional
calculus based on it as an algebraic syntax of quantum mechanics and
establish a geometric semantics of this syntax. This leads us to a
geometric model, the space of states with the action of time evolution
operators, which is a limit of finite models. The finitary nature of the
space allows to give a precise meaning and calculate various classical
quantum mechanical quantities.

1 Introduction

1.1 This paper is a part of a broader project which aims to establish, for
a typical ’co-ordinate algebra’ A in the sense of non-commutative geometry,
or a scheme, a geometric counterpart VA. Here “geometric” should also be
understood in some broad but well-defined sense. We believe this is possible
in the setting of model theory, where a crucial new experience in generali-
sation of semantics of algebraic and analytic geometry, and applications of
this, has been accumulated in the last 50 years.

In fact, we aim to establish a rigorous mathematical duality

AV ←→ VA (1)

between algebras AV and structures VA of geometric flavour.
Let us recall that a project with similar aims, but mainly concentrated

around classical structures of mathematical physics, has been suggested by
C.Isham and J.Butterfield and is being developed by C.Isham, A.Döring and
others, see e.g. [8] and later publications. In that approach VA is supposed
to be a topos.

Our approach is different in many details: VA is a multi-sorted structure,
each sort of which is a Zariski geometry in the sense of [18]. An essential
component of the multi-sorted structure VA is the set of morphisms between
sorts functorially agreeing with embeddings between certain sublagebras of
A, which makes the left-to right arrow a functor between a category of those
subalgebras A and sorts VA of VA. This functor, in fact, defines a quite rich
sheaf over the category of sublagebras. This makes an interesting point of
contact of our approach with the topos-theoretic approach to foundations of
physics.
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1.2 At this stage of our project we decided to keep the general context
to minimum and instead concentrate on developing and illustrating the ap-
proach in a very special case of Heisenberg-Weyl algebras and the canonical
commutation relation. And even there we quite quickly drop the general-
ity of the n-th Heisenberg-Weyl algebras for the sake of developing rather
sophisticated calculus with one position and one momentum operators.

1.3 The n-th Heisenberg-Weyl algebraA(n) has generators P1, . . . , Pn, Q1, . . . , Qn,
the “co-ordinates” of n-dimensional quantum mechanics, with commutation
relations

QlPk − PkQl = 2πiδlkI, (2)

where the Pk and Ql are seen as self-adjoint operators, I is the “identity
operator” and δkl the Kronecker symbol. (We have chosen the multiplier 2πi
for convenience of further notations and to mean that exp 2πiI = I.)

The infinite-dimensional Heisenberg algebra is

A(ω) = ∪nA(n).

The representation theory of A(n) is quite complicated, even for n = 1,
due to the fact that the algebra can not be represented as an algebra of
bounded operators on a Hilbert space, not to speak about finite-dimensional
representations.

However, as suggested by Herman Weyl, we may instead consider the
representation theory of algebras generated by the Weyl operators which can
be formally defined as

Uak
k = exp iakQk, V bl

l = exp iblPl (3)

for ak, bl ∈ R. These are unitary (and so bounded!) operators if the Pk and
Ql are self-adjoint, and the following commutation relation holds:

Uak
k V

bl
l = qklV

bl
l U

ak
k

where qkl = exp 2πiakblδkl
(4)

Given a choice of real a1, . . . , an, b1, . . . , bn the complex C∗-algebra gen-
erated by Weyl operators V ±a11 , . . . , V ±ann , U±b11 , . . . , U±bnn ,

A(a1, . . . , an, b1, . . . , bn) = C[V ±a11 , . . . , V ±ann , U±b11 , . . . , U±bnn ]

is called (in this paper) a Weyl algebra.
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The all-important Stone – von Neumann theorem states that the repre-
sentation theory of all the Weyl algebras A(a1, . . . , an, b1, . . . , bn) together
is equivalent to the Heisenberg commutation relation (2). One can say
that A(n) can be fully replaced by the entirety of its Weyl subalgebras
A(a1, . . . , an, b1, . . . , bn) which have a good Hilbert space representation the-
ory.

Especially nice finite-dimensional representations have Weyl algebras for
which the multipliers e2πiakbl are roots of unity. This is the case when all the
ak, bl are rational. We call such algebras rational Weyl algebras.

In a certain sense, made precise in the paper, the rational Weyl algebras
approximate the full Heisenberg-Weyl algebra just as rational points approx-
imate points of the n-dimensional Euclidean space. In fact, the paper uses
the correspondence between rational Weyl algebras A and certain geometric
objects VA. The structure VA encapsulates the representation theory of A
and is at the same time a well-understood object of model-theoretic studies,
a quantum Zariski geometry, see [16].

The quoted paper established the duality (1) between quantum algebras
A at roots of unity (rational Weyl algebras in our case) and corresponding
quantum Zariski geometries VA, which extends the classical duality between
commutative affine algebras and affine algebraic varieties. The new step
implemented in the present work is to extend the duality on algebras A
approximated by rational Weyl algebras. In order to achieve this we need
to develop a notion of approximation on the side of structures VA. Such a
notion, of structural approximation, has essentially been developed in [17]
(quite similar to the context of positive model theory developed by I. Ben-
Yaacov [2] and others).

1.4 A few introductory words about structural approximation:
We work with the category whose objects are rational Weyl algebras

A(a, b), a, b ∈ Q, and morphism are embeddings. It is useful to have in mind
that the embedding A(a, b) ⊂ A(c, d) can be determined in terms of divisibil-
ity relations between denumerators of the fractions of integers representing
a, b, c and d.

We consider an ultrafilter D on Q2 to be defined more specifically below.
Consider the ultraproduct of algebras {A(a, b) : 〈a, b〉 ∈ Q2} modulo D, call
it Ã. This can be seen as a non-standard algebra “generated” by operators
UaV b, for a, b ∈ ∗Q, the field of non-standard rational numbers.
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We consider then the corresponding ultraproduct modulo D of Zariski
geometries VA(a,b), denote it VÃ.

Now we are ready to define a limit object, the space of states

S = lim DVA(a,b)

and the procedure of taking the limit. By definition in [17] the limit structure
is a homomorphic image of VÃ and lim is a surjective homomorphism

lim : VÃ � S,

which means a map preserving basic relations of the language.
The canonical equivalence on VÃ associated with lim ,

x1 ≈ x2 ⇔ limx1 = limx2

should be read as “x1 is infinitesimally close to x2”.
This definition is very sensitive to the choice of the basic relations (prim-

itives) of the language and is not preserved under the transition to an inter-
definable language. Effectively, the choice of the “right” primitives amounts
to the choice of what physicists would consider as observables.

The fact that we construct our structures as Zariski geometries plays a key
role here: the notion of homomorphism in the above definition agrees with
the notion of morphisms in the category of respective Zariski geometries,
structures with (a generalised) Zariski topology on them.

Further choices of primitives of the language lead to the introduction of
probability (equal to the absolute value of the inner product) as an observable
as opposed to the inner product, which is well-defined for each VA(a,b) but
can not be defined uniformly without breaking the symmetries required by
Zariski structure.

1.5 The ultrafilter D of 1.4 is chosen to be a Fréchet ultrafilter with respect
to the partial ordering between the A(a, b), that is:

for each A(a, b) the set {〈c, d〉 ∈ Q2 : A(a, b) ⊂ A(c, d)} is in D.
We also add a condition on D which depends on a choice of a rational

number h and which results in the fact that Ã is “generated” by a pair of

operators U
1
µ and V

1
ν , for non-standard integers µ and ν such that

h =
µ

ν
.
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The fact that D was Fréchet has an important consequence: both µ and
ν are divisible by all the standard integers.

Consequently we will get that A(a, b) ⊂ Ã for any (standard) rational a, b
which is one of the desirable properties; Ã is universal for the family of all
rational algebras.

1.6 Let us turn now to more detailed description of the objects VA and
their limit, the space of states S.

For a rational Weyl algebra A the object VA is defined, following [16], as
a bundle (not locally trivial!) of irreducible A-modules over an algebraically
closed field, say C. In the current paper we identify a more interesting struc-
ture of what we call “algebraic-Hilbert” modules on VA. “Algebraicity” of
the modules first of all reflects the fact that the modules are of finite di-
mension nA. More serious algebraic feature of VA is in the fact that the
submodule over a much smaller subfield, R0[

√
−1] ⊂ C, where R0 is the field

of algebraic totally real numbers, has an inner product structure with values
in R0[

√
−1]. To express the sesquilinearity of the inner product we use the

formal complex conjugation on R0[
√
−1], which does not require definabil-

ity of the reals. This is crucial since we want to keep the structure VA a
Zariski structure (hence ω-stable). In fact, for each particular A we need
just a finitely generated subfield Q[q] of R0[

√
−1], where q is a root of unity

introduced in (4).
With the inner product and a formal complex conjugation defined we can

also speak of adjoint operators, unitarity and the related notions.

1.7 Each algebraic-Hilbert space VA(a,b) is acted upon by respective Weyl
operators Ua and V b. In the limit procedure the rational parameters a and
b become infinitesimals and for this reason can not be observed in the limit
structure. The same can be said about Ua and V b.

Instead of Ua and V b we introduce in the language of VA(a,b) the new
names P and Q which can be used for all values of a, b ∈ Q :

Q :=
Ua − U−a

2ia
, P :=

V b − V −b

2ib

(compare with (3)). Note that in each A(a, b) the operators Q and P are
inter-definable with Ua and V b respectively (but by different formulas!) The
effect of redefining the basic operators is that the new operators Q and P
have a meaning throughout the whole construction and in the limit of it. So
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the operators Q and P are observables.

Crucially, we prove:

Theorem (see 9.3) The canonical commutation relation (2) holds in S.

This can be seen as another version of Stone - von-Neumann Theorem.

1.8 Other observable operators can be constructed as e.g. linear combina-
tions cQ + dP, c, d ∈ R. To each such operator in the conventional quantum
mechanical setting one associates a Lagrangian subspace of the phase space.
A symplectomorphism between two such Lagrangian subspaces can be iden-
tified as a (generalised) Fourier transform (see e.g. [12]).

In our finitary setting this picture translates into considering commuta-
tive subalgebras of Ã of the form A(c, d) where c, d are rationals (eventually
approximating real values). To each such commutative subalgebra one can
associate the space of eigenvectors, a subset of VÃ, which is an equivalent
of the lagrangian, or rather the lagrangian subspace with a line bundle with
connection. In place of the Fourier transforms we define a class of Zariski
morphisms with special properties which we call regular unitary transforma-
tions since they preserve the orthonormality.

Theorem. The regular unitary transformations survive to the limit and
form a group which has SL(2,R) as its homomorphic image.

In n-dimensional case SL(2,R) should become the symplectic group Sp(2n,R),
but we do not do this case in the current version of the paper.

1.9 The fact that the construction of the limit structure involves non-
standard (infinite) integers µ and ν (as in 1.5) is one of the causes of emer-
gence of non-observable values. More concretely, the absolute value of the
inner product of norm 1 eigenvectors |x〉 and |p〉 of operators Q and P is

|〈x |p〉| = 1
√
µν

and so is an infinitesimal. This can be used to define the probability density
but for more subtle calculations one needs a renormalisation, a systematic
procedure which produces a finite value. We introduce such a universal pro-
cedure in terms of our construction. This is called in the paper the Dirac
rescaling. As an intermediate stage the Dirac rescaling introduces a “dis-
crete” Dirac delta-function on each lagrangian and in the above example
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gives us

〈x |p〉Dir =
1√
2π~

eixp,

where the right-hand side is defined up to a phase factor.

1.10 It is well-known that some (not all) of the generalised Fourier trans-
forms can be identified as time evolution operators for certain particles. The
same is true for regular unitary transformations. We consider such transfor-
mations Kt

free and Kt
QHO corresponding to time evolution operators for the

free particle and the quantum harmonic oscillator and calculate the Feynman
propagator, which coincides with the well-known results:

〈x1|Kt
freex2〉Dir =

1√
2πi~t

e
i(x1−x2)

2

2t~

and

〈x2|Kt
QHO|x1〉Dir =

√
1

2πi~ sin t
exp i

(x2
1 + x2

2) cos t− 2x1x2

2~ sin t
,

where t are arbitrary positive real numbers such that ~ = 2πh > 0 and
sin t 6= 0.

1.11 The most interesting example we calculated is the formula

Tr(Kt
QHO) =

1

i| sin t
2
|

for the trace of the evolution operator for the quantum harmonic oscillator.
A naive approach to calculating the trace would be to consider the sum of
eigenvalues of Kt

QHO which are well known

Tr(Kt
QHO) =?

∞∑
n=1

ei(n−
1
2

)t.

But this does not make sense since |ei(n− 1
2

)t| = 1. Our calculation takes place
for arbitrary rational values of the parameter arcsin t in big enough finite-
dimensional algebraic-Hilbert spaces VA. In each such space the trace can be
calculated and the result has the same form as above (for the given value of
the parameter). Note that the easy of obtaining the formula is compensated
by the difficulty of calculating eigenvalues of Kt

QHO in the finite-dimensional
space. In fact, we have not calculated these eigenvalues.

8



1.12 Of course, discrete models have been in permanent use throughout the
history of quantum physics as a heuristic tool, see the reference [14] or more
advanced treatment in similarly defined spaces in [9]. The analysis of such a
discrete model usually concludes with the phrase “now we pass to continuous
limit”, which actually is an ill-defined notion and a source of main troubles
of quantum physics.

Perhaps the main achievement of this paper is the approximation proce-
dure lim suggesting a rigorous interpretation of the above.

Moreover, the mathematical model developed in this paper may have a
much stronger physical interpretation. The pseudo-finite-dimensional Hilbert
space which is associated with our main object VÃ corresponds to a pseudo-
finite space of states. Here “pseudo” refers to the non-standard finite (that
is infinite) size of the space. This is a good mathematical substitute for the
notion of a “huge finite” universe. The limit S of this space should then be
considered a “continuous approximation” to the huge finite universe. The
claim of the paper is that by assuming this as a model for reality we get the
correct mathematical theory of quantum mechanics.

1.13 The role of logic and model theory. We see canonical commu-
tation relations and more general formulas of algebraic quantum mechanics
as rules of a syntax that speaks correctly about quantum mechanics since
the time of Heisenberg and Dirac. However, unlike the case of the syntax
of classical Hamiltonian mechanics (the calculus of differential manifolds),
no geometric semantic interpretation of this syntax has been established.
And this is arguably the main cause of troubles in quantum physics, see [7].
From our point of view this is also a true challenge to logicians and, more
concretely, model-theorists.

The quoted paper [7] suggest toposes as possible semantical interpreta-
tions for similar syntactic construction (general von Neumann algebras), and
there have been a few other constructions of category-theoretic origin.

The construction we use in [16], in the present paper and in other ongoing
joint works has many common features with the above mentioned approaches,
but the role of category theory is taken by model theory. The advantage is
that the semantical interpretation is supposed to take shape of a concrete
structure with crucial model-theoretic characteristics. These characteristics
supposed also to justify the adjective geometric in the definition geometric se-
mantics. Model theory has tools for distinguishing structures of this desired
type, tools developed in stability theory. In particular, the notion of Zariski
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geometry (and its generalisations) proved to be a very convenient generalisa-
tion of objects of algebraic geometry, including non-commutative one. The
insistence that the model of quantum mechanics must be a Zariski geometry
severely restricts our choices but also brings in strong parallels with classical
geometric structures. Zariski geometries come with an internally defined no-
tion of dimension. Another key property is homogeneity: any two subobjects
which are indiscernible by the language are conjugated by an automorphism
of the structure. In the current setting this property explains the inherent
symmetries of quantum mechanics and exhibits their common nature with
Galois automorphisms of algebraic geometry.

In the end the approach works, and this paper is here to prove the state-
ment.

1.14 Acknowledgements. I would like to thank Alex Cruz Morales for
his interest to this work and his many questions which essentially effected the
form and the content of this paper and led to our joint paper [3] surveying an
early version of the present work. I would also like to thank Andreas Döring
who explained to me the idea of the topos-theoretic approach to foundations
of physics and who introduced me to people interested in foundations of
physics. I am also grateful to Bruce Bartlett who draw my attention to some
recent works in mathematical foundations of quantum mechanics.

10



2 Preliminaries

2.1 Weyl operators (3) generate so called Heisenberg group H(a1, . . . , an, b1, . . . , bn).
Most of the time will be interested in the case n = 1 and the Heisenberg group
H(a, b), which is a group of rank 2. More generally a Heisenberg group of rank
2 is a subgroup H of H(a, b) such that the quotient H/[H,H] is non-cyclic.

2.2 Lemma. A Heisenberg group of rank 2 is isomorphic to H(c, d) for
some c, d. If H ⊆ H(a, b) for rational a, b, then c, d are rational as well.

Proof. Easy. �

2.3 A general Heisenberg group of rank 2n is by definition a group of the
form

H1 × . . .× Hn

where the Hi are Heisenberg groups of rank 2. In this definition we also
assume that the generators of the Hi are of the form U g11

i V g12
i and U g21

i V g22
i ,

for real g11, g12, g21, g22. We write, correspondingly,

Hi = 〈U g11
i V g12

i , U g21
i V g22

i 〉.

We also will consider an algebraically closed field F of characteristic 0 (e.g.
the field of complex numbers C) and the Weyl algebras, which are defined as
a group algebras FH of the respective Heisenberg groups. In particular,

A(a1, . . . , an, b1, . . . , bn) := FH(a1, . . . , an, b1, . . . , bn),

where
H(a1, . . . , an, b1, . . . , bn) = 〈Ua1 , . . . , Uan , V b1 , . . . , V bn〉.

2.4 By 2.2 any Heisenberg group of rank 2n is isomorphic to one of the
form H(a1, . . . , an, b1, . . . , bn) and every Weyl algebra is isomorphic to one of
the form A(a1, . . . , an, b1, . . . , bn).

2.5 A symplectic structure associated with the Heisenberg group.
Recall that H is a nilpotent group of class 2 and hence the commutator

operation [h, g] := hgh−1g−1 determines an alternating Z-bilinear form on
H/[H,H],

[·, ·] : H/[H,H]× H/[H,H]→ [H,H] ∼= Z.
For the case of real Heisenberg group this is called the symplectic structure
on H. The same terminology can be applied to the integer Heisenberg group
without the risk of ambiguity.
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2.6 A rational Weyl F-algebra of rank 2n is a Weyl algebra isomorphic
to one of the form A(a1, . . . , an, b1, . . . , bn) with rational non-zero a1, . . . , an,
b1, . . . , bn.

In this case the qkk in (4) are roots of unity. Such algebras, and more
generally quantum algebras at roots of unity, can be seen as “coordinate
algebras” of corresponding Zariski geometries. This has been studied in [16].

2.7 Theorem. Let A = A(a1, . . . , an, b1, . . . , bn) be a rational Weyl F-
algebra. Then

(i) A and the centre Z(A) are prime noetherian PI rings. Let nA be the
PI degree of A.

(ii) Every maximal ideal of A is of the form α̃ = Aα, for α ⊆ Z(A),
α ∈ Spec(Z(A)), a maximal ideal of the centre.

(iii) The unique irreducible A-module VA(α) with annihilator Ann(V) = α̃
is of dimension nA over F. The irreducible representations of A are
in bijective correspondence with points α ∈ Spec(Z(A)), the maximal
spectrum of Z(A), which can be identified with (F-points of) an affine
irreducible variety.

(iv) There exists an isomorphism A/α̃ ∼= M(nA,F), the full nA×nA-matrix
algebra.

(v) The irreducible A-module VA(α) is isomorphic to a tensor product of
corresponding irreducible Ak-modules VAk(αk),

VA(α) ∼=
n⊗
k=1

VAk(αk)

for Ak = A(ak, bk) and some maximal ideals αk of Z(Ak).

Proof. For (i)-(iv) see [1], III.1.1 and III.1.6.
(v) follows from the fact that

H(a1, . . . , an, b1, . . . , bn) =
n∏
k=1

H(ak, bk). (5)

�
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2.8 Note that the isomorphism in (iv) is given by a representation ja : A→
M(nA,F), which in its own right is determined by a choice of a maximal ideal
a ⊂ Z(A) and a basis e in the module VA(a), so j = ja,e.

2.9 Definition. Given the Heisenberg group H(a, b) with rational a, b, it
is easy to describe its automorphism group AutH(a, b). It consists of auto-
morphisms ξg,n,m, for g = (gij) ∈ SL(2,Z), n,m ∈ 0, 1, . . . , N − 1 where N is
the order of defined on the generators of H(a, b) the root of unity q = e2πiab :

ξg,n,m :
Ua 7→ qnU g11aV g12b

V b 7→ qmU g21aV g22b

Note that by isomorphism the commutator of the image of Ua and V b is
equal to the same number q, hence det(gij) = 1.

Set ΓH(a,b) to be the subgroup of Aut(H(a, b)) which fixesH(a, b)/Z(H(a, b)),
the quotient of the Heisenberg group modulo its centre.

Given a rational Weyl algebra A = A(a1, . . . , an, b1, . . . , bn) we set

ΓA = ΓA1 × . . .× ΓAn

for Ak = A(ak, bk), k = 1. . . . , n, with the action on A = A1 ⊕ . . . ⊕ An
coordinate-wise.

2.10 Lemma. For A = A(a, b) the group ΓA is generated by the two auto-
morphisms µ and ν defined on the generators of A as follows

µ :
Ua 7→ qUa

V b 7→ V b ν :
Ua 7→ Ua

V b 7→ qV b (6)

ΓA and ΣA fix the centre Z(A) point-wise.

ΓA ∼= (Z/NZ)2.

Proof. By definition any γ ∈ ΓA acts by Ua 7→ qkUa and V b 7→ qmV b,
for some integers k and m. Then γ : UaV bU−aV −b 7→ UaV bU−aV −b, that is
γ(qI) = qI for all γ ∈ ΓA.

Clearly, µ, ν ∈ ΓA. Also γ−1µkνm acts as identity on Ua, V b, hence γ =
µkνm. The transformation φ fixes qI by (4).

Finally, it is immediate from (6) that the generators µ, ν of ΓA commute
and are of order N. �
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2.11 In what follows we will extensively use (5) and reduce the study of
n-th Weyl algebras to the study of 1-st Weyl algebras.

2.12 Lemma. The centre Z(A) of rational A = A(a1, . . . , an, b1, . . . , bn)
is of the form A(N1a1, . . . , Nnan, N1b1, . . . , Nnbn), where Nk is the order of
the root of unity exp 2πiakbk, that is equal to the denominator of the reduced
rational number akbk.

Proof. Immediate. �

2.13 Lemma. Suppose

A(a′1, . . . , a
′
n, b
′
1, . . . , b

′
n) ⊆ A(a1, . . . , an, b1, . . . , bn)

and A(a′1, . . . , a
′
n, b
′
1, . . . , b

′
n) is commutative and maximal among commuta-

tive.
Then
(i) a′k = Mkak, b

′
k = Lkbk, for some Mk, Lk ∈ Z such that MkLk is equal

to the denominator of the reduced fraction akbk, k = 1, . . . , n.
(ii) In particular, A(N1a1, . . . , Nnan, b1, . . . , bn) and A(a1, . . . , an, N1b1, . . . , Nnbn)

are maximal commutative subalgebras of A(a1, . . . , an, b1, . . . , bn).
(iii) Maximal commutative subalgebras A(Nkak, bk) and A(ak, Nkbk) of

A(ak, bk) are 1-generated by V bk and Uak , respectively, over the centre of the
algebra.

Proof. (i) We may assume that n = 1 and we consider A(a′, b′) ⊆
A(a, b) maximal commutative. Then a′ = Ma, b′ = Lb, for some M,L ∈ Z
by the embedding assumption. Commutativity requires that MLab ∈ Z.
Maximality implies the last of the conditions.

(ii) Immediate from (i).
(iii) Just note that UNkak and V Nkbk are in the centre of the algebra. �

2.14 Lemma. Given a rational commutative n-th algebra A = A(a1, . . . , an, b1, . . . , bn),
there is finitely many commutative rational n-th Weyl algebras B extending
A.

Proof. Any element of B is of a product of some U
a′k
k and V

b′k
k , k =

1, . . . , n. Commutativity implies that a′kbk, akb
′
k ∈ Z for all k. This puts

bounds on the denominators of a′k and b′k. On the other hand, since Uak
k , V

bk
k ∈

B, we can reduce every product in B modulo A so that |a′k| ≤ |ak| and |b′k| ≤
|bk|. There are finitely many such a′k and b′k with the bound on denominators.
�
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2.15 Lemma. Given a commutative rational n-th Weyl algebra
C = A(c1, . . . , cn, d1, . . . , dn), let C↑ be the algebra generated by all the

commutative rational n-th Weyl algebras B extending C. Then

(i) C↑ = A( c1
N1
, . . . , cn

Nn
, d1
N1
, . . . , dn

Nn
), where Nk = ckdk, k = 1, . . . , n.

(ii) C↑ is generated by two maximal commutative subalgebras

A( c1
N1
, . . . , cn

Nn
, d1, . . . , dn) and A(c1, . . . , cn,

d1
N1
, . . . , dn

Nn
).

(iii) If C is the centre of A = A(a1, . . . , an, b1, . . . , bn), then C↑ = A.

Proof. (i) It is clear that C↑ contains A( c1
N1
, . . . , cn

Nn
, d1, . . . , dn) and

A(c1, . . . , cn,
d1
N1
, . . . , dn

Nn
) as the two subalgebras are commutative and contain

C.
(ii) It is easy to see that both are maximal commutative subalgebras of

C↑ as presented in (i). It is obvious from the explicitly given parameters that
the two sublagebras generate C↑.

(iii) By 2.12 C = A(N1a1, . . . , Nnan, N1b1, . . . , Nnbn), where the Nk are
denominators of the reduced rational numbers akbk. Hence, by setting ck =
Nkak and dk = Nkbk we get by (i) C↑ = A. �

2.16 Corollary. The functors A 7→ Z(A) and C 7→ C↑ between categories
of rational n-th Weyl algebras and commutative rational n-th Weyl algebras
are inverse to each other.

2.17 Lemma.
The family of all the commutative Weyl subalgebras C of a rational Weyl

algebra A containing the centre Z(A) of A is finite.
Proof. It is enough to note that the generators Uak

k , V
bk
k of A are periodic

modulo the centre. Hence the images of canonical generators U ck
k , V

dk
k of C

modulo Z(A) take only finitely many values. �

2.18 Definition. Given a rational Weyl algebra A O(A) be the set of
maximal commutative Weyl subalgebras C ⊆ A.

2.19 Proposition. There is a natural bijection between O(A) and the set
of Lagrangian subgroups of the Heisenberg group H such that A = A(H).

Proof. Immediate by definition. �
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2.20 Lemma. Suppose now A = A(a, b) and C ∈ O(A). Then C =
A(a,Nb)γ for some γ ∈ AutH(a, b).

Proof. Note that A(a,Nb) is maximal commutative in A. By 2.13(iii)
C is generated by one element W ∈ A over Z(A). Then W = U g11aV g12b,
g11, g12 ∈ Z, co-prime modulo N. Choose g21, g22 ∈ Z such that g11g22 −
g12g21 = 1 and consider W ′ := U g12aV g21b. We see that

γ : Ua 7→ W V b 7→ W ′

is an automorphism of H(a, b). �

2.21 Lemma. For a rational n-th Weyl algebra A = A(a1, . . . , an, b1, . . . , bn),

O(A) := {C1 × . . .× Cn : Ck ∈ O(A(ak, bk)), k = 1, . . . , n}.

Proof. We may consider maximal commutative subgroups C ⊂ H of a
rank-2n Heisenberg group instead. Recall that

H =
n∏
i=1

Hi

where Hi are Heisenberg groups of rank 2. The projection Ci of C to the i-th
subgroup must be commutative. It also must be maximal, since otherwise
there is an element hi with hi /∈ Ci, [hi, Ci] = 1, on the i-th co-ordinate
and equal to 1 on other co-ordinates, and such an h commutes with C,
contradicting maximality.

Since C ⊆
∏n

i=1 Ci and the product is commutative we have the equality.
�

2.22 Corollary. There is a canonical bijection between the set O(A) of
maximal commutative subalgebras of A and the set of all Lagrangian subspaces
on the symplectic space associated with the respective Heisenberg group H by
2.5.

3 Categories Afin and Cfin.
3.1 Definition. We fix F to be an algebraically close field of characteristic

zero.
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Afin is the category of all the rational Weyl F-algebras with canonical
embeddings as morphisms.
A(n)
fin is the subcategory of n-th Weyl algebras of Afin
Cfin and C(n)

fin are the subcategories of commutative algebras of Afin and

A(n)
fin respectively.

3.2 Properties.
It is easy to check:

(i) Afin and Cfin are small categories of unital F-algebras with at most
one morphism between two objects.

(ii) The functor A 7→ Z(A) is an isomorphism between Aopfin and Cfin. We

will describe the inverse functor Z(A) 7→ A : Z 7→ Z↑ below.

(iii) ⋂
A∈Afin

Z(A) = F.

Proof. (i) and (iii) are immediate from definitions. (ii) is just 2.16.�

3.3 Subfield F0 with complex conjugation.
For most of our purposes it is suficient to work within a subfield F0 of F.
We set R0 ⊂ F to the subfield of the totally real algebraic numbers and

F0 = R0[i], the extension of R0 by i =
√
−1. In particular, F0 ⊆ Qalg, the

algebraic closure of Q.
Note that µ, be the group of all roots of unity in F, is a subset of F0. Note

also that q + q−1 is a totally real number for q ∈ µ.
We will think of µ as the group of “elements of modulus 1” and introduce

an formal (complex) conjugation x 7→ x∗, an automorphism of the field
F0, defined as

∗ : r + is 7→ r − is, for r, s ∈ R0.

In particular, u∗ = u−1, for u ∈ µ and r∗ = r for r ∈ R0.

In particular, given n × n matrix X over F0, we define an adjoint X∗

as the matrix obtained by transposition and formal conjugation. We call X
F0-unitary if X∗X = 1.
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3.4 Remark. Suppose F is of cardinality continuum (which may be as-
sumed without loss of generality). Then F is abstractly isomorphic to the
field of complex numbers. So, in this case F0 ⊂ C and by construction the
involution x 7→ x∗ coincides on F0 with the complex conjugation. This is
immediate from the definition.

3.5 Proposition. An A ∈ Afin is an affine prime algebra over F, finitely
generated over its centre Z(A) as a module. A is finitely generated as an
F-algebra with the field of definition Q[q1, . . . , qn], for qk = exp 2πiakbk k =
1, . . . , n.

Every maximal ideal of A is regular.
Proof. Immediate.

Such algebras are considered in [1] which contains in particular the fol-
lowing statement.

3.6 Proposition. Let A,B ∈ Afin. Then Z(A) ∩ Z(B) ∈ Cfin and so
(Z(A) ∩ Z(A))↑ = 〈A,B〉 ∈ Afin.

Proof. Immediate by 2.15. �

3.7 Notation. Given A ∈ Afin we write SpA for SpecMax(Z(A)).

3.8 Lemma. Suppose A,B ∈ Afin, B ⊆ A, so Z(A) ⊆ Z(B). Given
β ∈ SpB, a maximal ideal of Z(B), we get a maximal ideal β ∩ Z(A) of
Z(A). The map

b 7→ β ∩ Z(A), πBA : SpB → SpA

is surjective.
Proof. Follows from 2.7(ii). �

3.9 Lemma. Let A ∈ Afin and C ∈ O(A). Let B = C↑. Then

SpC = SpB and πBA : SpB → SpA

is unramified of order nA.
Proof. Since C = Z(B), we have by definition SpC = SpB.
Let n = nA. Recall that by 3.2 the image of Z(A) in A/α̃ is F · 1, the

subalgebra of scalar matrices. By 2.18(ii) the image of C in the algebra of
matrices is the diagonal subalgebra, that is of the form F · i1 + . . . + F · in,
where i1, . . . , in are orthogonal idempotents.
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Note that every maximal ideal of C/α̃ ∩ C is of the form
∑

j 6=k F · ij, for
some k = 1, . . . , n. It follows that every maximal ideal of C is of the form

ξk =
∑
j 6=k

F · ik + α̃ ∩ C, where ik ∈ C, ik = ik + α̃ ∩ C.

On the other hand, ξk∩Z(A) = α. Indeed, (ξk∩Z(A))/(α̃∩C∩Z(A)) = 0
since F · 1 ∩

∑
j 6=k F · ik = 0. Hence ξk ∩ Z(A) ⊇ α̃ ∩ C ∩ Z(A) = α. The

inverse inclusion is obvious by maximality of α.
Hence πBA : c 7→ α = c ∩ Z(A) is an n−to−1 map SpB → SpA. �

3.10 Corollary. Suppose B ⊆ A, A,B ∈ Afin. Then

(i)
πBA : SpB → SpA

is an unramified projection of order nA : nB.

(ii) for a generic α ∈ SpA and β ∈ π−1
BA(α) the extension (Q(β) : Q(α))

is Galois, and the Galois group of the extension acts transitively on
π−1
BA(α).

Proof. (i) is immediate from 3.9.
(ii) follows from the fact that SpB is irreducible (see 3.2(ii)) and so π−1

BA(a)
is irreducible over Q(α). �

3.11 Remark. The projection πBA can be seen in a graphical way if we
take into account that Z(B) is an extension of Z(A) by a finite set of op-
erators X. Correspondingly, any element of SpB can be determined by αaξ
(concatenation) where α ∈ SpA and ξ correspond to eigenvalues of operators
X ∈ Z(B). Now

πBA : αaξ 7→ α. (7)

3.12 Now suppose C ∈ O(A), α ∈ SpA. Then α = Z(A) ∩ α̃ ⊆ C ∩ α̃.
Consider the irreducible A-module VA(α) introduced in 2.7(iii). Let n =
nA = dimF VA(α). So there is a basis {e1(α), . . . , en(α)} of VA(α) consisting
of common eigenvectors of all the operators in C.

On the other hand, given such a basis {e1(α), . . . , en(α)}, α ∈ SpA, we
will have

C = {X ∈ A : ∀α ∈ SpA ∃xi ∈ F
nA∧
i=1

Xαei(α) = xiei(α)},
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where Xα denotes the image of X in the representation A/α̃.
We call such a basis a C-basis.

3.13 Now suppose A is the Weyl algebra A(a, b) and C = A(a,Nb), a
maximal commutative Weyl subalgebra as defined in 2.13(ii). Recall that
A(a,Nb) is generated over the centre by Ua. Maximal ideals α of the centre
A(Na,Nb) of A(a, b) are generated by two elements UaN − ûI and V bN − v̂I
of the centre, where û, v̂ ∈ F× and I is the unit of A(a, b).

Choose two elements of F×, suggestively denoted ua and vb, such that
û = (ua)N and v̂ = (vb)N . Let q = exp 2πiab, and let N be the order of the
root of unity q.

We define a canonical A(a,Nb)-basis {u}α for VA(α),
α = 〈UaN − uaNI, V bN − vbNI〉,

ua,bVA(α) = {ua,b(ua, vb),ua,b(qua, vb), ...,ua,b(qN−1ua, vb)}

to satisfy
Ua : ua,b(qkua, vb) 7→ qkuaua,b(qkua, vb)
V b : ua,b(qkua, vb) 7→ vbua,b(qk−1ua, vb)

(8)

We often abbreviate the terminology and call such a basis a Ua-basis.

We also introduce symmetrically a canonical A(Na, b)-basis, or V b-basis,
for the same module,

va,bVA(α) = {va,b(vb, ua),va,b(qvb, ua), ...,va,b(qN−1vb), ua}

to satisfy
V b : va,b(qkvb, ua) 7→ qkvbva,b(qkvb, ua)
Ua : va,b(qkvb, ua) 7→ uava,b(qk+1vb, ua)

(9)

3.14 Suppose now A = A(a, b) and C ∈ O(A). Then by 2.20 there is an
automorphism γ of H(a, b) such that Uaγ = S, V bγ = T and S generates C
over Z(A). A canonical C-basis {s}α of VA(α) is defined following (3.13) as

S : s(qks, t) 7→ qks s(qks, t)
T : s(qks, t) 7→ t s(qk−1s, t)

(10)

3.15 In the general case of A = A(a1, . . . , an, b1, . . . , bn) we will also consider
maximal commutative subalgebras of the form C = A(a1, . . . , an, N1b1, . . . , Nnbn),
generated by Ua1 , . . . , Uan over the centre. Using the fact that an irreducible
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A-module VA can be represented as a tensor product of modules VAk(αk) for
Ak = A(ak, bk) and the corresponding αk.

A canonical A(a1, . . . , an, N1b1, . . . , Nnbn)-basis (or 〈Ua1 , . . . , Uan〉-basis)
is defined correspondingly as the tensor product of the A(ak, Nkbk)-bases.

3.16 Below, unless indicated otherwise, we assume A = A(a, b), Ǔ = Ua,
V̌ = V b and the A module VA(α) is determined by parameters u = ua, v =
vb. We abbreviate the notation for canonical Ǔ -bases as u = ua,b.

3.17 Lemma. (i) Any two canonical bases {u(u, v),u(qu, v), ...u(qN−1u, v)}
and {u′(u, v),u′(qu, v), ...u′(qN−1u, v)} given by the condition (8) can only
differ by a scalar multiplier, that is for some c 6= 0,

u′(qku, v) = cu(qku, v), k = 0, . . . , N − 1.

(ii) Given also a canonical base {u(u, vqm),u(qu, vqm), ...u(qN−1u, vqm)},
there is a c 6= 0 such that

u(qku, vqm) = cqkmu(qku, v), k = 0, . . . , N − 1.

(iii) Let V̂ ∈ H(a, b) be such that

Ǔ V̂ = qV̂ Ǔ

and v̂ an V̂ -eigenvalue in the module VA(α) and let {û(u, v̂), û(qu, v̂), ..., û(qN−1u, v̂)}
be a canonical Ǔ-basis in VA(α) with regards to Ǔ and V̂ . Then there is a
c 6= 0 and an integers n such that

û(qku, v̂) = cq−n
k(k+1)

2 u(qku, v), k = 0, . . . , N − 1.

Proof. (i) We will have u′(u, v) = cu(u, v) for some c since the space of
Ǔ -eigenvectors with a given eigenvalue u in an irreducible (Ǔ , V̌ )-module is
one-dimenional. The rest follows from the definition (8) of the action by V̌
on the bases.

(ii) We have u(qku, vqm) = cu(qku, v) and so by induction on k, applying
V̌ −1 and (8) to the both parts we get the desired formula.

(iii) First note that from assumptions V̂ = qlV̌ Ǔn for some integers n
and l. In particular, it follows v̂ = qr+lunv for some integer r.
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Assume the equality holds for a given k. Apply V̂ −1 to both sides:

V̂ −1 : û(qku, v̂) 7→ v̂−1û(qk+1u, v̂)

V̂ −1 : cq−n
k(k+1)

2 u(qku, v) 7→ cq−n
k(k+1)

2 q−n(k+1)v̂−1u(qk+1u, v).

Comparing we get the required. �

3.18 Lemma - definition. Set

v(vqm, u) :=
1√
N

N−1∑
k=0

q−mku(uqk, v), m = 0, . . . , N − 1.

The system
{v(v, u), . . . ,v(vqN−1, u)}

is a canonical V̌ -basis of VA(a,b) satisfying (9)
Proof. One checks directly that the system satisfies (9). �

3.19 Groups ΓA(α).
For A ∈ Afin, α ∈ SpA, we define the F-linear transformations of VA(α)

given in a canonical Ǔ -basis as:

µα : u(qmu, v) 7→ u(qm−1u, v),

and
να : u(uqm, v) 7→ q−mu(uqm, v).

We define ΓA(α) to be the group generated by µα and να.

3.20 Lemma. The definition of µα and να depend on the choice of an
Û-basis {u(qmu, v)} in the following way:

(i) any other basis is of the form

u(qmu′, v′) := c · γ u(qmu, v), m = 0, 1 . . . , N − 1

for γ ∈ ΓA(α) and c ∈ F;
(ii) for µ′α and ν ′α corresponding to the basis {u(qmu′, v′)} we will have

µ′α = µγα, ν ′α = νγα;

(iii) the group ΓA(α) does not depend on the choice of the canonical Û-
basis, that is the group generated by µ′α, ν

′
α is ΓA(α);
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(iv) moreover, ΓA(α) ∼= ΓA(β) for any β ∈ SpA.
Proof. (i) is by 3.17. (ii) is immediate and (iii) follows from the fact that

the change of basis corresponds to the inner automorphism of the groups.
(iv) For any β ∈ SpA a vector space isomorphism VA(β)→ VA(α) sending

an Û -basis to Û -basis induces, by (ii), a group isomorphism ΓA(α)→ ΓA(β).
�

Given ξ ∈ ΓA(α) and X ∈ A let Xα be the image of X in A(α), an
operator acting on VA(α), and

Xξ
α := ξXαξ

−1.

3.21 Lemma. We have

Ǔµα
α = qǓα

V̌ µα
α = V̌α

Ǔνα
α = Ǔα

V̌ να
α = qV̌α

3.22 Corollary. The map hα : ΓA → ΓA(α) defined on the generators as

hα :
µ 7→ µα
ν 7→ να

extends to a surjective homomorphism of groups.

3.23 Remarks. (i) For A commutative we have ΓA(α) = 1, for all α ∈ SpA.
Indeed, nA = 1 in this case.

(ii) In a canonical Ǔ -basis the group ΓA(α) is represented by a subgroup
SU(nA,F0) of F0-unitary matrices. This is immediate by definition.

3.24 Lemma. (i) If ξ ∈ ΣA(α) and Xγ
α = Xα for all X ∈ A, then ξ = gI,

for some g ∈ F[nA], root of unity of order nA.
(ii) ΣA(α) is finite.
Proof. (i) Suppose Xaξ = ξXa, for all X ∈ A. Let e ∈ VA(a) be an

eigenvector of ξ with eigenvalue g. Then ξ′ := ξ−gI is a linear transformation
of VA(a) which commutes with all the Xa and

ξ′VA(a) = W ⊂ VA(a), W 6= VA(a).
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But XaW = Xaξ
′VA(a) = ξ′XaVA(a) = ξ′VA(a) = W, that is W is an A-

submodule of VA(a). By irreducibility of the latter, W = 0 and so ξ = gI.
But since det ξ = 1, gnA = 1.

(ii) By 2.17 ΣA contains a subgroup Σ0
A of finite index which fixes setwise

O(A).
By definition elements of Σ0

A(α) send a C-basis to a C-basis, for any C ∈
O(A). So, a possibly smaller subgroup of finite index preserves C-eigenvalues,
for all C ∈ O(A). We may assume Σ0

A(α) has this property.
Hence any ξ ∈ Σ0

A(α) commutes with any Xα, for X ∈ C. By 2.7(ii) ξ
commutes with A/α̃. By (i) ξ = gI, g ∈ F[nA]. �

3.25 U-frames EU
A(α). Given α ∈ SpA, choose a Ǔ -eigenvector e ∈ VA(α)

and set
EU
A(α) := ΓA(α) · e.

We call EU
A(α) an U -frame of VA(α).

Clearly, e can be included in a canonical basis
{u(uqm, v) : m = 0, . . . , N − 1} as, say, e = u(uqk, v). Then

{u(uqm, v) : m = 0, . . . , N − 1} = {µmα e : m = 0, . . . , N − 1} ⊆ EU
A(α).

By 3.17 and the fact that να ∈ ΓA(α), any other canonical Ǔ -basis is a subset
of EU

A(α) of the form ∆(α)e for a cyclic subgroup ∆(α) ⊂ ΓA(α).

3.26 Corollary. Assuming that the bases in 3.17 are all in EU
A(α), the

scalar c is of the form ql for some l ∈ {0, 1, . . . , N − 1}.

3.27 Inner product. Let F0[Eu
A(α)] stand for the F0-linear span of EU

A(α),
that is the F0-vector subspace of VA(α) span over EU

A(α). By above {u(uqm, v) :
m = 0, . . . , N − 1} is a basis of the vector space F0[EU

A(α)].
We introduce an inner product on F0[EU

A(α)] by declaring the basis
orthonormal. By 3.23(ii) the action of ΓA(α) on F0[EU

A(α)], and so on
VA(α), is given by unitary F0-matrices. Since any other canonical basis can
be obtained by a transformation in ΓA(α), the inner product structure does
not depend on the choice of the initial basis. We denote the inner product
between two elements f, g ∈ F0[EU

A(α)] by

〈f |g〉α.

We usually omit the subscript.
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Following physics tradition we write the property of F0-sesquilinearity as

〈f |τg〉 = τ〈f |g〉 = 〈τ ∗f |g〉

for τ ∈ F0.

3.28 Example. The definition of a V basis in terms of U -basis in 3.18
gives

〈u(uqk, v)|v(vqm, u)〉 =
1√
N
qkm.

3.29 We call each instance of VA(α) endowed with an U -frame EU
A(α) an

algebraic-Hilbert space and denote it VA(α). Note EU
A(α) gives rise to the

unique inner product on F0[EU
A(α)].

3.30 Remark. As in the remark in 3.3 assume F = C. Then we may use the
same canonical basis to introduce an inner product on C[EU

A(α)] = VA(α).
This gives VA(α) a structure of a Hilbert space which extends the algebraic-
Hilbert space structure on F0[EU

A(α)].

3.31 We call S ∈ A(a1, . . . , an, b1, . . . , bn) a pseudo-unitary operator if
S ∈ H(a1, . . . , an, b1, . . . , bn). We set a formal adjoint of S to be S−1.

3.32 We call P ∈ A(a1, . . . , an, b1, . . . , bn) a pseudo-selfadjoint operator
if

P =
n∑
i=1

aiSi, some pseudo-unitary Si and ai ∈ F0

such that

P = P ∗ :=
n∑
i=1

a∗iS
∗
i ,

for formal conjugates a∗i and adjoints S∗i of ai and Si respectively.
a1, . . . , an ∈ k.

3.33 Suppose S ∈ A = A(a1, . . . , an, b1, . . . , bn) is pseudo-unitary, α ∈ SpA
and s is an eigenvalue of S acting on VA(α). Then inner product in F0[EU

A(α)]
is invariant under the action of s−1S, that is for any f, g ∈ F0[EU

A(α)]

〈s−1Sf |s−1Sg〉α = 〈f |g〉α.

25



In particular, the matrix of s−1S in a canonical U-basis is F0-orthogonal.
Proof. We may assume without loss of generality that n = 1. By skew-

linearity we just need to check the identity for f, g belonging to a given
canonical U -basis, so we may assume f = u(uqm, v) and g = u(uqk, v).
Clearly, if the statement is true for S = Ǔ and for S = V̌ , then it is true for
any group word of these, so is true for S. The lemma follows. �

3.34 For each rational Weyl algebra A one particular module corresponding
to the the ideal α = 〈1, 1〉 =: 1 (i.e. uN = 1 = vN) will play at the end a
special role. We call the module VA(1) and the respective algebraic-Hilbert
space VA(1) the principal A-module and the principal algebraic-
Hilbert space. The main property of this module is that the eigenvalues of
Ua and V b are roots of unity.

Again, the notions introduced above have natural extension to rational
Weyl n-algebras.

3.35 Proposition. Let VA(1) be the principal algebraic-Hibert space, S a
pseudo-unitary and P a pseudo-selfadjoint operators. Then

(i) there is an orthonormal basis of S-eigenvectors of the space;

(ii) eigenvalues of S are in F0[N ] for some N (i.e. roots of unity);

(iii) there is an orthonormal basis of P -eigenvectors of the space;

(iv) eigenvalues of P are totally real algebraic numbers.

Proof. (i) and (ii) is immediate by 3.33.
Note also that by the argument in 3.33

〈Pf |g〉 = 〈f |Pg〉

for any f, g ∈ F0[EA(1)]. Thus P is a self-adjoint operator in the (formal)
Hilber space over field F0 ⊂ C with complex conjugation. (iii) and (iv) follow.
�

3.36 Suppose A = A(a, b), C ∈ O(A) and e = {e0, . . . , eN−1} is a canonical
C-basis of VA(α) such that 〈e0|e0〉 = 1. Then the basis is orthonormal and
the transition matrix from a canonical U-basis to e is F0-unitary.
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Proof. By 3.14 there are pseudo-unitary generators S, T of A such that C
is generated by a pseudo-unitary S and the basis e is of the form {s(sqm, t) :
m = 0, . . . , N − 1} satisfying (10). Hence it is orthonormal.

By definition S = qlǓkV̌ m for some integer l, k and m such that k and m
are co-prime modulo N. We may also assume without loss of generality that
l = 0. Then by (8) we may set s = ukvm.

Denote

wn,p = 〈s(sqn, t)|u(uqp, v)〉, p = 0, 1, . . . , N − 1.

Apply s−1S to both parts of the pairing. Then by 3.36 we get

wn,p = 〈s(sqn, t)|u(uqp, v)〉 = 〈qns(sqn, t)|q(p−m)ku(uqp−m, v)〉 =

= q(p−m)k−n〈s(sqn, t)|u(uqp−m, v)〉 = q(p−m)k−n · wn,p−m.

Using the fact that Ǔ = qlScT d, for some integer l, c and d, and applying
u−1Ǔ to the initial pairing one gets similarly

wn,p = qrwo,p

for some integer r depending on l, c, d, n, p and o.
We thus get an F0-linear homogeneous system of equation for the tran-

sition matrix W = {wnp}. We may thus assume that W is an F0-matrix,so
conjugation is applicable, and since it takes an F0-orthonormal basis to an
F0-orthonormal basis, W is F0-orthogonal. �

3.37 Remark. It is not hard to write down the matrix W in terms of F0.

3.38 Corollary. The binary relation e ∈ EU
A(α) (between e and α) is de-

finable if and only if the N + 1-ary relation “{e0, . . . , eN−1} is a canonical
orthonormal U-basis of VA(α)” is definable.

3.39 Definitions. Let C ∈ O(A). Set EC(α) for each α ∈ SpA to be the
set of C-eigenvectors in F0[EU

A(α)] of norm 1. Set

EA(α) :=
⋃

C∈O(A)

EC
A(α).
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3.40 Lemma. Let C ∈ O(A) and suppose that the binary relation e ∈
EU
A(α) is definable.

Then the binary relation e ∈ EC
A(α) (between e and α) is definable.

Proof. By 3.14 and 3.36 we can pick a canonical U -basis u(α) in EU
A(α),

for each α ∈ SpA, and a F0 unitary matrix R such that e(α) = Ru(α) is a
canonical orthonormal C-basis. So, e(α) ⊆ EC

A(α) for each α. By 3.17 there
is a finite group of F0-unitary transformations (independent on α) such that
any element in EC

A(α) can be obtained by applying these transformations to
e(α). �

3.41 Corollary. “ e ∈ EA(α)” is definable if and only if “ e ∈ EU
A(α)” is

definable.

3.42 Lemma-definition For all α ∈ SpA, the algebraic-Hilbert spaces
VA(α) = (VA(α),EA(α)) are of the same isomorphism type. We denote
it

VA = (VA,EA).

Proof. Immediate by 3.20 and definitions. �

3.43 Lemma. Suppose F = C and consider a Hilbert space structure
on VA(α) extending the algebraic-Hilbert space structure on F0[EA(α)] (see
3.30).

Let C ∈ O(A), Cα be the image of C in the representation A/α̃ of A on
VA(α) and let X ∈ Cα. Then the adjoint X∗α ∈ Cα.

Proof. By 2.7(iii) in any canonical C-basis the algebra Cα is represented
as the algebra of the diagonal complex matrices. This is closed under taking
adjoints. �

3.44 Lemma. Let B ⊆ A, B ∈ Afin and let Bα ⊆ A/α̃ be the image of B
in A/α̃. Then Bα is a semi-sipmle algebra.

Proof. Without loss of generality we may assume that F = C. Then
each C ∈ O(B) ⊆ O(A), Cα is closed under taking adjoints. Since Bα is
generated by all such Cα (see 2.7(ii)), Bα is closed under taking adjoints, in
particular the involution Xα 7→ X∗α is an anti-automorphism of the ring Bα.
This implies that the Jacobson radical of Bα is closed under the involution.

It remains to invoke a well-known argument that under the above condi-
tion the Jacobson radical J of the matrix algebra Bα is trivial, that is Bα is
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semisimple. Indeed, suppose Y ∈ J. Then Y ∗Y ∈ J and is nilpotent, that
is (Y ∗Y )k = 0 for some k. By positive-semidefiniteness of Y ∗Y , this implies
Y ∗Y = 0. So the inner product 〈Y v|Y v〉 = 0, for any vector v. Hence Y = 0.
�

3.45 The bundle of algebraic-Hilbert A-modules
We treat the family

{(VA(α) : α ∈ SpA}

of A-modules as a bundle

VA :=
⋃
{VA(α) : α ∈ SpA}

with the projection map ev : VA → SpA, ev(v) = α iff v ∈ VA(α), the
algebraic-Hilbert space structure and the A-module structure on each fibre.

Note that as a bundle of algebraic-Hilbert spaces it is trivial, but as a
bundle of A-modules, in general it can be highly non-trivial. See [16] for
a statement and a proof of the fact that the bundle of A-modules is not
definable in F even when EA is omitted.

3.46 Let A,B ∈ Afin, B ⊆ A. Hence VA(α) can also be considered a
B-module, in general, reducible. By 3.44 VA(α) splits into a direct sum
of irreducible Bα-modules, so irreducible B-modules. The number of the
irreducible components is determined by dimensions nA and nB, so is equal
to nA : nB. Invoking 3.10 we obtain,

VA(α) =
⊕

πBA(β)=α

VAB(β), VAB(β) ∼= VB(β),

for uniquely determined B-submodules VAB(β) ⊆ VA(α) for each maximal
ideal β ⊆ Z(B), α ⊆ β.

3.47 We will describe the embeddings of 3.46 in terms of the canonical
bases.

Let as before A be generated by Ǔ = Ua and V̌ = V b, nA = N and
{u(uqm, v) : m = 0, . . . , N − 1} be a canonical orthonormal Ǔ basis in a
A-module VA(α), where α is determined by uN and vN .

Then B ⊂ A is the algebra 〈Ǔn, V̌ k〉 generated by Ǔn and V̌ k for some
k, n ∈ N. In fact, we may assume that B = 〈Ǔn, V̌ 〉 or B = 〈Ǔ , V̌ n〉, since
any B can be reached by such two steps.
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In case B = 〈Ǔn, V̌ 〉 a B-submodules VAB(β) can be constructed by
choosing an Ǔn-eigenvector un,1(un, v) of modulus 1 and then generating a
whole canonical Ǔn-basis by applying V̌ according to (8). Since ǓN acts on
the module as a scalar, we may assume that n divides N.

It is easy to see that a canonical V̌ -basis in VAB(β) can be identified as
follows:

v1,n(vqpn, un) = v(vqpn, u), p = 0, . . . ,
N

n
− 1, (11)

where on the right we have elements of the V̌ -basis in VA(α).

Set, for ` = 0, . . . , n− 1, m = 0, . . . , N
n
− 1, ξ = e

2πi
n ,

un,1(unqmn, vq`) :=
1√
n

n−1∑
k=0

u(uqmξk, vq`) =
qm`√
n

n−1∑
k=0

ξk`u(uqmξk, v) (12)

The second equality follows from 3.17(ii).
One checks immediately that for a fixed ` this is a canonical orthonor-

mal Ǔn-basis for the B-submodule corresponding to the maximal ideal β` of
Z(B) = 〈ǓN , V̌

N
n 〉 generated by ǓN − uNI and V̌

N
n − v

N`
n I. There are n

distinct such β and respective non-isomorphic B-modules.

In case B = 〈Ǔ , V̌ n〉 set, for ` = 0, . . . , n− 1,

u1,n(uqnm+`, vn) := u(uqnm+`, v), m = 0, . . . ,
N

n
− 1 (13)

This is a canonical orthonormal Ǔn-basis for the B-submodule corresponding
to the maximal ideal β` of Z(B) = 〈Ǔ N

n , V̌ N〉 generated by Ǔ
N
n − uN`n I and

V̌ N − vNI.

3.48 Lemma. Suppose as above A = 〈Ǔ , V̌ 〉, B = 〈Ǔn, V̌ k〉. Let VAB(β) ⊂
VA(α) be a B-submodule and {uB(u′qmB , v

′) : 0 ≤ m < nB} and {vB(v′qpB, u) :
0 ≤ p < nB} be canonical Ǔn- and V̌ k-bases in VAB(β). Then

〈uB(u′qmB , v
′)|vB(v′qpB, u)〉VA(α) = 〈uB(u′qmB , v

′)|vB(v′qpB, u)〉VAB(β)

In particular, the inner product is preserved in the embedding VAB(β) →
VA(α).

Proof. As above it is enough to check the case k = 1. Then qB = qn,
where now n = nA : nB. We can rewrite

uB((u′qmB , v
′) = u1,n(unqmn, v)
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and
vB((u′qmB , v

′) = vn,1(vqmn, un).

By 3.28

〈uB(u′qmB , v
′)|vB(v′qpB, u

′)〉VAB(β) =
1
√
nB

qmpB =
1
√
nB

qnmp.

By (12) and (11) we can calculate

〈u1,n(unqnm, v)|vn,1(vqnp, un)〉VA(α) =
1√
n

n−1∑
k=0

〈u(uqm+
nA
n
k, v)|v(vqnp, u)〉 =

=
1√
n
· n 1
√
nA
qnmp =

√
n

√
nA
· qnmp

(taking into account that q is of order nA.)
It remains to note that

3.49 Keeping the notation and assumptions of 3.46 we will consider B-
module isomorphisms pβBA, abbreviated to pβ,

pβ : VB(β)→ VAB(β) ⊂ VA(α)

such that
pβ(EB(β)) ⊆ EA(α) ∩ VAB(β).

In case B = 〈Ǔn, V̌ 〉 we define the maps on the bases, according to (12),
as

pβ : un,1(unqmn, vq`) 7→ 1√
n

n−1∑
k=0

u(uqm+N
n
k, vq`), m = 0, . . . ,

N

n
− 1, (14)

where un,1(unqmn, vq`) is now naming elements of a canonical basis of VB(β).
In case B = 〈Ǔ , V̌ n〉

pβ : u1,n(uqnm+`, vn) 7→ u(uqnm+`, v), m = 0, . . . ,
N

n
− 1 (15)

Note that in terms of the V̌ bases (14) can be rewritten as

pβ : vn,1(vqnm+`, un) 7→ v(vqnm+`, u), m = 0, . . . ,
N

n
− 1 (16)
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(just use the symmetry between V̌ and Ǔ).

Finally, we would like to remark that the definition of pβ does depend on
the choice of the canonical orthonormal bases in VB(β) and VA(α).

3.50 Lemma. Let pβ and p′β, β ∈ SpB be two isomorphisms VB(β) →
VAB(β). Then there is a gβ ∈ F∗[nB] such that pβ = p′βgβ. In particular,
there are exactly nB choices for pβ for a given β ∈ SpB.

Proof. Consider (p′β)−1pβ. This is a linear transformation commuting
with operators from B/β̃, since pβ and p′β are B-module isomorphisms. By
the argument in 3.24(i) (p′β)−1pβ = gβI for some gβ ∈ F∗[nB]. �

3.51 Definition A map pβ satisfying 3.49 will be called a local morphism
at β of VB → VA.

We call the collection pβ of all the local morphism at β a fibre of a
morphism VB → VA at β.

We call the family of fibres

pBA = {pβ : β ∈ SpB}

the morphism VB → VA.

3.52 Remark. Lemma 3.50 implies that VA is determined by A uniquely
up to isomorphism, that is given VA and V′A both satisfying the definition
in 3.49, there is a family

pα : VA(α)→ V′A(α), α ∈ SpA

of local isomorphisms establishing an isomorphism between the two struc-
tures.

3.53 Continuing the notation of 3.46, set

ΓAB(β) = {γ ∈ ΓA(α) : γVAB(β) = VAB(β)}.

Let
γ 7→ γ̌, ΓAB(β)→ GL (VB(β))

be the group homomorphism defined as follows. For γ ∈ ΓAB(β) set γ̌ to be
the unique Afin-transformation γ̌ of VB(β) such that

γpβv = pβγ̌ v, for all v ∈ VB(β)
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(the transformation on VB(β) induced from VAB(β) by the isomorphism pβ).

In general, det γ̌ does not have to be equal to 1 (in fact, (det γ̌)
nA
nB = 1),

so we define

π∗BA(β) : γ 7→ (det γ̌)
− 1
nB · γ̌, γ̌ = (pβ)−1γpβ

a 1-nB-correspondence, a multivalued map into ΓB(β), or a homomorphism

π∗BA(β) : ΓA(α)→ ΓB(β)/F∗[nB] ⊆ PGL (VB(β)) ,

with the domain ΓAB(b) ⊂ ΓA(α). Here F∗[nB] is the group of roots of
unity of order nB, which is also the centre of ΓB(β). We write PΓB(β) for
ΓB(β)/F∗[nB] below for any B ∈ Afin.

Note that by definition, for α ∈ F∗[nA], α̌γ = αγ̌, so in fact we have
equivalently defined

π∗BA(β) : PΓA(α)→ PΓB(β),

a homomorphism of the projective groups.

3.54 Remark. Recall that the action of ΓA(α) on the algebra A/α̃ reduces
to the action of PΓA(α) on the algebra. So, in this regard we do not lose any
information switching to the projective groups.

3.55 VA as structures in the language LA.
For each A ∈ Afin the bundle VA can be described as a two sorted

structure in a language LA.
Sorts. First sort, named F will stand for (the universe of) the field F.
The language LA will have names for all Zariski closed subsets of Fn, all

n, including the ternary relations for graphs of + and ·, the field operations.
One of the closed subsets of Fm, where m is the number of generators of the
affine algebra A, will correspond to the spectrum SpA = Spec(Z(A)) of the
centre Z(A) of A : for each of the generating operators X1, . . . , Xm of Z(A)
and for each maximal ideal α of Z(A) we put in correspondence the m-tuple
〈x1, . . . , xm〉 ∈ Fm such that X1 − x1I, . . . , Xm − xmI generate the ideal α.
We call this closed subset SpA.

The second sort named V will stand for VA, that is as a universe (set of
points) it is the set

⋃
{VA(α) : α ∈ SpA} described in 3.45.
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There is in LA a symbol ev for a map ev : VA → SpA ⊆ Fm which is
interpreted as described in 3.45. In particular, for each α ∈ SpA, ev−1(a) =
VA(a) is definable.

Algebraic structure. The language LA contains a binary relation
RX(v, w) for each X ∈ A, which is interpreted on sort VA as X · v = w
for v, w ∈ VA(α), for α ∈ SpA.

There is also a ternary relation S(ξ, v, w) between ξ ∈ F, v, w ∈ VA(a)
allowing us to say that ξ · v = w.

A ternary relation v +A u = w on VA will be saying that there exists α
such that u, v, w ∈ VA(α), and that v + u = w in the sense of the module
structure on VA(α).

Canonical bases. LA contains a binary symbol ES, for each pseudo-
unitary S ∈ A, which distinguishes in VA a relation

ES(e, α) ≡ e ∈ ES
A(α) & α ∈ SpA

as well as the binary symbols IPr, for non-zero r ∈ F0, which are interpreted
on VA as

IPr(e1, e2) ≡ ∃α ∈ SpA e1, e2 ∈ EA(α) & 〈e1|e2〉α = r,

the value of the inner product (see 3.25). Here EA(α) stands for
⋃
{ES

A(α) :
S ∈ A pseudo-unitary}. This is definable in LA since there are only finitely
many ES

A for each A.

3.56 Lemma. (i) The binary relation “ e ∈ EA(α)” is definable in the
language LA.

(ii) The N + 1-ary relation “ {e0, . . . , eN−1} is a canonical orthonormal
U-basis of VA(α)” is definable in the language LA.

Proof. (i) is immediate by 3.41. (ii) is by 3.38. �

Note that defining e ∈ EA(α) from e ∈ EU
A(α) may require formulas which

depend on A.

3.57 Remark. The language LA has no symbols for ΓA or group actions.
The group plays a role in the theory of VA through axioms describing canon-
ical bases in EA(a) and the matrices of linear transformations from one base
to another, see subsection 2.1 of [16].
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3.58 Definition. Let N and M be structures in languages LN and LM ,
correspondingly. We say that a structure N is almost interpretable (de-
finable) in M if,

(i) there is a structure N0 in a language L0
N , which is definable in N and

interpretable in M;
(ii) N is prime over N0 (in particular, any automorphism of N0 can be

lifted to an automorphism of N);
(iii) N ⊆ aclN(N0), that is the universe N of N is in the algebraic closure

of N0, in the sense of N.

Remark. [10], [16] and [13] discuss examples of Zariski structures which
are almost interpretable but not interpretable in an algebraically closed field
F.

3.59 Theorem. Given an A ∈ Afin,
1. VA is almost interpretable in the field F, in particular, the first order

theory of the structure VA is categorical in uncountable cardinalities.
2. VA is a Zariski geometry in the topology given by the positive formulas

with all quantifiers restricted to the predicate E.

Proof. 1. The field F is definable in VA as the sort F by definition, see
3.55. It is also clear by the construction that aclVA

(F ) = VA. Theorem A of
[16] proves that VA is categorical in uncountable cardinalities and that VA

is prime over F.
2. This is a special case of Theorem B of [16]. �

3.60 Corollary. Given Afin, A,B ∈ Afin, VB is almost interpretable in
VA. .

3.61 Proposition. Assume B ⊂ A. Then VB is definable in VA.
We may assume that A is the Weyl algebra generated by Ǔ and V̌ , N =

nA, and B is generated by Ǔn and V̌ m, n,m divide N. Let 〈ǔ, v̌〉 ∈ F2 define
α as in 3.13. We deduce that ǔ = uN , v̌ = vN , for some u, v ∈ F× (following

notations of 3.15) and β is determined by 〈uNm , vNn 〉.
The subbundle {VAB(β) : β ∈ SpB}, of the bundle {VA(α) : α ∈ SpA} as

α = πBA(β) is defined by the formula

“w ∈ VB(u
N
m , v

N
n )” := Ǔ

N
mw = u

N
mw & V̌

N
n w = v

N
n w.

Since VA(α) are B-modules, the VAB(β) get the structure of B-modules
too.
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Finally, we define

EAB(β) := EA(α) ∩ VAB(β) for α = πBA(β).

Thus we get the bundle of algebraic-Hilbert B-modules on {VAB(β) : β ∈
SpB}.

This is canonically (but not uniquely) isomorphic to the bundle of algebraic-
Hilbert B-modules on {VB(β) : β ∈ SpB} by fibrewise isomorphisms pβBA
between VB(β) and the corresponding submodules of VAB(β) as defined in
3.49. �

3.62 Remark. The image of a 0-definable relation on VB under pBA does
not depend on the choice of a representative in pBA since definable relations
are invariant under isomorphisms.

Moreover, pBA sends Zariski-closed relations on VB to Zariski-closed ones
on VA, that is this is a Zariski-continuous Zariski-closed morphism.

3.63 Proposition. The categories Afin(F) and Vfin(F) are isomorphic. In
other words, the functor

A 7→ VA

is invertible.
Proof. In fact, even the weaker functor A 7→ VA is invertible. We

only need to show how to recover A from VA. Since VA has the structure
of a bundle of A-modules, we are already given the action of A on each
module VA(α). It remains to see that the annulator of all the modules VA(α),
α ∈ SpA, is trivial. This is immediate from the classification of irreducible
representations of A, see [1]. �

4 The category Vfin and the sheaf on Afin
4.1 Category Vfin. The category Vfin consists of objects VA, A ∈ Afin,

and morphisms pBA : VB → VA, B ⊆ A.
Note that pBA determines both

πBA : SpB → SpA

and
π∗BA : PΓA → PΓB.
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It is immediate by definition that the functor A→ VA from Afin to Vfin
is a presheaf on the category Afin and so a presheaf on the category Copfin.

We use the same name Vfin for the functor.

4.2 Remark. We have associated with an A ∈ Afin the (finite) set O(A)
of maximal Cfin-algebras.

It is appropriate to think about the collection O(Afin) of all maximal C ∈
Cfin as a Grothendieck site with subsets O(A) providing ”open subsets“ of
the Grothendieck topology. Any finite covering will be considered admissible.

4.3 Remark. Given A,B ∈ Afin, B ⊆ A there is a unique morphism

pBA : VB → VA.

This follows from Lemma 3.50.

4.4 Theorem. Vfin is a sheaf over the site O(Afin).

Proof. Let B1, . . . , Bk ∈ Afin and VB1 , . . . ,VBk , the corresponding ob-
jects of the presheaf. By the remark above the morphisms between the object
are uniquely determined. By 3.6 and 3.2 there is A ∈ Afin, Z(A) ∈ Cfin such
Z(A) = Z(B1) ∩ . . . ∩ Z(Bk), equivalently, O(A) = O(B1) ∪ . . . ∪O(Bk).

We need to prove that there is a unique object VA in the category with the
corresponding morphisms pBiA : VBi → VA. For this just take the uniquely
defined VA and the unique morphisms pBiA. �

4.5 Sheaf Vfin as a structure. We define the structure Vfin as a multi-
sorted structure with sorts VA, for each A ∈ Afin, in the language LA ex-
panded by unary predicates for each of the sorts VA.

In this definition, each sort VA is a multi-sorted structure, and it is
assumed that all the sorts have a common field F.

4.6 Theorem.
(i) The theory of Vfin is categorical in uncountable cardinalities. More-

over, every two models over a field F are isomorphic over F.
(ii) For any A,B ∈ Afin, B ⊆ A, the morphism pBA is definable. More

precisely, there is a definable sort PBA and a definable relation

PBA ⊆ PBA × SpB × VB × VA
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in Vfin, such that for every p ∈ PBA and β ∈ SpB the binary relation on
VB × VA,

PBA(p, β, v1, v2)

is the graph of a local morphism pβBA, and every local morphism can be ob-
tained in this way.

Proof. (i) Immediate from 3.59.
(ii) By construction. �

4.7 A symmetric pairing. Given B,D ∈ Afin we introduce a pairing

[· | ·] : EB × ED → R0.

First, we recall that the algebra A = 〈B ∪ D〉 is in Afin and so there are
morphisms pBA : VB → VA and pDA : VD → VA as defined in 3.51.

Let β ∈ SpB, δ ∈ SpD. For e ∈ EB(β) and f ∈ ED(δ) set

[e|f ] =

{
|〈pβ(e)|pδ(f)〉α|2, if πBA(β) = α = πDA(δ)
0, otherwise

(the absolute value of the inner product).

4.8 Lemma. The pairing [e|f ] is well-defined and does not depend on the
choice of pβ and pδ.

The pairing is symmetric.

[se|f ] = |s|2 · [e|f ] and [e|tf ] = |t|2 · [e|f ]

for any s, t ∈ F0, roots of unity of orders nB and nD respectively.

[e|f ] = s · s∗ for s = 〈pβ(e)|pδ(f)〉α

Proof. Note that if πBA(β) = α = πDA(δ), we will have pβ(e) ∈ EA(α),
pδ(f) ∈ EA(α) and so the inner product 〈pβ(e)|pδ(f)〉a is defined.

It does not depend on pβ and pδ by 3.50.
Clearly,

[e|f ] = [f |e].

The last two statement are also by definition. �
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4.9 Commentaries. (i) The physicists interpretation of the pairing [· | ·]
would be “probability”, whereas the inner product would correspond to
“amplitude”. We have means to define amplitude locally, on each module
VA(α), but globally we have to use probability because of non-uniqueness in
the choice of embedding pβ. The latter forced upon us if we want unique-
ness for our whole construction (Theorem 4.6), in fact, by model-theoretic
stability assumptions.

(ii) A geometric interpretation of the pairing should be that it provides
a gluing correspondence between EB and ED, and more specifically be-
tween ES

B and ET
D for chosen pseudo-unitary S and T (equivalently, maximal

commutative subalgebras). Namely, the relation between e ∈ ES
B and f ∈ ET

D

given by the definable condition [e|f ] 6= 0 is a finite-to-finite correspondense.
Note that the correspondence [e|f ] 6= 0 is Zariski closed, which is easy to

work out from definitions.

4.10 We call an orthonormal canonical basis of VA a collection

e ⊆
⋃
{EA(α) : α ∈ SpA}

with the property that e ∩ EA(α) is an orthonormal canonical C-basis in
VA(α) for some C ∈ O(A).

4.11 Lemma. Let B,D ∈ Afin and e be an orthonormal basis of VB.
Then, for any δ ∈ SpD and f ∈ ED(δ),

(i) there are finitely many e ∈ e such that [e|f ] 6= 0 and

(ii)
∑

e∈e [e|f ] = 1.

Proof. Note that g := pBA(e) is an orthonormal basis of VA, more
precisely,

g ⊂
⋃
{VAB(α) : α ∈ SpA}.

Now (i) follows by definition.
For (ii) note that, assuming α = πDA(δ) and using the fact that pδ(f) ∈

EA(α),∑
e∈e

[e|f ] =
∑
g∈g

|〈g|pd(f)〉a|2 =
∑

g∈g∩EA(a)

〈pd(f)|g〉a·〈g|pd(f)〉a = 〈pd(f)|pd(f)〉a = 1.

�
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5 The categories A∗fin and V∗fin.
5.1 Define the category A∗fin(C) as consisting of algebras A ∈ Afin(C)

(that is F = C) endowed with an involution X 7→ X∗, which is defined on
the pseudo-unitary operators by the rule

∗ : UaV b 7→ V −bU−a,

and on C is defined as complex conjugation. The morphisms of A∗fin(C)
will be the same as of Afin(C), which of course preserve the involution by
definition.

Given A ∈ Afin(C), we will write A∗ for the algebra in A∗fin(C) obtained
by introducing the involution. We consider the functor

FA : A 7→ A∗; Afin(C)→ A∗fin(C).

5.2 Lemma. The functor FA is an isomorphism of the categories Afin(C)
and A∗fin(C).

Proof. Immediate. �

5.3 The objects of the category V∗fin(C) will be defined as the real-coordinate
parts of the Zariski geometries VA, for A = A(a, b) ∈ A∗fin(C). We define
the real-coordinate part of SpA to be

SpA(R) = {〈uN , vN〉 : |u| = |v| = 1},

that is the eigenvalues of the generators Ua and V b of the algebras on the
module VA(α) are of modulus 1 when α ∈ SpA(R).

Note that for α ∈ SpA(R), pseudo-unitary operators act in the algebraic-
Hilbert module VA(α) as unitary, if one considers VA(α) as a Hilbert space
as described in

Now define the object

VA(R) = {VA(α) : α ∈ SpA(R)}

as the bundle of Hilbert spaces VA(α) as defined in 3.30, with the distin-
guished bases EA(α).

Clearly, VA(R) is a substructure of VA.
The morphisms in the category V∗fin(C) are given by the same maps as

in Vfin(C) restricted to the substructures VA(R).
We consider the functor of taking the real co-ordinate part

FV : VA 7→ VA(R); Vfin(C)→ Vfin(C)
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5.4 Lemma. FV is an isomorphism of the categories Vfin(C) and V∗fin(C).
Proof. By 5.2 and 3.63 it suffices to prove that the functor

A 7→ VA(R)

is invertible.
Suppose not. Then there is a non-zero operator X ∈ A which annihilates

all the modules VA(α) with α ∈ SpA(R).
Note that the set

Null(X) = {α ∈ SpA : ∀v ∈ VA(α)Xv = 0}

is definable in the Zariski structure VA. Moreover, it is Zariski closed since

Null(X) = {α ∈ SpA : ∃u, v 〈uN , vN〉 = α&
N−1∧
k=0

u(uqk, v) ∈ EU
A &Xu(uqk, v) = 0}

is given by a core-formula (see [16]).
Our assumption implies that SpA(R) ⊆ Null(X). But the real 2-torus

SpA(R) is Zariski dense in the complex 2-torus SpA = C× × C×, so

Null(X) = SpA

that is X annihilates all the irreducible modules. Then X = 0. The contra-
diction. �

5.5 Model-theoretic commentary. Note that SpA(R) is a real 2-torus
and as such can be defined in the field R. Also each Hilbert space VA(α) with
the distinguished bases EA(α) is definable in R using parameters (needed to
fix the frame, the family of distinguished bases). It can be shown that the
bundle VA(R) is not interpretable in R. However, one can see that VA(R)
is prime over its definable substructure SpA(R).

From applications points of view it is category A∗fin(R) and objects of the
form VA(R) rather than Afin(C) and VA(C) which are of interest. However,
there is a certain gain in viewing the real structures as the real part of the
complex ones, and conversely, to see the complex structure as “complexifica-
tions” of the real ones. The property exhibited by our real structures is that
their complexifications are nice Zariski geometries.
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6 Regular unitary transformations.

In this section we work with a (temporarily) fixed Weyl algebra A = A(a, b)
generated by Û = Ua and V̂ = V b.

We denote, for α ∈ SpA,
EU
N(α) := the set of u = 〈e0, . . . , eN−1〉, canonical orthonormal Û -bases

of VA(α), N = NA,
and denote EU

N := {{α} × EU
N(α) : α ∈ SpA}.

6.1 Let B = 〈S, T 〉 and B′ = 〈S ′, T ′〉 be subalgebras of A, with S, T and
S ′, T ′ pseudo-unitary generators.

Suppose that

(i) There is an isomorphism

σ : B → B′; Sσ = S ′, T σ = T ′.

(ii) There is a Zariski closed relation Λ ⊂ EU
N×EU

N defining a finite-to-finite
correspondence and there is a Zariski regular map

λ : Λ→ ES
NB
×ES′

NB
; 〈α,u, α′,u′〉 7→ 〈β, s, β′, s′〉, α = πBA(β), α′ = πB′A(β′);

λ is surjective on the co-ordinates 〈β, s〉 ∈ ES
NB
.

This data for each choice of 〈α,u, α′,u′〉 determines the unique F-linear
transformation

Lu,u′

α,α′ : VB(β)→ VB′(β
′)

which sends s to s′.

We assume that the transformation preserves inner product and the
action, that is: for any e ∈ VB(β), X ∈ B and g, f ∈ s

〈g|f〉 = 〈Lu,u′

α,α′(g)|Lu,u′

α,α′(f)〉 and Lu,u′

α,α′(Xe) = XσLu,u′

α,α′(e). (17)

(iii) There is a positive integer M such that, given that

〈α,u1, α
′,u′1〉 7→ 〈β, s1, β

′, s′1〉 and 〈α,u2, α
′,u′2〉 7→ 〈β, s2, β

′, s′2〉,

there is a ζ ∈ F, ζM = 1 and

L
u1,u′1
α,α′ (b) = ζ · Lu2,u′2

α,α′ (b)

for every b ∈ VB(β).
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(iv) For 〈α,u, α′,u′〉 ∈ Λ, if α = 1 (that is VA(α) is a principal algebraic-
Hilbert space) then α′ = α.

We call the family

L = {Lu,u′

α,α′ : VB(β)→ VB′(β
′), 〈α,u, α′,u′〉 ∈ Λ}

a regular unitary transformation of VA (associated with B and σ)
and write

L : VA → VA.

We call VB the domain and VB′ the range of L.

6.2 Commentary. Later we will apply certain meaning of a limit and as-
sume that the index B in A is small relative to the dimension of the algebraic-
Hilbert space VA(α). This will allow a meaning to the notion that ”VB(β)
is dense in VA(α)” and that ”L can be continuously extended from VB(β)
to VA(α)”.

In the second half of the paper we will only work with principal modules
VA(1) and its submodules VB(1) and VB′(1).

6.3 Lemma. (i) (17) can be extended to any g, f ∈ spanF0
(s).

(ii) β′ is determined by β.
Proof. (i) is obvious by definition.
(ii) (17) implies that for s, t ∈ F0 we have

Lu,u′

α,α′ : s(s, t) 7→ s′(s, t′),

where (t′)NB = tNB (and the same eigenvalues s on both sides). But 〈sNB , tNB〉
is the invariant of the B-module, that is determines β, and 〈sNB , (t′)NB〉 is
the invariant of the B′-module, tha is determines β′.

It follows that the set of β ∈ SpB for which Λ and λ determine β′ uniquely
is Zariski dense in SpB. Hence this is true for all β. �

6.4 Lemma Suppose C ⊂ B, a subalgebra generated by a pair of pesudo-
unitaries, C = 〈X, Y 〉. Then σ of 6.1(i) acts on C and we get C ′ = Cσ =
〈X ′, Y ′〉. Let σC be the restriction of σ to C.

We claim that L as given above is also a regular unitary transformation
of VA associated with C and σC .
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Proof. We start with the same Λ and need to construct a

λC : Λ→ EX
NC
×EX′

NC
; 〈α,u, α′,u′〉 7→ 〈γ,x, γ′,x′〉, α = πCA(γ), α′ = πC′A(γ′);

We do it by constructing a Zariski regular map

〈β, s, β′, s′〉 7→ 〈γ,x, γ′,x′〉 (18)

Recall that for VB(β) splits into the direct sum of irreducible C-submodules.
Let γ be the invariant for one of them, VC(γ) ⊂ VB(β). Let x be a canoni-
cal X-basis of VC(γ). Then there is a NB ×NC-matrix M over F0 such that
x = sM. Since any two irreducible C-submodules are conjugated by an auto-
morphism of VB(β), as we ran through all canonical S-bases s of VB(β), the
NC-tuple x = sM will run through all canonical X-basis for all irreducible
C-submodules. Moreover, by definition L will take sM to s′M, and once s′

is known the module VC(γ′) and γ′ are determined. Thus M determines the
right-hand side of (18) for the given β and s. It remains to note that the
same matrix M will define x, x′, γ and γ′ for any β and s. �

6.5 Lemma. Let V̄B(β) and V̄B′(β
′) stand for the quotients of VB(β) and

VB′(β
′), respectively, by the equivalence relation

g ≈ g′ iff ∃ζ ζM = 1 & g′ = ζ g.

Then the formula

Lα,α′(b̄) = b̄′ :≡ ∃u,u′ Λ(α,u, α′,u′) & Lu,u′

α,α′(b) = b′ (19)

determines for every β ∈ SpB a well-defined map

V̄B(β)→ V̄B′(β
′)

for a corresponding unique β′.
Proof. Immediate from (iii) of the definition.�

6.6 Lemma. A regular unitary transformation sends a canonical S-basis
(with respect to T ) to a canonical S ′-basis (with respect to T ′) preserving
eigenvalues:

Lu,u′

α,α′ : s(sqck, t) 7→ s′(sqck, t), k = 0, . . . , NB − 1, (20)
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were c is the index of B in A and NB = N
c
.

Proof. Let s(sqck, t) be in an S-basis with respect to T, that is satisfying

(10). Let s′k = Lu,u′

α,α′(s(sqck, t)). Then by (ii) and (i) of the definition s′k
S ′s′k = sqcks′k, that is s′k = sqcks′(sqck, t) for the k-th element of a canonical
S ′-basis {s′(sqcm, t) : m = 0, 1, . . . , NB − 1}. Using (ii) and (10) we get

L
(
s(sqc(k−1), t)

)
= L

(
t−1T s(sqck, t)

)
= t−1T ′s′(sqck, t) = s′(sqc(k−1), t),

which extents the equality to all k and proves (20). �

6.7 Let L be regular on VA. Let {s(sqck, t), 0 ≤ k < NB} and {s′(sqck, t), 0 ≤
k < NB} be as in (20).

We have

s(sqck, t) =
N−1∑
n=0

λn,k · un

and

s′(sqck, t) =
N−1∑
n=0

λ′n,k · u′n

for some coefficients λn,k, λ
′
n,k ∈ F0 which are determined by λ of 6.1, and

since the latter is Zariski regular we have that λn,k, λ
′
n,k ∈ F0 and do not

depend on α, α′,u,u′.
Now for arbitrary b ∈ VB(β) we have

b =

NB−1∑
k=0

bks(sqck, t)

for some b1, . . . , bk ∈ F, and hence

Lu,u′

α,α′(b) = b′ =

NB−1∑
k=0

bks
′(sqck, t).

Or

b =

NB−1∑
k=0

N−1∑
n=0

λn,k · bk · uk

and

b′ =

NB−1∑
k=0

N−1∑
n=0

λ′n,k · bk · u′k
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Thus

Lu,u′

α,α′(b) = b′ ⇔ ∃ b1, . . . , bk ∈ F
b =

∑NB−1
k=0

∑N−1
n=0 λn,k · bk · uk & b′ =

∑NB−1
k=0

∑N−1
n=0 λ

′
n,k · bk · u′k

(21)

Finally, Lα,α′(b̄) = b̄′ of (19) becomes

∃u ∈ EU
N(α) ∃u′ ∈ EU

N(α′) ∃ b1, . . . , bk ∈ F :

b =
∑NB−1

k=0

∑N−1
n=0 λn,k · bk · uk & b′ =

∑NB−1
k=0

∑N−1
n=0 λ

′
n,k · bk · u′k

(22)

6.8 Theorem. Given a regular unitary transformation L,
(i) the formula Lα,α′(b̄) = b̄′ defines a family of maps

Lα,α′ : V̄B(β)→ V̄B′(β
′), V̄B(β) ⊆ VA(α), V̄B(β′) ⊆ VA(α′).

(ii) The family L is Zariski closed, that is the relation (between b̄, b̄′, α, α′, β, β′)
given by (22) is Zariski closed.

(iii) There is an inverse regular transformation L−1 associated to B′ and
σ−1. It defines, in notations of (i) above, the family of maps

L−1
α′,α : V̄B′(β

′)→ V̄B(β)

such that the composition

L−1
α′,α ◦ Lα,α′ : V̄B(β)→ V̄B(β)

defines a family of isomorphisms.
(iv) Let L(1) and L(2) be both regular unitary transformations on VA as-

sociated with B1, σ1 and B2, σ2 respectively and C ⊂ B1 be a subalgebra
generated by pseudo-unitaries such that Cσ1 ⊆ B2. Let σC be the restriction
of σ2 ◦ σ1 to C.

Then the composition L(2) ◦ L(1) given by the formula

∃α′ ∃b′ L(1)
α,α′(b̄) = b̄′ & L

(2)
α′,α′′(b̄

′) = b̄′′

defines a regular unitary transformation associated to C and σC ..
Proof. (i) is just 6.5.
(ii) follows from the fact that (19) in the form (22) is a canonical form of

a Zariski closed relation (a core formula) as defined in [16], section 3.
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(iii) For L−1 take Λ−1 (inverting the order of 4-tuples) in place of Λ.
Define λ−1 for L−1 in place of λ accordingly:

λ−1 : 〈α′,u′, α,u〉 7→ 〈β′, s′, β, s〉.

By definition this satisfies the required properties.
(iv) Follows by definition from 6.4. �

6.9 Lemma. To every regular L : VA → VA one can associate a rational
2×2-matrix gL = (glk) of determinant 1 and an automorphism of the rational
Heisenberg groups H(Q,Q).

Proof. Given L, by definition we are given S, T, S ′, T ′ ∈ H(a, b) and the
isomorphism σ between subgroups of H(a, b) generated by S, T and S ′, T ′.
This isomorphism corresponds to an isomorphism of Lie subalgebras of the
Lie algebra 〈P,Q〉 over the rationals with generators corresponding to S, T
and S ′, T ′.

This can be naturally extended to the automorphism of the Lie algebra
〈P,Q〉 which induces an automorphism

σ̌ : H(Q,Q)→ H(Q,Q)

of the rational Heisenberg groups of rank 2. We thus will have

σ̌ :
S 7→ S ′

T 7→ T ′
;
Û 7→ cU Û

g11V̂ g12

V̂ 7→ cV Û
g21V̂ g22

for some rational matrix (gkl) and cS, cT , cU , cV ∈ Z(H(Q,Q)).
The fact that σ̌ is an automorphism implies that det(gkl) = 1 (see a

remark in 2.9). �

6.10 Proposition. To every regular L : VA → VA one can associate an
automorphism σ̌L of the category A(1)

fin such that for any non-zero rational
r, s,

σ̌L : 〈Û r, V̂ s〉 → 〈q−
r(r−1)

2 cU Û
rg11V̂ rg12 , q−

s(s−1)
2 cV Û

sg21V̂ sg22〉.

The same determines an automorphism of the algebra

A(1) =
⋃

A∈A(1)
fin

A.

Proof. This follows by 6.9. The formula for σ̌ is obtained by using the
Campbell - Hausdorff formula for the Lie exponentiation. �
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6.11 Problem. Prove that, conversely to 6.9, given A, any matrix (gkl) ∈
SL(2,Q) is associated with a regular unitary transformation L of VA, pro-

vided that A is of the form A = 〈U
1
µ , V

1
ν 〉, µ, ν ∈ Z and both divisible by

the product of denumerators of rational numbers gkl.
Note that by 6.13 and 6.19 below it suffices to prove that under the above

assumptions the composition of regular unitary transformation is again a
regular unitary transformation.

6.12 Let q,N and the invariants of A-modules be determined in agreement
with 3.16. In particular, α = 〈uN , vN〉 and, conversely, u, v are defined by α
up to roots of unity of order N. Denote α′ = 〈v−N , u−N〉.

The Fourier transform ΦA = Φ : VA(α) → VA(α′) is defined on the
A-modules as

Φ : u(uqm, v) 7→ 1√
N

N−1∑
k=0

q−mku(v−1qk, u−1), (23)

or, according to 3.18,

Φ : u(uqm, v) 7→ v(u−1qm, v−1), (24)

and the domain and range of Φ is the whole of VA(α), that is B = A = B′,
β = α, β′ = α′.

Applying Φ twice we get

Φ2 : u(uqm, v) 7→ u(uq−m, v).

Note that Φ restricted to the principal A-module is a transformation of
the module

Φ : VA(1)→ VA(1).

6.13 Proposition. Φ is a regular unitary transformation associated with
the matrix (

0 1
−1 0

)
and corresponds to the automorphism of the category

σ̂ :
U r 7→ V r

V s 7→ U−s
.
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Proof. (i),(ii) and (iv) of the definition 6.1 are obvious. In order to prove
(iii) we consider the effect of replacing u by uq and v by vq in the formula
(23). Applying these operations several times one gets an arbitrary case of
(iii).

Substituting u := uq in (23) and using 3.17 we get u(uqm+1, v) on the left
of 7→, and

1√
N

N−1∑
k=0

q−mku(v−1qk, u−1q−1) =
1√
N

N−1∑
k=0

q−mkq−kξu(v−1qk, u−1) = ξv(u−1qm+1, v−1)

on the right, for some scalar ξ. According to 3.26 ξN = 1. This satisfies (iii).
Substituting v := vq we get u(uqm, vq) = ξqmu(uqm, v) on the left, and

1√
N

N−1∑
k=0

q−mku(v−1qk−1, u−1) = q−mv(u−1qm, v−1)

on the right, which again agrees with the requirement (iv). �

6.14 Gaussian transformation. We introduce a special transformation
GA = G of the bundle VA. We set q

1
2 to be a root of order 2 of q. We assume

α = 〈uN , vN〉 and α′ = 〈(uv)N , vN〉.
Set

G : u(uqm, v) 7→ a√
N

N−1∑
l=0

q
(l−m)2

2 u(uvql, v), VA(α)→ VA(α′) (25)

where a ∈ F0 is a constant of modulus 1 to be determined later and u(uqm, v)
and u(uvql, v) are assumed to be from EU

A. By definition β = α and β′ = α′.

6.15 Lemma. G is unitary. Moreover,

{G u(uqm, v) : m = 0, 1, . . . , N − 1}

is a canonical S-basis, for

S := q−
1
2 Ǔ V̌ −1.
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More precisely, for s(uqm, v) := G u(uqm, v) we have

S : s(uqm, v) 7→ uqms(uqm, v)
V : s(uqm, v) 7→ vs(uqm−1, v)

(26)

and
SGu(uqm, v) = uqmGu(uqm, v) = GǓu(uqm, v). (27)

Proof. (26) is by direct application of S to (25). (27) is a corollary of
(26).

Since S is unitary by construction, the basis is orthogonal, so Lemma
follows. �

6.16 We can calculate the action of G on the basis {v(vqn, u) : n =
0, 1, . . . , N − 1}.

Substituting (25) in formula (3.18) for v(vqn, u) we get

Gv(vqn, u) =
1√
N

N−1∑
m=0

qnmGu(uqm, v) =
a

N

N−1∑
m=0

qnm
N−1∑
l=0

q
(l−m)2

2 u(uvql, v) =

=
a

N

N−1∑
l=0

{
N−1∑
m=0

q
(l−m)2

2
+nm}u(uvql, v)

Note that (l−m)2 +2nm = [−n2 +2nl]+(m+n−l)2. Hence we may continue
the above

=
a

N

N−1∑
l=0

q−
n2

2
+nl{

N−1∑
m=0

q
(m+n−l)2

2 }u(uvql, v) =
a

N
G(N)q−

n2

2

N−1∑
l=0

qnlu(uvql, v)

where

G(N) =
N−1∑
m=0

q
(m+n−l)2

2 =
N−1∑
m=0

q
m2

2

is a quadratic Gauss sum, see [11]. The last expression by (3.18) can be
rewritten as

=
a√
N
G(N)q−

n2

2 v(vqn, uv).

We have proven that

G : v(vqn, u) 7→ a√
N
G(N)q−

n2

2 v(vqn, uv),
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in particular, for v = 1 the v(vqn, u) are eigenvectors of G with eigenvalues
a√
N
G(N)q−

n2

2 .

6.17 We set

a =

√
N

G(N)
.

By 6.16 this is equivalent to the assumption that

Gv(vqn, u) = q−
n2

2 v(vqn, uv) (28)

Moreover, reversing the calculation in 6.16 we see that (28) is equivalent to
(25).

6.18 Proposition. Assume that N is even. Then

a = e−i
π
4 .

Proof. Recall the Gauss formula, for integers a and L,

L−1∑
n=0

eπi
a
L
n2

=

√
|L
a
| · eπi

|aL|
4aL ·

a−1∑
n=0

eπi
L
a
n2

, (29)

see [11]. The statement follows, if we take a = 1 and L = N even. �

6.19 A general form of Gaussian transformation more useful in applications
is given by the associated matrix defined in 6.9, of the form(

1 − b
d

0 1

)
for some positive integers b and d.

This corresponds to

B = 〈Ûd, V̂ b〉 = B′ = 〈ÛdV̂ −b, V̂ b〉.

σ̂ :
Ûd → ÛdV̂ −b

V̂ b → V̂ b
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6.20 Proposition. GB is a regular unitary transformation.
Proof. For simplicity (but without loss of generality) we consider the

example with b = 1.
We assume A = 〈Û , V̂ 〉 and correspondingly

B = 〈Ûd, V̂ 〉 = B′ = 〈ÛdV̂ −1, V̂ 〉.

Let β ∈ SpB and α be an element of SpA such that VB(β) ⊆ VA(α). We
may identify α with a pair 〈uN , vN〉 ∈ F× × F×, and according to 3.46-3.47,

β = 〈uN , vNd 〉, so we have exactly d distinct B-submodules in the A-module.
A canonical Ûd basis of VB(β) can be represented in the form

{ud,1(udqdm, v) : m = 0, . . . ,
N

d
− 1}

defined by the formula (12). In this notation the definition (25) becomes

GBud,1(udqdm, v) = a

√
d

N

N
d
−1∑

l=0

qd
(l−m)2

2 ud,1(udvqdl, v) =: s(udqdm, v) (30)

where s(udqdm, v) is an element of a canonical ÛdV̂ −1-basis as described in
(26).

So, the formula (30) defines, for the given choice of parameters u and v,
the map

VB(β)→ VB′(β
′), β′ = β

between the submodules of VA(α). This verifies conditions (i),(ii) and (iii)
of the definition 6.1.

To check (iv) note that β(u, v) = β(u′, v′) if and only if u′ = uqk and
v′ = vqdn for some k, n ∈ Z.

Suppose u = u′ and consider the substitution v′ = vqdn for v in (30). By
3.17 ud,1(udqdm, vqdn) = c1q

dnmud,1(udqdm, v) and
ud,1(udvqdl, vqdn) = c2q

dnlud,1(udvqdl, v) with c1, c2 roots of unity of order N
(since the choice of the bases is within EB). Write G′B for the transformation
defined by Λ(b,b′, u′, v′).

We will have

G′Bud,1(udqdm, vqdn) := a

√
d

N

N
d
−1∑

l=0

qd
(l−m)2

2 ud,1(udvqd(l+n), vqdn)
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= c2a

√
d

N

N
d
−1∑

l=0

qd
(l−m)2

2 qdn(l+n)ud,1(udvqdl, v)

and
G′Bud,1(udqdm, vqdn) = c1q

dnmG′Bud,1(udqdm, v).

Hence

G′Bud,1(udqdm, v) = c−1
1 c2a

√
d

N

N
d
−1∑

l=0

qd
(l−m)2

2 qdn(l+n−m)ud,1(udvqd(l+n), v) =

= c−1
1 c2q

n2

2 a

√
d

N

N
d
−1∑

l=0

qd
(l+n−m)2

2 ud,1(udvqd(l+n), v) = c−1
1 c2q

n2

2 = c−1
1 c2q

n2

2 s(udqdm, v).

Set ζ = c−1
1 c2q

n2

2 . Clearly, ζ2N = 1. �

6.21 Remark. If we only require the coefficient ζ to be an element of F0

of modulus 1, this can be shown by a simpler argument:
Note that the substitution u := u′ and v := v′ by 3.17 transforms the basis

{ud,1(udqdl, v) : 0 ≤ l < N
d
} by the application of a transformation of the form

cγ, where γ is a F0-unitary matrix and c a non-zero constant. It follows that
the basis {GBud,1(udqdl, v) : 0 ≤ l < N

d
} under the substitution transforms by

the application of a F0-unitary matrix γ′ to a basis {s′(udqdl, v) : 0 ≤ l < N
d
}

satisfying (26). Now 3.17 imply that s′(udqdl, v) = ζ · s(udqdl, v) for some
ζ ∈ F0 of modulus 1. �

6.22 Finally, we consider diagonal transformations Dm on VA which
correspond to the matrices of the form(

m 0
0 1

m

)
.

We assume that N is divisible by m.
We construct a respective regular unitary transformation by considering

the subalgebras B = 〈Û , V̂ m〉 and B′ = 〈Ûm, V̂ 〉 and the isomorphism

σ : Û 7→ Ûm, V̂ m 7→ V̂ .
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A canonical U -base for a B-module is of the form

{u(uqmk, v) : k = 0, 1 . . . ,
N

m
− 1}

and that of B′

{um(umqmk, v) : k = 0, 1 . . . ,
N

m
− 1}

where by the definition (12)

um(umqmk, vm) =
1√
m

m−1∑
l=0

u(uqkζ l, vm),

for ζ a root of 1 of order m, and respectively,

Um : um(umqmk, vm) 7→ umqmkum(uqmk, vm),
V : um(umqmk, vm) 7→ vmum(umqmk−m, v)

.

In terms of bases the transformation is

Lu
m,u
α,α′ : u(umqmk, v)→ um(umqmk, vm)

where for α = 〈umN , vN〉 the correspondence Λ determines α′ = 〈uN , vmN〉.
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7 The limit coordinate system

7.1 Consider EA(α) defined in 3.55 as the union of ES
A(α), canonical 〈S,R〉-

bases (see 3.38).
We note first that each ES

A(α) is in a natural way coordinatised by the
residue ring Z/N .

The group ΣA(α) = 〈µ〉 of definable permutations of a basis {s(sqn, r) :
n ≤ N − 1} can be realised as a group of 0-defined operators Rn, or equiva-
lently as pairs s(sqk, r) 7→ s(sqk+n, r) of elements of ES

A(α), up to the obvious
equivalence.

Using parameters s and r the inner product formula

〈s(sqn1 , r)|r(rqm1 , s)〉 = qn1m1 · 〈s(s, r)|r(r, s)〉 = 〈s(sqn2 , r)|r(rqm2 , s)〉

allows to recognise the 4-ary relation

n1m1 ≡ n2m2 modN.

Since we can choose and fix n2 = 1 we obtain the relation n1m1 = m2.

7.2 Here we start the analysis of how the above coordinatisation behaves
under passing to an infinite limit, which we formalise through considering a
nonstandard model of integers and an infinite value of N in it.

Let ∗Z be the non-standard model of the ring of integers and µ ∈ ∗Z
divisible by all standard integers. Let N = µ2h−1, for some h ∈ Q. Let
R̄ = R ∪ {−∞,+∞} and S = R/Z. We construct a surjective map

stµ : ∗Z/N → R̄.

We identify an element m̄ of the residue ring ∗Z/N with the unique (non-
standard) integer m ∈ [−N

2
, N

2
) ∩ ∗Z. Note that m

N
and m

µ
are elements of

∗Q.
Set

stµ : m̄ 7→ st(
m

µ
)

where st is the standard part map ∗Q→ R̄.

7.3 Lemma.

(i) stµ is an additive (semi)group homomorphism;
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(ii) stµ preserves the linear pre-order on [−N
2
, N

2
) ∩ ∗Z, that is

m1 ≤ m2 ⇒ stµ(m1) ≤ stµ(m2);

(iii) if m1n1 = m2n2 does hold in ∗Z/N and the images of m1, n1, m2 and
n2 are finite then

stµm1 · stµn1 ≡ stµm2 · stµn2 modZ

Proof. (i) and (ii) are obvious.
(iii). We have the unique representation m1 = a1µ + c1, m2 = a2µ + c2,

n1 = b1µ+ d1, n1 = b2µ+ d2, and

|a1|, |a2|, |b1|, |b2|, c1, c2, d1, d2 ∈ ∗Z ∩ [0, µ).

The assumption of finiteness implies that a1, a2, b1, b2 ∈ Z (standard).
Now

m1n1 −m2n2 = (a1b1 − a2b2)µ2 + (a1d1 + b1c1 − a2b2 − b2c2)µ+ c1d1 − c2d2

Note that a1b1− a2b2 ∈ Z, |a1d1 + b1c1 − a2b2 − b2c2| < kµ for some positive
k ∈ Z and |c1d1 − c2d2| < µ2. It follows that

m1n1 −m2n2 ≡ 0 modµ2 iff m1n1 −m2n2 = (a1b1 − a2b2)µ2.

Hence the condition in (ii) implies that

m1

µ

n1

µ
− m2

µ

n2

µ
= a1b1 − a2b2 ∈ Z.

It is now immediate from the definition

stµm1 · stµn1 − stµm2 · stµn2 = a1b1 − a2b2

thus the statement follows. �

For α, β ∈ ∗Z let |α| << |β| stand for “α
β

is an infinitesimal”. And let

α << β mean α < 0 & |β| << |α| ∨ β > 0 & |α| << |β|.
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7.4 Corollary. stµ is a homomorphism of the additive ordered group {m ∈
∗Z : −µ2

2
<< m << µ2

2
} onto the additive ordered group R and

m1n1 = m2n2 ⇒ e2πix1y1 = e2πix2y2

for x1 := stµm1, y1 := stµn1, x2 := stµm2 and y2 := stµn.
In particular, the image of the partial ring structure on {m ∈ ∗Z : 0 ≤

m < µ} induces via stµ the partial addition and multiplication on the real
interval [0, 1).

7.5 Definition. The weak ring structure Rw on the reals R is given by the
addition + and the ternary relation

P 4(x1, y1, x2, y2) :≡ e2πix1y1 = e2πix2y2 .

The compactified weak ring structure R̄w on the compactified reals R̄ =
R{−∞,+∞} is given by the extension of + to R̄ in the natural way as the
ternary relation S3(x, y, z) (in particular, S3(−∞,+∞, z) holds for any zR̄)
and the extension of P 4 to R̄ defined by the condition

R̄w � P
4(a1, b1, a2, b2) if ±∞ ∈ {a1, b1, a2, b2}.

Clearly, one can always consider the 4-ary relation a1b1 − a2b2 = 0 on an
arbitrary ring R. For a ring with 1 this relation is 0-definably equivalent to
the multiplication. In this context any ring R is a weak ring.

7.6 Corollary to 7.4. stµ is a surjective homomorphism of the weak ring
∗Z/N onto the compactified weak ring structure R̄w.

7.7 Dirac rescaling. By assuming the (practically) infinite dimensionality
of the algebraic-Hilbert spaces we deal with, we encounter an immediate
problem of vanishing values of inner product since the absolute value of 〈e|f〉
in VA(α) is proportional to 1√

N
, for N = nA.

In order to remedy this problem we rescale the definition of the inner
product and introduce another pairing, Dirac inner product 〈e|f〉Dir. The
rescaling depends on the number N as well as on a “parametrisation” by a
variable x based on the following data.

Let B,D ⊆ A be two Weyl subalgebras of A with pseudo-unitary gener-
ators B = 〈R,R†〉 and D = 〈S, S†〉.
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Suppose also that there is a regular unitary transformation L of the bun-
dle VA(α) such that for each α ∈ SpA the domain of Lα is a B-submodule
VB(α) and the range of Lα is a D-submodule VD(α) of VA(α), both of
dimension nB, the domain is spanned by the R-eigenvectors

{r(rqdk, r†) : k = 0, 1, . . . , nB − 1}

and the range by S-eigenvectors

{s(sqdm, s†) : m = 0, 1, . . . , nB − 1}

canonical R and S bases of VB(α) and VD(α) respectively, such that

Lα : r(rqdk, r†) 7→ s(sqdk, s†), k = 0, 1, . . . , nB − 1. (31)

Our next step is to define a rescaling parameter called ∆k.
If R and S commute, then r = s and we define

∆k = c

√
d

N
,

where c is a fixed parameter to be defined later, independent of A and L.
Otherwise we assume that RS 6= SR.
Let b < N be the minimal positive integer with the property

RS = qbSR or SR = qbRS.

Let aR, aS be the maximal positive integers with the property that

R
1
aR ∈ A and S

1
aS ∈ A.

Set

∆k =
bc

aRaS
√
N
.

We can now define the Dirac delta-function, which depends on the
parametrisation, that is on A and L.

δ(p) =

{
1

∆k
, if p = 0

0, otherwise.

Further set the rescaled product, dependent on the chosen parametrisa-
tion:

〈r(rqdk, r†)|s(sqdm, s†)〉Dir =
1

∆k
〈r(rqdk, r†)|s(sqdm, s†)〉 (32)
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7.8 An example. Let A = 〈Ǔ , V̌ 〉.
L be the Fourier transform Φ : VA → VA, which by definition is a

bijection of VA-modules. That is B = D = A.
We respectively will have R = Ǔ = S†, S = V̌ = R†, and 〈B,D〉 = A.
Hence ∆k = 1

c
√
N

〈u(uqk, v)|v(vqm, u)〉Dir = c ·
√
N〈u(uqk, v)|v(vqm, u)〉 = cqkm

and does not depend on N.

7.9 A non-example. Consider the transform

ΦB(e,f) : ue,f (ueqek, vf ) 7→ vf,e(vfqfk, ue).

This is not a restriction of ΦA, so 7.10 is not applicable. Moreover, condition
(31) for parametrisation is not satisfied.

7.10 Proposition. Let e, f be positive integers and

B′ = 〈Re, Rf
† 〉, D′ = 〈Se, Sf† 〉,

subalgebras of B and D of 7.7 respectively. Consider the restriction L′ of L
sending B′-submodules onto D′-submodules

L′α : re,f (reqdek, rf† ) 7→ se,f (seqdek, sf† ), k = 0, f, 2f, . . . ,
N

def
− f.

Then

〈re,f (rqdek, rf† )|s
e,f (seqdem, sf† )〉Dir = 〈r(rqdk, r†)|s(sqdm, s†)〉Dir,

where the left-hand side is rescaled with respect to L′, and in the case RS =
SR both sides of the equality take value equal to δ(k − m), with respective
interpretations of this symbol on the left- and on the right-hand side.

Proof. It is enough to prove the statement in the two cases:
Case 1. e = 1.
and
Case 2. f = 1.
The relation between the re,f and r (and between se,f and s) has been

analysed in 3.47.
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In the first case, the respective bases of the submodules are just subsets
of the initial bases, so nothing changes and we have the required equality.

In the second case, the new bases are different, however calculating with
formula (12) we get

〈re,f (rqdek, rf† )|s
e,f (seqdem, sf† )〉 = 〈r(rqdk, r†)|s(sqdm, s†)〉.

Now we look at the new ∆k. Clearly, b′ = e2b, a′R = eaR and a′S = eaS. Hence
∆k remains the same and so the required equality holds. �

7.11 We can now introduce the Dirac rescaled pairing (probability mea-
sure) just replacing the inner product in 4.7 by the Dirac rescaled inner
product.

[e|f ]Dir := (
1

∆k
)2 · [e|f ].

7.12 Lemma – definition. Let B ⊆ A, A,B ∈ Afin and C ∈ O(A). Then
the commutative subalgebra CB = 〈C ∩ B,Z(B)〉 (generated by C ∩ B and
Z(B)) is in O(B). Moreover, the map

π∗BA : O(A)→ O(B), C 7→ CB,

is surjective.

7.13 Lemma – definition. For a pseudo-unitary S define

C(S) := 〈Sa : a ∈ Q〉,

that is the subalgebra of A(1) generated by all elements S
1
k , k ∈ Z.

C(S) is a maximal commutative subalgebra of A(1).
This has natural generalisation to maximal commutative subalgebra of

A(n).
Proof. Immediate. �

8 Limit objects

Our aim here is to extend the categories A∗fin(C) and V∗fin(C) by adding
some limit objects. This follows the idea that objects in A∗fin(C) and V∗fin(C)
approximate objects from a larger categories A∗(C) and V∗(C) in a functorial
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correspondence to the way the rational Weyl algebras approximate (in the
sence of normed algebras) subalgebras of the whole Weyl algebra.

The approximation will be carried out in terms of structural approxima-
tion described in [17], sections 3 and 4.

One particular limit object of V∗fin(C) will be called the space of states
and will take the role of the rigged Hilbert space of mathematical physics.

We assume F0 ⊂ C when F0 is mentioned and will mostly drop referring
to C below.

8.1 We fix an ultrapower ∗Z (equivalently, a saturated enough model) of
the ring of integers.

Fix a non-standard integer µ ∈ ∗Z which in addition to assumptions in
7.2 we assume to have the high divisibility property:

µ is divisible by any standard m ∈ Z (33)

We also fix for the rest of the paper a (standard) positive rational number
h. 1

The definitions and statements of previous sections are applicable in the
new context, with ’rational’ and ’integer’ replaced by more general ’non-
standard rational’ and ’non-standard integer’. In particular, in the defini-
tions we consider ’non-standard’ Heisenberg group H̃( 1

µ
, h
µ
) consisting of non-

standard pseudo-unitary operators generated (in the non-standard sense) by

U
1
µ and V

h
µ . More precisely, H̃( 1

µ
, h
µ
) can be identified with the ultraprod-

uct of the groups H( 1
m
, h
m

), m ∈ N, along an ultrafilter Ddiv which for every
positive integer n contains the set

{m ∈ N : n|m}.

We use, for a positive d ∈ ∗Z the notation “much less”

d ≺ µ

with the meaning that d
µ

is an infinitesimal and d divides µ.

1The theory which follows is also applicable to a non-standard rational h ∈ ∗Qfin
provided the numerator of h is “much less” than µ and divides µ.
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8.2 A universal nonstandard-rational Weyl algebra. Define the al-
gebra Ã to be the ultraproduct of the algebras A( 1

m
, h
m

), m ∈ N, along the

ultrafilter Ddiv. One may think of Ã as being generated, in a pseudo-finite

sense, by U
1
µ and V

h
µ . A pseudo-unitary operator W in Ã is by definition

any element of H̃( 1
µ
, h
µ
).

8.3 We call a pseudo-unitary W ∈ Ã finite if it can be presented in the
form

W = e
2πihν
µ2 U

ρ
µV

hτ
µ (34)

for nonstandard integers ν, ρ, τ such that |ν| < µ2 and ρ
µ
, τ
µ
∈ ∗Qfin.

Define Ãfin to be the subalgebra of Ã generated by all the finite pseudo-
unitary W.

Note that
A ⊂ Ã (35)

and so Ã is an upper bound for Afin.

8.4 We set
~ := 2πh (36)

and the constant introduced in 7.7

c :=
√

2π~. (37)

8.5 We are interested in the physically meaningful Ã-module corresponding

to U
1
µ - and V

h
µ -eigenvalues u = 1 and v = 1, which is the principal module

VÃ(1) (see also 3.34). We abbreviate the latter to V∗(1).
It follows from definitions that V∗(1) is the ultraproduct of VA(1), A =

〈U 1
m , V

h
m 〉 along the ultrafilter Ddiv. In order to understand V∗(1) we study

some construction on the VA(1).

8.6 Let N be the denominator of the reduced fraction h
µ2
. By definitions

N = dim V∗(1).

By divisibility of µ we have

N =
µ2

h
=

2πµ2

~
. (38)

If not stated otherwise, we denote

q = e
2πih
µ2 = e

i~
µ2 .
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8.7 The global language LGlobV .
We are interested in switching to a language which is, on each VA( 1

m
, h
m

),

interdefinable with our original language but has the advantage not to refer
to the parameter m, (equivalently N), or similar parameters which change
with the “size” of VA.

For each C ∈ O(A) the language LGlobV contains the unary predicate EC ,
which we also may denote ES if C = C(S). In each VA(α) the interpretation
of e ∈ EC is e ∈ ECA

A (α).
The unitary predicate E is interpreted in each VA as

E ≡
∨

C∈O(A)

EC .

We are going to “forget” the names of pseudo-unitary predicates such
as U

1
m and V

h
m and instead introduce to LGlobV names for pseudo-selfadjoint

operators R = RW , for each W ∈ Ãfin, or more generally of the form

W = e
2πihn
m2 U

r
mV

ht
m

where n,m, r and t can be standard or non-standard integers.
Interpret RW in VA as a linear operator

RW =
W −W−1

2i{| r
m
|+ | t

m
|}
. (39)

In particular, we use special names for operators

Q =
Ua − U−a

2ia
and P =

V ah − V −ah

2ia
, a =

1

m
.

Note RW are in Ãfin.
Clearly, for each A, the Q is interdefinable with Ua and P with V ah.

However the interpretation is given by different formulas depending on A.
A concrete algebraic Hilbert space VA(α) is given in terms of global

language LGlobV as the two sorted structure (E,F) with

• unary predicates EC , for each C ∈ O(A);

• pseudo-selfadjoint operators RC for each C ∈ Cfin;
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• regular unitary transformations L interpreted for each A by the formula
in (21) and a fixed associated matrix gL (see 6.9).

As before F will stand in LGlobV for the field sort with addition and multipli-
cation defined on it.

The formal linear equalities Eq(x1, . . . , xn, e1, . . . , en) :

x1e1 + . . .+ xnen = 0, x1, . . . , xn ∈ F, e1, . . . , en ∈ E

are expressible in LGlobV , and are interpreted in each VA(α) according to the
values taken by the linear combination in the F-vector space. Note that one
can interpret arbitrary elements of the vector space VA(α) in terms of Eq.

Later we will add to the global language predicates encoding the Dirac
inner product (see 7.7 and 7.11).

We call these globally defined operators and predicates.

8.8 Below we standardise our notation for the generators of Ã,

Û := U
1
µ , V̂ = V

h
µ .

More generally, an important role will be played by pairs of pseudo-unitary
generators of Ã, Ŝ and T̂ conjugated to Û and V̂ by a γ ∈ Aut(H( 1

µ
, h
µ
) :

Ŝ = Ûγ and T̂ = V̂ γ

(see 3.14). Canonical Û , V̂ and generally Ŝ-bases for V∗(1) will be denoted
u(qk), v(qk) and s(qk), 0 ≤ k < N, respectively. (See the definition (10) for
s).

We will also often work in subalgebras of Ã of the form B(a, b) = 〈Ûa, V̂ b〉,
with a, b, c, d ∈ ∗Z, 0 < a, b < µ. The corresponding canonical bases for the
principal module VB(a,b)(1) will be referred to as ua,b(qm), vb,a(qm), and
sa,b(qm), respectively.

8.9 We define a pseudo-metric (that is the distance between distinct point
can be 0) on the group H̃( 1

µ
, h
µ
)fin of all the finite pseudo-unitary elements of

Ãfin.
For W and W ′ in the form (34) define the pseudo-distance,

dist(W,W ′) := lim {|ρ
µ
− ρ′

µ
|+ |τ

µ
− τ ′

µ
|+ | ν

µ2
− ν ′

µ2
|},
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where ν ′, ρ′ and τ ′ are the respective parameters of W ′ in the representation
(34) and lim is just the standard part map ∗C→ C.

Note that
dist(Û , 1) = 0 = dist(V̂ , 1). (40)

Let
Ã0
fin = {RW ∈ Ãfin : ν = 0 &

ρ

µ
,
τ

µ
∈ ∗Qfin}

which we call the basic pseudo-selfadjoint operators.
The pseudo-metric on Ã0

fin is given by

dist(RW , RW ′) := lim {| ρ

|ρ|+ |τ |
− ρ′

|ρ′|+ |τ ′|
|+| τ

|ρ|+ |τ |
− τ ′

|ρ′|+ |τ ′|
|}+dist(W,W ′).

8.10 Define
W ≈ W ′ iff dist(W,W ′) = 0,

an equivalence relation on the group H̃( 1
µ
, h
µ
)fin. It is immediate from the

definition that ≈ is invariant under the group operation. Set

HR = H̃(
1

µ
,

h

µ
)fin/≈.

This is a real Heisenberg group.

Define on Ã0
fin

R ≈ R′ iff dist(R,R′) = 0.

The elements of the quotient
Ã0
fin/ ≈

will be called the basic selfadjoint operators. The pseudo-metric becomes
a metric on the set of basic selfadjoint operators. 2

2The basic self-adjoint operators can be interpreted as the elements of the real Lie
algebra generated by the classical P and Q (the Heisenberg algebra)

It is possible in principle to consider in the similar way the associative algebra of op-
erators generated by these operators (the Weyl algebra). This, however, in our setting
becomes rather messy business. Instead, we will study in later section operators which
correspond in mathematical terms to automorphisms of the Lie algebra and in physical
terms to time evolution operators, without trying to identify these operators with elements
of the Weyl algebra.
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8.11 Test-equivalence on E. Let a, b, c, d ∈ ∗Z, 0 < a, b, c, d ≺ µ.
For e ∈ ∗E(1)B(a,b)(1) we define We to be the unique element of H̃( 1

µ
, h
µ
)fin

with the properties:

• ν = 0 in the form (34) for We,

• e is an eigenvector of We,

• ρ > 0 or ρ = 0 and τ > 0,

• |ρ|+ |τ | is minimal.

Given e, e′ ∈ EB(c,d)(1) let W = We, and W ′ = We′ and R = RW ,
R′ = RW ′ be the corresponding pseudo-selfadjoints.

Define the two elements to be test-equivalent,

e ≈ e′

if
R ≈ R′ and 〈e|Re〉 ∼ 〈e′|R′e′〉.

8.12 Note that
e ≈ re,

for r a root of unity. In other words, ≈ identifies elements representing the
same physical state.

Also, crucially with the use of regular unitary transformations, ≈ agrees
with the relation introduced in 6.5.

8.13 Lemma. f1 ≈ f2 is an equivalence relation.
Proof. (i) Immediate by definition. �

8.14 Extending the global language by ≈ε . We introduce for each
positive ε ∈ Q a new binary predicate e1 ≈ε e2, interpreted in each EA as a
statement:

“e1, e2 ∈ E and there are pseudo-selfadjoint operators R1, R2 ∈ A such
that for some w1, w2 ∈ F,

R1e1 = w1e1 & R2e2 = w2e2 & |w1 − w2| < ε ”.

This is definable by a positive quantifier-free formula since for every choice
of A the existential quantifier runs through finitely many choices.
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Note that the relation ≈ on ∗E(1) is definable by a type consisting of
positive formulas (positively type-definable):

e1 ≈ e2 ≡
∧
n∈N

e1 ≈ 1
n
e2.

8.15 Lemma. Let R = RW ∈ Ãfin be a selfadjoint operator and e ∈ ∗E(1)
its eigenvector. Then

e ≈ Ûe and e ≈ V̂ e.

Proof. Clearly, e is a W -eigenvector too. That is We = we for some
w ∈ ∗F×0 .

Let W ′ := ÛWÛ−1. Then, using the commutation identity (4),

W ′ = e
2πih τ

µ2W

and
W ′e′ = ÛWÛ−1Ûe = we′.

It follows that

RW ′e
′ =

1

iσ

(
e

2πih τ
µ2w − e

−2πih τ
µ2w−1

)
e′,

for σ = | ρ
µ
|+ | τ

µ
| as defined in (34).

We claim that

1

σ

(
e

2πih τ
µ2w − e

−2πih τ
µ2w−1

)
∼ 1

σ
(w − w−1)

that is the RW ′-eigenvalue of e′ is infinitesimally close to the RW -eigenvalue
of e. Indeed, this is immediate from the fact that

1

σ
· τ
µ2

is infinitesimal. This proves the statement for e′ = Ûe.
The proof for e′ = V̂ e is similar. �

8.16 Lemma. Let k, l ∈ ∗Z, k
µ
, l
µ
∈ ∗Qfin. Then

ua,b(qak) ≈ u(qk), (41)
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and
vb,a(qbl) ≈ v(ql). (42)

Proof. Note that for finite values of k
µ

calculating in the B(a, b)-module

〈ua,b(qak)|P ua,b(qak, 1)〉 =
qak − q−ak

2ia/µ
∼ qk − q−k

2i/µ
∼ k~

µ
.

And in the Ã-module

〈u(qk)|Pu(qk)〉 =
qk − q−k

2i/µ
∼ k~

µ
.

This proves the first equivalence. The second and third equivalences follows
by the same argument. �

8.17 Remark. Under the above assumptions we have a|l and b|k by defini-
tion of a canonical basis. We then have by calculation in 7.8 in the ambient
module B(a, b) :

〈ua,b(qak)|vb,a(qbl)〉Dir = c qkl (43)

8.18 Lemma. Let k be as in 8.16 and d ∈ ∗Z, 0 ≤ d ≺ µ. Then

u(qk+d) ≈ u(qk) (44)

and
v(qk+d, 1) ≈ v(qk) (45)

Proof. Using the same same calculations as in 8.16 we would need to
prove

qk − q−k

2i/µ
∼ qk+d − q−(k+d)

2i/µ
.

Recall that qk = exp i~k
µ2
, qk+d = exp i~(k+d)

µ2
and so

qk+d − qk

2i/µ
= qkµ

eiα − 1

2i

where αµ is infinitesimal. The equivalence follows. �
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8.19 Corollary. The statements of 8.16 hold for any pair of pseudo-unitary
operators S and T and their eigenvectors in place of Ua and V b.

8.20 The space of states and the bra-ket notations.
We define the space of states as the quotient space

S := ∗E(1)/ ≈

and the canonical quotient map as

lim : ∗E(1)→ S. (46)

Note that by definition ∗E(1) is a pseudo-finite union of definable subsets of
the form EC , C = C(S), S ∈ Ã, S = UaV b, a, b ∈ ∗Qfin. Thus

limS =: S̄ = UαV β, where α = lim a, β = lim b,

According to 8.16 and 8.19

limEC = {lim s(e
is
µ ) : s ∈ 1

µ
∗Z ∩ ∗Qfin} = {|s〉 : s ∈ R},

the image of the S-basis.
For the given S̄ = UαV β we denote the image of the basis in S,

Sα/β := {|s〉 : s ∈ R},

and call it a Lagrangian subspace of S.3 Lagrangian subspaces with α, β
rational will be referred to as rational Lagrangian subspaces.

Thus
S =

⋃
α,β∈R×

Sα/β,

and we also will use the rational part of the space of states,

SQ :=
⋃

α,β∈Q×
Sα/β.

3Note that UαV β and UmαV mβ commute and so generate the same Lagrangian sub-
space, hence the subspace is determined by the fraction α/β.

69



8.21 Keeping with physics notation we set

|x〉 = limu(e
ix′
µ )

|p〉 = limv(e
ip′
µ )

for

x′, p′ ∈ ~
µ
· ∗Z, x′, p′ ∈ ∗Qfin, (47)

Note that these assumptions imply that x′, p′ ∈ [− µ
2~ ,

µ
2~) and limx′ ∈ R,

lim p′ ∈ R, taking all possible values in R.
These notation rely on distinguishing between the so called position

eigenstates |x〉 and the momentum eigenstates |p〉 just by the letters x
or p used to denote possibly the same number, the eigenvalue of the corre-
sponding operator (to be explained below).

Often we simply right

|x〉 = limu(e
ix
µ )

and
|p〉 = limv(e

ip
µ )

assuming that the passage from the right-hand side to the left is clear.

8.22 We extend the domain of lim to ∗EB(a,b)(1), the eigenvector-bases of
submodules, and define

limua,b(e
iax
µ ) = |x〉 (48)

limvb,a(e
ibp
µ ) = |p〉 (49)

and
lim sa,b(e

ias
µ ) = |s〉 (50)

This agrees with ≈ by (41) and (42).

8.23 We say that a subset E ⊂ ∗E(1) is dense in Sα/β if limE = Sα/β.
Note that ∗EB(a,b)(1) ⊂ V∗(1) (see 3.46) and ∗EB(a,b)(1) can be embedded

into ∗E(1).
Assuming that B(a, b) is a subalgebra of Ã of finite index, a, b ∈ ∗Q,

S ∈ B(a, b), it follows from 8.16 and 8.19 that ∗ES
B(a,b)(1) is dense in Sα/β.
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We study S along with the structure V∗ and the map

lim : ∗E(1)→ S.

8.24 Dirac product on S. This is defined in accordance with 7.7 with
usually fixed parametrisation in variables x or p.

We will work in the situation when we are given canonical bases u(e
ix
µ ),

r(e
ix
µ ), and s(e

ix
µ ) such that both r(e

ix
µ ) and s(e

ix
µ ) are parametrised by regular

transformations

Lr : u(e
ix
µ ) 7→ r(e

ix
µ ) and Ls : u(e

ix
µ ) 7→ s(e

ix
µ ).

This will define ∆u, which we following above notations will write as ∆x.
We will also use the notation

lim r(e
ix
µ ) = |r(x)〉 and lim s(e

ix
µ ) = |s(x)〉.

Now set

〈r(x1)|s(x2)〉Dir := lim
1

∆x

{
max

x′1∼x1, x′2∼x2
〈r(e

ix′1
µ )|s(e

ix′2
µ )〉
}

(51)

Here the quantifier max chooses x′1 and x′2 so that the modulus of 〈r(e
ix′1
µ )|s(e

ix′2
µ )〉

reaches maximum. The argument of this expression depends continuously on
x′1 and x′2 (see the definition and 3.28). Hence the right-hand side of (51) is
well-defined.

On the left-hand side of (51), the use of bra-ket notation assumes that
we rescale the product.

Warning. (51) only makes sense when we have chosen the corresponding
canonical bases, that is the two consecutive vectors of each basis. Otherwise,
we can only determine the absolute value of 〈r(x1)|s(x2)〉Dir.

Nevertheless, (51) is a function of x1, x2 defined “up to the phase”, that
is the scalar of modulus 1.

Similarly one defines the parametrisation on variable p, just replacing

u(e
ix
µ ) by v(e

ip
µ ).

We will have to use respectively ∆p in the definition of the Dirac product.
But note, that the application of the Fourier transform will produce the
equality

∆p = ∆x.
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8.25 Example. Reinterpreting the calculation in 7.8 and taking into ac-
count (37) we have the classical

〈x|p〉Dir =
1√
2π~

eixp.

8.26 We also use the Dirac delta in V∗(1) as defined in 7.7. Since the
dimension of the module is pseudo-finite the ∆x and δ are nonstandard
integers-valued. In the limit structure on S we introduce the Dirac δ(x)
as an “infinite constant”-valued function, or symbol, along with symbol dx
and set

lim∆x := dx,

lim δ(x) := δ(limx).

8.27 Using integration notation. It is helpful to re-write the definition
(51) in the following suggestive terms.

From the notations agreement above we get in particular,

dx 〈r(x1)|s(x2)〉 = 〈r(e
ix1
µ )|s(e

ix2
µ )〉. (52)

In functional Hilbert spaces elements |r(x)〉 and |s(x)〉 are understood as a
family of functions ρ(x, p) and σ(x, p), with variable, say p. Now a summation
formula

r(e
ix
µ ) =

∑
y

〈r(e
ix
µ )|s(e

iy
µ )〉s(e

iy
µ )

corresponds to the integral

ρ(x, p) =

∫
y∈R

dy 〈r(x)|s(y)〉 · σ(y, p).

E.g. the summation formula for the Fourier transform (23) becomes,

for 1√
2π~e

ixp
~ , an eigenvector of the operator f 7→ −i~df

dx
, and δ(x − p), an

eigenvector of the operator f 7→ xf,

δ(x− p) =

∫
y∈R

dy
1√
2π~

e−
iyx
~

1√
2π~

e
iyp
~ ,

i.e.

δ(0) =
1

2π~

∫
y∈R

dy
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Conversely,
1√
2π~

eixp =

∫
y∈R

dy
1

2π~
eiyxδ(p− y),

8.28 Note also that by definition the integral reinterpretation of definitions
7.7 yield ∫

R
δ(x)dx = 1.

8.29 Topology on the space of states. Note that the construction of the
space of states (S,C) as the limit (46) of the pseudo-finitary space V∗(1) =
(∗E(1), ∗F0) introduces a topology on the pseudo-Hibert space. Namely, C
canonically acquires the metric topology from the standard part map lim :
∗F0 → C. The predicates e1 ≈ 1

n
e2 define topology on S. More generally,

on Cartesian products of S and C the topology is given by declaring closed
subsets those which are definable by positive quantifier free formulas in the
language LGlobV extended by metric relation |x| ≤ 1 on C. All such relations
are preserved by map lim .

8.30 Theorem. The object V(R) is universally attracting for the category
Vfin. In other words, for every VA ∈ V∗fin there is a unique morphism

pA : VA → V(R).

Proof. First we consider the trivial morphism

πA : SpA(R)→ 1,

the right-hand side being the spectrum of V(R), by definition.
Now we need to define the embeddings

pβA : VA(β)→ V(R)

for every β ∈ SpA(R).
Since A ⊆ A( 1

m
, h
m

) for m ∈ Z large enough (in terms of divisibility), such

that m
h

is an integer, we may assume A = A( 1
m
, h
m

). Recall that N = nA = m2

h

is the dimension of VA(β).
By definition, β = 〈uN , vN〉 for some u, v ∈ C of modulus 1, that is

u = ei
x
m , v = ei

p
m , for some unique real x, p ∈ [0, 2mπ).
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For b = µ
m

consider the subalgebra B(1, b) = 〈Û , V h
m 〉 and a canonical

Û -basis {u1,b(qk) : k = 0, . . . , mµ
h
− 1} of VB(1,b)(1), q = e

2πih
mµ .

Since µ is an infinite integer, for k = 0, . . . ,mµ − 1, lim qk takes all the
complex values of modulus 1. Let k0 be such that

lim qk0 = u

and denote

|uqbn〉 = limu1,b(qk0+bn) : n = 0, 1, . . .
m2

h
− 1.

By definition
U

1
m : |uqbn〉 7→ uqbn|uqbn〉

and
V

h
m : |uqbn〉 7→ |uqb(n−1)〉.

Write the U
1
m -basis of VA(β) as {u(uqbn, v) : n = 0, 1, . . . , m

2

h
− 1} and

define pβA on the basis as

pβA : u(uqbn, v) 7→ v−n|uqbn〉, n = 0, 1, . . . ,
m2

h
− 1.

It is clear that pβA commutes with U
1
m . One also checks that

V
h
m : pβAu(uqbn, v) = v−n|uqb(n−1)〉 = vpβAu(uqb(n−1), v),

which proves that pβA commutes with V
h
m . Hence it is an isomorphism be-

tween the A-modules.
�

9 Some basic calculations.

9.1 We calculate with operators Q and P defined in 8.7.

Q|x〉 = lim Û−Û−1

2i
µ

u(e
ix
µ ) =

= lim µ
2i

(e
ix
µ − e−

ix
µ )u(e

ix
µ ) = x|x〉.

(53)

It is clear, that this calculation is invariant under replacing x by x′, with
x ∼ x′.
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Hence
Q|x〉 = x|x〉.

On the other hand

P|x〉 = lim V̂−V̂ −1

u
(e

ix
µ ) =

= lim µ
2i

{
u(e

( ix
µ
− i~
µ2

)
)− u(e

( ix
µ

+ i~
µ2

)
)
} (54)

is ill-defined since the vector in the bracket is an infinitesimal and µ is
infinite.

Similarly,
P|p〉 = p|p〉

but
Q|p〉 is undefined.

9.2 Comments. The real reason for P and Q to be only partially defined
operators on E is that these are unbounded operators, that is

||P|| =∞ = ||Q||.

For Q this follows from the calculation (53) and similarly can be checked for
P.

In mathematical physics this is the main difficulty for treating the Heisen-
berg algebra as a C∗-algebra.

9.3 Let us calculate the application of QP−PQ to |x〉 and |p〉. To simplify
the computation, we rewrite

Q =
1

2
(Q′ + Q′′), P =

1

2
(P′ + P′′)

where

Q′ =
Û − 1

i/µ
, Q′′ =

1− Û−1

i/µ
,

P′ =
V̂ − 1

i/µ
, P′′ =

1− V̂ −1

i/µ
.

First we calculate

(Q′P′ − P′Q′)u(e
ix
µ ) = −4µ2

(
Û V̂ − V̂ Û

)
u(e

ix
µ ) =

−µ2
(

1− e
i~
µ2

)
Û V̂ u(e

ix
µ ) = −µ2

(
1− e

i~
µ2

)
e
ix
µ
− i~
µ2 · u(e

ix
µ
− i~
µ2 )
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Now note that by definition and (44)

lim u(e
ix
µ ) = |x〉 = lim u(e

ix
µ
− i~
µ2 ),

so, applying lim to the initial and final term of the equality and using that

lim µ2(e
i~
µ2 − 1) · e

ix
µ
− i~
µ2 = i~

we get
(Q′P′ − P′Q′)|x〉 = i~|x〉.

Similarly we get the same result for (Q′P′′−P′′Q′), (Q′′P′−P′Q′′) and (Q′′P′′−
P′′Q′′). It follows

(QP− PQ)|x〉 = i~|x〉.
Analogously one gets

(QP− PQ)|p〉 = i~|p〉.

In fact, these are the instances of the more general fact.

9.4 Theorem. The Canonical Commutation Relation (2) holds in S :

QP− PQ = i~I.

In other words, given |s〉 ∈ S

(QP− PQ)|s〉 = i~|s〉.

Proof. By definition |s〉 = lim s(ei
s
µ ), for some s(ei

s
µ ) ∈ ∗E(1), an element

of a canonical S-basis.
Now we apply (Q′P′ − P′Q′) to s(ei

s
µ ) and get by the calculation in 9.3

(Q′P′ − P′Q′)s(ei
s
µ ) = µ2

(
e
i~
µ2 − 1

)
Û V̂ s(ei

s
µ ).

By 8.15 Û V̂ s(ei
s
µ ) ≈ s(ei

s
µ ). Also µ2

(
e
i~
µ2 − 1

)
∼ i~. Hence

(Q′P′ − P′Q′)s(ei
s
µ ) ≈ i~ s(ei

s
µ )

and hence,
(QP− PQ)s(ei

s
µ ) ≈ i~ s(ei

s
µ ).

�
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9.5 By the argument in 9.3 we also have for S

Q′ = Q and P′ = P.

9.6 The Fourier transform is defined on S by applying lim to (23):

Φ|x〉 = |p〉, for p = x.

Applying Φ twice we get

Φ2 : |x〉 7→ | − x〉.

9.7 The structure on ∗E(1) in the global language plays a central role in the
theory below. This is a pseudo-finite structure which can be seen as a model
of “huge finite universe” of quantum mechanics. Its specialisation (image
under lim ), the “standard” structure S, the space of states, is a close analogue
of the standard Hilbert space where operators of quantum mechanics are
being represented. The calculations in the next sections demonstrate that
we may carry out rigorous quantitative analysis of processes in the “huge
finite universe” and then, specialising these to the standard space of states,
obtain well-defined formulas in complete agreement with traditional methods
of quantum mechanics.

10 Regular unitary transformations on V∗ and

S.
10.1 A regular unitary transformation L of finite type on V∗ is

defined as in 6.1(i)-(iv) for the algebra Ã with the extra assumption:

(v) The index νB := (N : nB) of the subalgebra B in Ã is finite.
Then we have the following refinement of Theorem 6.8.

10.2 Theorem. (i) A regular unitary transformation L of finite type on
V∗ associated with the subalgebra B = 〈ÛaV̂ b, Û cV̂ d〉, a, b, c, d ∈ Z, and the
isomorphism σ : 〈ÛaV̂ b, Û cV̂ d〉 → 〈Ûa′V̂ b′ , Û c′V̂ d′〉 induces a bijection

L̂ : Sa/b → Sa′/b′ .
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(ii) If C = 〈ÛaC V̂ bC , Û cC V̂ dC 〉 ⊂ B is another subalgebra of finite index,
σC is the restriction of σ to C and LC the transformation associated to C
and σC , then L̂C = L̂. In particular,

L̂ : SaC/bC → Sa′C/b′C ,

and so L̂ is defined on all rational Lagrangian subspaces

L̂ : SQ → SQ.

(iii) The set Gfin of all transformations L̂, for regular unitary transfor-
mation L of finite type on V∗, forms a group acting on SQ. The group is
isomorphic to SL(2,Q).

Proof. By definition and 8.19 we have

L̂ : {|s〉 : s ∈ R} → {|s′〉 : s′ ∈ R}

where S = ÛaV̂ b and S ′ = Ûa′V̂ b′ . This is exactly the statement of (i).
(ii) follows by 6.4.
(iii). It follows from 6.8(iii)-(iv) that G is a group. Moreover, a regular

transformations acts on elements of the rational Heisenberg group

ÛaV̂ b 7→ Ûa′V̂ b′

as an automorphism (and so symplectomorphism). So G is the subgroup
of all (rational) symplectomorphisms on SQ, that is SL(2,Q). On the other
hand 6.13, 6.19 and 6.22 prove that the generators of SL(2,Q) are in G. So
G = SL(2,Q). �

10.3 A tame regular unitary transformation L on V∗ is defined as in
6.1(i)-(iv) for the algebra Ã with the extra assumption:

(v) The index νB := (N : nB) of the subalgebra B in Ã is “small compared
to µ, that is

νB ≺ µ.

This condition is equivalent to B = 〈ÛaV̂ b, Û cV̂ d〉, a, b, c, d ∈ ∗Z,

a, b, c, d ≺ µ.
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10.4 Theorem. (i) A tame regular unitary transformation L on V∗ asso-
ciated with the subalgebra B = 〈ÛaV̂ b, Û cV̂ d〉, a, b, c, d ∈ ∗Z, and the isomor-
phism σ : 〈ÛaV̂ b, Û cV̂ d〉 → 〈Ûa′V̂ b′ , Û c′V̂ d′〉 induces a bijection

L̂ : Sα/β → Sα′/β′

where α/β = lim a/b, α′/β′ = lim a′/b′,
(ii) The set G of all transformations L̂, for tame regular unitary trans-

formation L on V∗, forms a group acting on S. The group is isomorphic to
SL(2,R).

Proof. The same arguments as in 10.2. �

11 Time evolution operators. The case of the

free particle

11.1 Let t be a rational number. We introduce a regular unitary transfor-
mation Kt

fr on the space of states, which corresponds to the so called time
evolution operator for the free particle. In terms of the Heisenberg-Weyl
algebra this operator could be defined as

e−it
P2

2~ .

Equivalently, this is the operator acting on the position eigenstates as

e−it
P2

2~ |p〉 = e−it
p2

2~ |p〉. (55)

Our Kt
fr satisfies the same property.

As above Kt
fr will first be defined on the pseudo-finitary space V∗(1) and

then transferred to S by lim .

11.2 In fact, we can only fully define Kt
fr on a submodule of V∗(1) the

construction of which depends on t.
We assume that t = b

d
, where b, d ∈ ∗Z, |b|, |d| ≺ µ.

We calculate over the subalgebra B(b, d) of Ã.
By 3.46 the Ã-module V∗(1) splits into the direct sum of d of its B(b, d)-

submodules. We define Kt
fr on the submodule VB(b,d)(1).
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Set

q̌ = e
ibd~
µ2 = qbd and Ň =

µ2

bdh
=

N

bd
.

Clearly,
Ň = dim VB(b,d)(1).

Choose a canonical Ûd-basis of VB(b,d)(1) in the form

{ǔ(q̌m) : m = 0, . . . , N − 1}

satisfying
Ûd : ǔ(q̌m) 7→ q̌mǔ(q̌m)

V̂ b : ǔ(q̌m) 7→ ǔ(q̌m−1)

Set Kt
fr on the U -basis by:

Kt
frǔ(q̌m) =

a√
Ň

Ň−1∑
l=0

q̌
(l−m)2

2 ǔ(q̌l) =: s(q̌m) (56)

where a is defined in 6.18.

One sees immediately that Kt
fr is the Gaussian transformation with the

domain of definition and range VB(b,d)(1). So we may use 29 - 6.20.

11.3 An alternative definition of Kt
fr. According to quantum mechanics

the time evolution operator for the free particle is Kt
fr := e−it

P2

2~ and the ex-
pression on the right makes sense in the operator algebra Then the canonical
commutation relation (2) gives

[Q, Kt
fr] = tPKt

fr.

Hence, QKt
fr −Kt

frQ = tPKt
fr and

Kt
friQK

−t
fr = i(Q− tP).

Note that by the Baker-Campbell-Hausdorff formula, for any r ∈ R

U r · V −rht = exp irQ · exp{−irtP} = exp(irQ− irtP +
1

2
[irQ,−irtP]) =

= exp(irQ− irtP + iπr2th) = eπihr
2tKtU rK−t.
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Letting t = b
d

and r = b
µ

as above, we get

Kt
frÛ

dK−tfr = S, S = q̌−
1
2 ÛdV̂ −b (57)

which is (27) in corresponding notation.
Another property that follows from the form of the time evolution oper-

ator, is its commutation with P and so with V̂ b :

KtV̂ bK−t = V̂ b (58)

(57) and (58) can be taken as the defining properties of Kt
fr. Note that

these two algebraic properties alone do not allow to determine the scalar
coefficient a.

11.4 Now we define Kt
fr on S by continuity, that is set

limKt
frs(q̌m) = Kt

frlim s(q̌m),

for all s ∈ ∗E(1)B(d,b).
By (49), remembering that

v̌(q̌n) = v
b
µ
, d
µ (e

i~nbd
µ2 ) = vb,a(e

ibp
µ ),

where

p =
nd~
µ

satisfies (47). We have by definition

|p〉 = lim v̂
b
µ
, d
µ (e

ibp
µ ).

We also note that

q̌−
n2

2 = e−t
p2

2 , t =
b

d
.

By (28) as

Kt
fr|p〉 = e−it

p2

2~ |p〉. (59)

Respectively, in (56) we set

x1 =
lb~
µ
, x2 =

mb~
µ

,

81



we get by definition and recalling that

ǔ(q̌l) = ub,d(e
lbd~
µ2 ) = ub,d(e

dx1
µ ),

ǔ(q̌m) = ub,d(e
mbd~
µ2 ) = ub,d(e

dx2
µ ),

|x1〉 = lim ǔ(e
dx1
µ )

and
Kt

fr|x2〉 = lim s(e
dx2
µ ).

11.5 Our aim now is to determine the value of

〈ǔ(e
dx1
µ )|s(e

dx2
µ )〉Dir,

for which we need to determine ∆x. This was determined in 7.7 taking into
account (37) and gives for B = D = B(d, b)

∆x =
b~
µ
.

By (52) and (56)

〈ǔ(e
dx1
µ )|s(e

dxx
µ )〉Dir =

1

∆x
〈ǔ(q̌l)|s(q̌m)〉 =

√
bdh

µ∆x
e
−πi
4 q̌

(l−m)2

2

which gives us by application of lim :

〈x1|Kt
frx2〉Dir = e−

πi
4

√
dh

b
· 1

~
e
i(x1−x2)

2

2 =
1√

2πi~t
e
i(x1−x2)

2

2t~ (60)

The left-hand side of (60) is called the kernel of a time evolution
operator (Feynman propagator for the corresponding particle).

12 Harmonic oscillator.

12.1 In the Heisenberg Weyl algebra consider the operator

H =
P2 + Q2

2
,
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the Hamiltonian for the Harmonic oscillator, where we suppressed some pa-
rameters of physical significance).

We are interested in the time evolution operator for the Harmonic oscil-
lator, i.e. the operator

Kt := Kt
HO := e−it

H
~ .

In order to motivate our technical definition we assuming again as in 11.3
that P and Q belong to a Banach algebra. Then well-known calculations,
which we omit here, produce the following formulae

KtUaK−t = e−a
2πih sin t cos tUa cos tV −ah sin t. (61)

and
KtV ahK−t = ea

2πih sin t cos tUa sin tV ah cos t. (62)

12.2 We will assume that t ∈ R is such that sin t and cos t are rational
(there is a dense subset of t ∈ (0, 2π] satisfying this condition), and even
allow these to be non-standard rational.

For the rest of this section we fix

sin t =
e

c
, cos t =

f

c
, for some nonzero e, f, c ∈ ∗Z, 0 ≤ |e|, |f |, c ≺ µ.

We work in the principal Ã-module V∗(1) and in the space of states S
and want to construct, as suggested by (61) and (62), an operator Kt so that

KtÛ c(Kt)−1 = q−
1
2
ef Û f V̂ −e (63)

(Kt)V̂ ce(Kt)−1 = q
1
2
e3f Û e2V̂ fe (64)

where
q

1
2 = e

πih
µ2 .

12.3 Denote

St := q−
1
2
ef Û f V̂ −e, Rt := q

1
2
ef Û eV̂ f and check that Rm

t := q
1
2
efm2

Û emV̂ fm.

Note that the algebra 〈St, Re
t 〉 is isomorphic to 〈Û c, V̂ ce〉 by the isomor-

phism given by conjugation by Kt, so its irreducible modules are of the same
dimension N

c2e
.
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Clearly, St and Rt are pseudo-unitary. Recall that with our notation

dim VB(1,e)(1) =
N

e
.

Note also that the Û basis u1,e(qel) can be identified with the subset {u(qk) :
e|k} of the Û -basis of V∗(1).

12.4 Define the operator4

Kt : VB(c,ce)(1)→ V∗(1)

by the action on an U -basis,

Kt : uc,ce(qc
2em) 7→ s(qc

2em) := C0

√
e

N

N
e
−1∑
l=0

qef
l2−e2m2

2
−e3mlu(qe(l+mf)), (65)

where C0 ∈ F0 is a constant of modulus 1, the exact value of which we
determine at the end of this section.

12.5 Lemma. For any integer m,

St : s(qc
2em) 7→ qc

2ems(qc
2em)

Re
t : s(qc

2em) 7→ s(qc
2e(m−1)).

Proof. One checks that

St : u(qe(l+mf)) 7→ qef(l+ 1
2

)+emf2u(qe(l+1+mf))

and thus, using f 2 + e2 = c2,

St : qef
l2−e2m2

2
−e3mlu(qe(l+mf)) 7→ qc

2em · qef
(l+1)2−e2m2

2
−e3m(l+1)u(qe(l+1+mf)).

This implies the first statement.
For the second statement first note that

s(1) := C0

√
e

N

N
e
−1∑
l=1

qef
l2

2 u(qel)

4We state without proof that Kt can be defined as a regular unitary operator on VÃ.
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and that
R−emt : u(qel) 7→ qk(e,f,m,l)u(qel+emf )

for

k(e, f,m, l) = −e3f
m2

2
− e3ml.

It follows

R−emt : s(1) 7→ C0

√
e

N

N
e
−1∑
l=1

qef
l2−e2m2

2
−e3mlu(qe(l+mf)) = s(qc

2em).

�

12.6 For n,m ∈ ∗Z we have, expressing uc,ce(qc
2en) in terms of u (see 3.47),

〈uc,ce(qc2en)|s(qc
2em)〉 =

=
C0√
c
·
√
e

N
〈
c−1∑
k=0

u(qcen+kN
c )|

N
e
−1∑
l=0

qef
l2−e2m2

2
−e3mlu(qe(l+mf))〉

Set M := N
c

and lk = kM + l0, for k = 0, . . . , c− 1.

Note that the necessary condition for the product 〈uc,ce(qc2en)|s(qc
2em)〉

to be non-zero is that

cen+ kM = el + emf for some l = 0, . . . ,M − 1, k = 0, . . . , c− 1. (66)

Let l0 = cn−mf .
Claim.

fl0 − e2m ≡ 0 mod c.

Note that fl0 − e2m = fcn−mf 2 −me2 = fcn−mc2. Claim proved.
So

cn+ kM = lk +mf.

Recall that 0 < |c|, |e| ≺ N which implies that

M2 ≡ 0 mod N.

Now we can continue

〈uc,ce(qc2en)|s(qc
2em)〉 =
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= C0

√
e

Nc

c−1∑
k=0

〈u(qcen+kN
c )|qef

l2k−e
2m2

2
−e3mlku(qe(lk+mf))〉 =

= C0

√
e

Nc

c−1∑
k=0

qef
l2k−e

2m2

2
−e3mlk = C0

√
e

Nc
qef

l20−e
2m2

2
−e3ml0

c−1∑
k=0

qefl0kM−e
3mkM

Now note that efl0kM − e3mkM = ekM(fl0 − e2m) is divisible by N by
Claim above. Hence the last sum is equal to c and we have finally

〈uc,ce(qc2en)|s(qc
2em)〉 = C0

√
ec

N
qef

l20−e
2m2

2
−e3ml0 . (67)

12.7 Note by direct substitution and using f 2 + e2 = c2 that

ef
l20 − e2m2

2
− e3ml0 =

1

2
ec2{(n2 +m2)f − 2cnm}. (68)

Now rename

x1 :=
cen~
µ

, x2 :=
cem~
µ

.

Then, using 8.2, 8.6 and (68), the equality (67) becomes

〈uc,ce(qc2en)|s(qc
2em)〉 = C0

√
ech

µ
exp i

(x2
1 + x2

2)f − 2x1x2c

2e~
= (69)

= C0

√
ech

µ
exp i

(x2
1 + x2

2) cos t− 2x1x2

2~ sin t
.

12.8 We rescale the last product according to 7.7 and (32). We have

〈Û c, V̂ ce〉 in place of 〈R,R†〉, and 〈St, Re
t 〉 in place of 〈S, S†〉. N = N = µ2

h
.

We have
SR = qceRS

and aR = c, the maximal with the property

R
1
c ∈ Ã,

while for S the corresponding number aS = 1.
Hence, by 7.7 and (37)

∆x = c
e
√

h

µ
=
e~
µ
.
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Thus
〈uc,ce(qc2en)|s(qc

2em)〉Dir =
µ

e~
〈uc,ce(qc2en)|s(qc

2em)〉 =

=
µ

e~
C0

√
ech

µ
exp i

(x2
1 + x2

2) cos t− 2x1x2

~ sin t
=

C0√
2π~ sin t

exp i
(x2

1 + x2
2) cos t− 2x1x2

2~ sin t
.

12.9 For the Feynman propagator we need to apply the limit

〈x1|Kt|x2〉 = lim 〈uc,ce(qc2en)|s(qc
2em)〉Dir

which by the final formula of 12.8 above gives us

〈x2|Kt
HO|x1〉 = C0

√
1

2π~ sin t
exp i

(x2
1 + x2

2) cos t− 2x1x2

2~ sin t
.

This is in accordance with the well-known formula [15], p552, if we set

C0 = a = e−
πi
4 . (70)

Our definition can only determine Kt up to the coefficient C0 of modulus
1.

12.10 In this subsection we will motivate a stronger definition for Kt
HO

which will have (70) as a corollary.
First we need to formulate and prove several claims. Note, that in the

definition (65) C0 may depend on t. We need to have reasons to claim that
it does not.

Claim 1. Given t1 and t2 as in 12.2 we have the following operator identity

Kt1Kt2 = Kt1+t2

where Kt1 , Kt2 and Kt1+t2 are defined by (65) with the same C0 (but with
different values of e and c, which depend on t).

Proof of the Claim. TODO.
Corollary. For all t1 ∈ Q · t,

C0(t1) = C0(t).

Now we may use the fact used by physicists and motivated by simple al-
gebraic (the Trotter product formula) and continuity arguments which imply
that the physicists’ values of the operator must satisfy

lim
t→0

〈x1|Kt
HOx2〉

〈x1|Kt
Frx2〉

= 1.

87



Postulating that this identity holds for the operators Kt
HO and Kt

Fr as
defined above and comparing the corresponding formulas we conclude that
(70) holds.

13 Trace of the time evolution operator for

the Harmonic oscillator.

13.1 First note that by (66)

〈uc,ce(qc2en)|s(qc
2en)〉 6= 0⇔ en(c−f)+kM = el for some l = 0, . . . ,

N

e
−1, k = 0, . . . , c−1.

Hence, the n on the right-hand side can only take values

n = 0, 1, . . . ,
N

ec(c− f)
− 1

13.2 Note for n = m (68) is equal to

−ec2(c− f)n2.

Hence, by (67) and 13.1

Tr(Kt) := a

√
ec

N

N
ec(c−f)−1∑
n=0

q−ec
2(c−f)n2

.

Denote L = N
ec2(c−f)

. We can rewrite the above as

Tr(Kt) = a

√
1

c(c− f)L

cL−1∑
n=0

e−
2πi
L
n2

.

By the Gauss quadratic sums formula (29)

L−1∑
n=0

e−
2πi
L
n2

= 2e−
πi
4

√
L

2
= e−

πi
4

√
2L;

cL−1∑
n=0

e−
2πi
L
n2

= c
√

2L.

Hence

Tr(Kt) = c a2
√

2L

√
1

c(c− f)L
= a2

√
2

(1− f
c
)
.
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Returning to the original notation 12.2 we have√
2

(1− f
c
)

=

√
2

(1− cos t)
=

1

| sin t
2
|
.

Since a2 = −i, we finally get,

Tr(Kt
HO) =

1

i| sin t
2
|
.
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