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This paper discusses a conjecture of diophantine type that I came to in
connection with an attempt to understand the complex exponentiation and
other classical functions in model-theoretic context [Z1], [Z2], [Z3]. Not very
surprisingly it turned out that the same conjecture could answer questions
crucial for other model-theoretic works, see [P] and also an unfinished work
by J.Baldwin and K.Holland. In [Z2] and [Z3] we need only the version
over complex numbers with the exponentiation function, and in this form it
is easier to see the links to the classical Schanuel conjecture. Nevertheless
the discussion makes sense over any field K where an exponentiation-like
function is defined (e.g. in R) and also for much broader class of functions,
e.g. elliptic and even Abelian functions, for which the ’Schanuel conjecture’
can be stated. In this broader context there is an obvious generalisation of
the Diophantine conjecture that can be seen also as a generalisation of both
Mordell-Lang and Manin-Mumford conjectures:

Conjecture on intersection with subgroups in semi-abelian vari-
eties. Let A be the K-point set of a semi-abelian variety over K and V ⊆ A
an algebraic subvariety. Then there is a finite collection τ(V ) of cosets of
some proper algebraic subgroups of A such that, given any algebraic sub-
group B ≤ A and a component S ⊆ W ∩ B of the intersection which is
atypical in dimension, i.e.

dimS > dimW + dimB − dimA,

there is a C ∈ τ(W ) such that S ⊆ C.
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We discuss here mostly the case A = (K∗)n, a cartesian power of the mul-
tiplicative group of the field (and call it CIT, the conjecture on intersection
with tori), K is C or R, but most of the statements can be easily generalised.
One of the surprising observations is the fact that the real version of CIT,
due to the o-minimality, follows from the Schanuel conjecture for the real
exponentiation. Thus the multiplicative version of real Mordell-Lang conjec-
ture follows from Schanuel. Presumably this is true for Abelian functions on
reals, and thus general Mordell-Lang for reals follows from the corresponding
’Schanuel’.

1 Conjecture on intersection with tori

Definition A variety Tm,b ⊆ (K∗)n given by a set of equations of the form

ym1
1 · . . . · ymn

n = b (1)

with m1, . . . ,mn ∈ Z is said to be a [shifted] torus.
Obviosly, a torus is a coset of a unique algebraic subgroup Tm ⊆ (K∗)n

defined by equations (1) with b = 1. This subgroup is a torus which we will
call a basic torus and the base of Tm,b.
A torus T ⊆ (K∗)n is called proper if T 6= (K∗)n.
A variety in Kn given by a set of equations of the form

m1 · x1 + . . .+mn · xn = a (2)

with m1, . . . ,mn ∈ Z is said to be a Q-affine space.
If a = 0 the space is said to be Q-linear and is a base of the affine variety
(2).

Lemma 1.1 For any Q-linear space N ⊆ Kn expN is a torus and

dimN = dim expN.

Proof Proceeding by induction we may assume that N is determined by one
linear equation of the form (2) with a = 0 and g.c.d. of m1, . . . ,mn is 1.
Then (1) with b = 1 holds for any ȳ ∈ expN. Conversely assume ȳ satisfies
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(1). Take x̄ ∈ Kn such that exp x̄ = ȳ. Then m1x1 + . . .+mnxn = 2kπi. Let
l1, . . . , ln ∈ Z be such that

l1m1 + . . .+ lnmn = 1

and define x′i = xi − li2kπi. Then

m1x
′
1 + . . .+mnx

′
n = 0 and exp〈x′1, . . . , x′n〉 = 〈y1, . . . , yn〉.

Thus ȳ ∈ expN and the latter is given exactly by (1).
We see also that codim N = codim expN, where codim is the number of
independent equations which determine the linear space N in and the torus
expN in Kn, correspondingly. Hence dimN = dim expN.2

Definition Let W ⊆ Kn be an algebraic variety defined over Q, T ⊆ (K∗)n

a torus, S an irreducible component of the algebraic variety W ∩ T.
If dimS > dimW +dimT−n, then S is said to be an atypical component
of the intersection W ∩ T.
Otherwise S is said to be typical.

Conjecture on intersection with tori (CIT) For any W ⊆ Kn alge-
braic variety defined over Q there is a finite collection

τ(W ) = {T1, . . . , Tk}

of proper basic tori in (K∗)n such that for any proper basic torus T ⊆ (K∗)n

and any atypical component S of W ∩ T

S ⊆ Ti for some Ti ∈ τ(W ).

Notice that CIT implies a stronger form conjecture, when W is defined over
Q̃, the algebraic closure of Q. Indeed, such a W has finitely many conjugates
W σ (σ a field automorphism) and W# =

⋃
σW

σ is defined over Q. Applying
CIT to W# we get τ(W ).

Theorem 1 (CIT with parameters) Let V (a) ⊆ Kn be an algebraic va-
riety depending on parameters a ∈ Kk. Then, assuming CIT, there is
a finite set τk(V ) of basic proper tori, a natural number t = tk(V ) and
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c1(a), . . . , ct(a) ∈ (K∗)n depending on V and a such that given a proper basic
torus T ⊆ Kn and an atypical component Sa of V (a) ∩ T there is P ∈ τ(V )
and i ≤ t for which Sa ⊆ P · ci(a).

Proof First we prove the statement with τk(V, a)) and t = tk(V, a) depending
both on V and a. For this w.l.o.g. we may assume that

V (a) = {〈x1, . . . , xn〉 : 〈x1, . . . , xn+1, . . . , xn+k〉 ∈ V & xn+1 = a1, . . . , xn+k = ak},

V ⊆ Kn+k is a Q̃-definable irreducible variety and a a generic point in pr(V ),
where pr : Kn+k → Kk is the projection onto the last k coordinates and is
not contained in a proper subtorus of (K∗)k.
Notice that dimV (a) = dimV − dim prV then.
Let Sa be a connected component of the intersection V (a) ∩ T for a torus
T. Then Sa is definable over the algebraic closure of Q(a) and can be rep-
resented as an equidimensional connected component of an algebraic variety
of the form S(a) for some S ⊆ Kn+k irreducible Q̃-definable. Notice that
dimS(a) = dimS − dim prS and, since a ∈ prS, a is generic in prV and
S ⊆ V, we have dim prV = dim prS. Thus

dimV − dimV (a) = dimS − dimS(a).

It follows that

dimS(a) > dimV (a)+dimT−n iff dimS > dimV +dimT×(K∗)k−(n+k).

The righthandside of the above is saying that S is an atypical component of
the intersection of V and torus T × (K∗)k. By CIT there is a proper torus
P ∈ τ(V ) such that S ⊆ P. Thus S(a) ⊆ P (a). But

P (a) = {〈x1, . . . , xn〉 : 〈x1, . . . , xn+1, . . . , xn+k〉 ∈ P & xn+1 = a1, . . . , xn+k = ak}

is a coset of a subtorus P (k) ⊆ (K∗)n and the subtorus is proper since other-
wise a belongs to a proper subtorus of (K∗)k, which contradicts the assump-
tions, and thus the statement depending on a has been proved.
To prove the full statement suppose towards a contradiction that for any
finite set τ of proper subtori of Kn and every natural number t there is an
a ∈ Kk such that the pair 〈τ, t〉 does not fit for 〈τ(V, a), t(V, a)〉. It is a
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routine exercise to see that for every pair 〈τ, t〉 the set Aτ,t of such a′s is de-
finable in the field language. Using Tarski-Seidenberg quantifier-elimination
theorem for K we may say that Aτ,t is constructible, i.e. is obtained from
algebraic subvarieties of Kk by finite unions, intersections and complements.
Consequently, using the fact that K is of infinite transcendence degree, one
can find an a ∈ Kk which belongs to Aτ,t for all 〈τ, t〉. This contradicts the
above proved statement.2

Corollary 1 Let V (a) ⊆ Kn be an algebraic variety depending on parame-
ters a ∈ Kk and b ∈ Kn. Then, assuming CIT, there is a finite set τk(V )
of basic proper tori, a natural number t = tk(V ) and c1(a, b), . . . , ct(a, b) ∈
(K∗)n depending on V and a, b such that given a proper basic torus T ⊆ Kn

and an atypical component Sa,b of V (a) ∩ T · b there is P ∈ τ(V ) and i ≤ t
for which Sa,b ⊆ P · ci(a, b).

We will need the following technical generalization of the notion of an atyp-
ical component of an intersection.

Definition Let T, P ⊆ Kn be tori, V ⊆ Kn an algebraic variety. Assume an
irreducible component S of the intersection V ∩ T is a subset of P. Then S
is said to be an atypical component of V ∩ T with respect to P iff

dimS > dim(V ∩ P ) + dim(T ∩ P )− dimP.

Proposition 1 Let V (a) ⊆ Kn be an algebraic variety, b ∈ Kn. Then there
is a finite set π(V ) of basic tori of (K∗)n, a number p = p(V ) and elements
c1(a, b), . . . , cp(a, b) ∈ Kn such that, given a basic torus T ⊆ Kn, for any
connected atypical component S of V (a)∩T ·b, there is Q ∈ π(V ) and ci(a, b)
for which S ⊆ Q · ci(a, b) and S is typical in V (a) ∩ T · b with respect to
Q · ci(a, b).

Proof We shall prove a slightly generalized version of the statement:
Let P ⊆ Kn be a torus, V (a) ⊆ P an algebraic variety. Then there is a
finite set πP (V ) of basic tori of (K∗)n a number p = pP (V ) and elements
c1(a, b), . . . , cp(a, b) ∈ Kn such that given a basic torus T ⊆ P for any con-
nected atypical component S of V (a) ∩ T · b there is Q ∈ πP (V ) and ci(a, b)
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for which S ⊆ Q · ci(a, b) and S is typical in V (a) ∩ T · b with respect to
Q · ci(a, b).
For dimP = 1 the statement is trivially true. Consider the general case.
By CIT relativized to P there is a finite set τP (V ) of proper subtori of P such
that for any S ⊆ V ∩ P ∩ T atypical with respect to P there is a Q ∈ τP (V )
with S ⊆ Q. By induction on dimP we can use the finite sets πQ(V ∩Q) of
subtori of Q. Put

πP (V ) =
⋃

Q∈τP (V )

πQ(V ∩Q).

2

2 CIT versus Mordell-Lang and Manin-Mumford

We discuss now the more general form of CIT as stated in the introduction.
So A is a semi-abelian variety, and we write the group operation in A in the
additive way. We show that in this form CIT is a conjecture of Diophantine
type and is stronger than both Mordell-Lang and Manin-Mumford conjec-
tures (now proved, see [L]). For simplicity we formulate both conjectures in
a slightly restricted form.

Proposition 2 (Manin-Mumford case) Let W ⊆ A be an algebraic vari-
ety which contains no coset of an algebraic subgroup of A, and Γ the subgroup
of torsion points of A. Then CIT formally implies that W ∩ Γ is finite.

Proof Each point in Γ of order p belongs to the 0-dimensional subgroup
Bp = {a ∈ A : pa = 0}. By assumtions dimW < n. Thus any point in W ∩Γ
is an atypical component of the intersection W ∩Bp and thus is contained in
one of P belonging to τ(W ).
Since any coset P is a semi-abelian variety again, by induction on dimA it
follows that W ∩ Γ ∩ P is finite, hence W ∩ Γ is finite.2

Proposition 3 (Mordell-Lang case) Let W ⊆ A be an algebraic subva-
riety which contains no coset of an algebraic subgroup of A, Γ a finitely
generated subgroup of A. Then CIT formally implies that W ∩ Γ is finite.
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Proof W.l.o.g. we assume W is not contained in any coset of a proper
algebraic subgroup of A. We prove the statement by induction on dimA = n.
For n = 1 the statement is trivial.
Denote r the rank of group Γ (the size of a maximal independent subset) and
dimW = w. Let k be an integer such that k(n−w) > nr, which exists since
w < n.
Consider any point 〈a1, . . . , ak〉 ∈ Γk∩W k. A maximal independent subset of
a1, . . . , ak contains d ≤ r elements, say a1, . . . , ad, thus 〈a1, . . . , ak〉 belongs
to a subgroup Ba ⊆ Ak defined by k − d equations of the form

mxd+i = mi,1x1 + . . .+mi,dxd, (i = 1, . . . , k − d)

for m and mi,j integers. The equations are independent, hence dimBa =
nd and so 〈a1, . . . , ak〉 belongs to an atypical component of the intersection
W k ∩Ba since

dimW k + dimBa − nk = wk + nd− nk ≤ nr − k(n− w) < 0.

By Theorem 1 there is a finite set of proper subgroups B1, . . . , Bl of Ak and
points c1, . . . , cl ∈ Ak such that
(*) any point of the intersection W k ∩Γk belongs to one of the cosets Bi + ci
(i = 1, . . . , l).
Suppose towards a contradiction that W ∩ Γ is infinite.
Let now k be the minimal one with the property (*). Then there are only
finitely many k-tuples w̄ ∈ W k ∩ Γk with wi = wj for some 1 ≤ i < j ≤ k.
Denote (W ∩Γ)(k) the set of all k tuples with distinct coordinates from W ∩Γ.
For any U ⊆ Ak denote

U sym = {ūπ : ū ∈ U, π ∈ Sym(k) a permutation of coordinates}.

Then (Bi + ci)
sym is a finite union of cosets, and (W ∩ Γ)(k) is a subset of

the union of all (Bi + ci)
sym. By the classical combinatorial fact (Ramsey

Theorem) there is an infinite X ⊆ W ∩ Γ and some i ∈ {1, . . . , l} such that

(W ∩ Γ)k ∩ (Bi + ci)
sym.

It follows that there are a1, . . . , ak−1 ∈ W ∩ Γ such that
〈a1, . . . , ak−1, b〉 ∈ (W ∩ Γ)k ∩ (Bi + ci) for infinitely many b ∈ W ∩ Γ.
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But the condition on b

〈a1, . . . , ak−1, b〉 ∈ Bi + ci

is equivalent to b ∈ B+d for some proper subgroup B ⊆ A and d ∈ Γ. Shift-
ing W by d we may assume W ∩ Γ ∩ B is infinite. By induction hypothesis
on n the only possibility then is W ∩B is not proper in B, i.e. B ⊆ W. The
contradiction.2

3 Schanuel Conjecture

We want to exhibit now some ties between CIT and the classical
Schanuel Conjecture (SchC) For any Q-linearly independent complex
numbers x1, . . . , xn

tr.d.(x1, . . . , xn, exp(x1), . . . , exp(xn)) ≥ n.

It easy to eliminate the assumptions on the linear independence and see
that the conjecture can be stated equivalently in the following form: For any
x1, . . . , xn complex numbers

tr.d.(x1, . . . , xn, exp(x1), . . . , exp(xn)) ≥ l.d.(x1, . . . , xn),

where l.d.(x1, . . . , xn) denotes the dimension of the Q-linear space generated
by x1, . . . , xn.

Proposition 4 [Schanuel Conjecture with parameters] SchC implies:
Let V ⊆ K2n+k be an algebraic variety over Q̃, a = 〈a1, . . . , ak〉 ∈ Kk and

V (a) = {〈x1, . . . , xn, y1, . . . , yn〉 ∈ K2n : 〈x1, . . . , xn, y1, . . . , yn, a1, . . . , ak〉 ∈ V }.

Suppose dimV (a) = d < n. Then there is a finite A ⊆ K, |A| ≤ k(n + 1),
such that either
x1, . . . , xn ∈ Kn are Q-linearly dependent over A or
〈x1, . . . , xn, exp(x1), . . . , exp(xn)〉 /∈ V (a).
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Proof If there are less than k + 1 n-tuples 〈x1, . . . , xn〉 such that
〈x1, . . . , xn, exp(x1), . . . , exp(xn)〉 ∈ V (a) (call such n-tuples V (a)-tuples)
then A is just the union of all elements in the tuples. So we assume one
can choose k + 1 of them

〈xi,1, . . . , xi,n, exp(xi,1), . . . , exp(xi,n)〉 ∈ V (a), i = 1, . . . , k + 1.

From the assumptions

tr.d.({xi,j, al, exp(xi,j), exp(al) : i ≤ k + 1, j ≤ n, l ≤ k}) ≤ (k + 1)d+ 2k

and (k + 1)d+ 2k < (k + 1)n+ k.
By SchC then

{xi,j : i ≤ k + 1, j ≤ n} ∪ {aj : j ≤ k}

are linearly dependent. Thus we have proved that for any k+ 1 V (a)-tuples
there is a linear dependence on their coordinates over a. Let now l ≤ k be
maximal such that there is B = {bi,j : i ≤ l, j ≤ n} independent over a
and 〈bi,1, . . . , bi,n〉 are V (a)-tuples. Then A = B ∪ {aj : j ≤ k} satisfies the
requirement of the proposition.2

Proposition 5 SchC + CIT imply the following Uniform Schanuel Conjec-
ture (USC):
for any algebraic variety V ⊆ K2n of dimension less than n there is a finite
set µ(V ) of proper Q-linear subspaces of Kn such that given

〈x1, . . . , xn, exp(x1), . . . , exp(xn)〉 ∈ V

there is M ∈ µ(V ) and an integer vector z̄ ∈ Zn such that

〈x1, . . . , xn〉 ∈M + 2πi · z̄

and M is of codimension at least 2 or z̄ = 0.
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Remark We can equivalently state that for any connected component S
of V ∩ {exp(xi) = yi, i = 1, . . . n} there is M and z̄ as above such that
prfS ⊆M + 2πi · z̄ (projection onto the first n coordinates).
Proof We assume SchC+CIT and prove USC.
Denote prl the projection K2n → Kn onto the last n coordinates. Let

dim(V ∩ pr−1
l (y)) = d

for a generic y ∈ prl(V ). Then dimV = dim prl(V ) + d.
Under our asumptions, by SchC there is a proper Q-linear subspace N of Kn

which contains 〈x1, . . . , xn〉, more precisely, dimN = l.d.(x1, . . . , xn). Hence
〈exp(x1), . . . , exp(xn)〉 is an element of the proper subtorus T = exp(N) of
(K∗)n.
Denote algebraic varieties

V ′l = {y ∈ Vl : dim(V ∩ pr−1
l (y)) > d}, V ′ = {〈x, y〉 ∈ V : y ∈ V ′l }.

Since V ′ is a proper algebraic subvariety of the irreducible variety V,

dimV ′ < dimV.

Denote also
d′ = min{dim(V ∩ pr−1

l (y)) : y ∈ V ′l }.

Consider two cases.
Case 1:
〈x1, . . . , xn, exp(x1), . . . , exp(xn)〉 ∈ V ′. Then

tr.d.(x1, . . . , xn, exp(x1), . . . , exp(xn)) ≤ d′+dim(V ′l ∩T ) ≤ dimV ′+dimT−n+s′ < dimT+s′,

where s′ = dimV ′l + dimT − n− dim(V ′l ∩ T ). By SchC s′ > 0, which means
the intersection V ′l ∩T is atypical. Hence 〈exp(x1), . . . , exp(xn)〉 ∈ Pi for one
of tori Pi ∈ τ(V ′l ).
Case 2:
〈x1, . . . , xn, exp(x1), . . . , exp(xn)〉 ∈ V \ V ′. Then

tr.d.(x1, . . . , xn, exp(x1), . . . , exp(xn)) ≤ d+dim(Vl∩T ) ≤ dimV+dimT−n+s < dimT+s,
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where s = dimVl + dimT − n − dim(Vl ∩ T ). By SchC s > 0, which means
the intersection Vl ∩ T is atypical. Hence 〈exp(x1), . . . , exp(xn)〉 ∈ Q for one
of tori Q ∈ π(Vl).
Denote now µ(V ) the set of Q-linear subspaces M of Kn, such that exp(M) =
P for P ∈ π(Vl) ∪ π(V ′l .)
Suppose now y = 〈exp(x1), . . . , exp(xn)〉 ∈ P, exp(M) = P for P ∈ π(Vl)
and codim P = 1. Denote V2 = prl(V ). Then by definition of π(Vl)

dimy(V2 ∩ T ∩ P ) = dim(T ∩ P ) + dimy(V2 ∩ P )− dimP

(dimy is the dimension of a maximal component containing y.) Since dim(T ∩
P ) = dimT + dimP − n + sT,P for some sT,P ≥ 0 and dimy(V2 ∩ P ) =
dimP + dimV2 − n+ sV,P for some sV,P ≥ 0, we get

dimy(V2 ∩ T ∩ P ) = dimT + dimP + dimV2 − 2n+ sT,P + sV,P .

On the other hand

dimy(V2∩T∩P ) = dimy(V2∩T )+dimP−n = dimV2+dimT+s+dimP−2n

for s > 0 defined above. Thus s = sT,P + sV,P .
If sT,P = 0, then sV,P > 0, which implies V2 ⊆ P and

dimy(V2∩T ∩P ) = dim(T ∩P )+dimV2−dimP = dimT +dimV2−n+sT,P .

Since

dimy(V2 ∩ T ∩ P ) = dimy(V2 ∩ T ) = dimT + dimV2 − n+ sV,P ,

we get sV,P = sT,P , a contradiction. Thus T and P intersect atypically (i.e.
not transversally), which means T ⊆ P in case codim P = 1. It follows
N ⊆ M and hence 〈x1, . . . , xn〉 ∈ M in this case. Otherwise 〈x1, . . . , xn〉 ∈
M + 2πi · z̄ for some integer vector z̄.
In case y ∈ prl(V

′) the same arguments applied to V ′ again give the required.2

Lemma 3.1 USC implies SchC.
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Proof Notice that

tr.d.(x1, . . . , xn, exp(x1), . . . , exp(xn)) < n

is equivalent to

〈x1, . . . , xn, exp(x1), . . . , exp(xn)〉 ∈ V

for some Q-definable algebraic variety V of dimension less than n. By USC
either x1, . . . , xn are Z-linearly dependent, or there are two independent Z-
vectors 〈zj,1, . . . , zj,n〉 and kj ∈ Z (j = 1, 2) such that

zj,1 · x1 + . . .+ zj,n · xn = 2kjπi (j = 1, 2).

It follows there is a nonzero integer vector 〈z1, . . . , zn〉 such that

z1 · x1 + . . .+ zn · xn = 0,

which is the statement of SchC.2

Lemma 3.2 USC implies: Let W (ā) ⊆ Kn be an algebraic variety, Then
there is a finite set µ(W ) of proper Q-linear subspaces of Kn and a num-
ber m = m(W ) such that, given L ⊆ Kn a K-linear subspace and R ⊆
L ∩ lnW (ā) a connected component of the analytic subset of Kn, there are
c̄1, . . . , c̄m ∈ Kn satisfying R ⊆ M + ci + 2πiz̄ for some i ≤ m, M ∈ µ(W )
and z̄ ∈ Zn.

Proof By assumptions dimR > dimL + dimW (ā) − n. By intersecting R
and L with generic hyperplanes we can reduce the dimensions of R and L,
if needed, and come to the situation dimR > dimL + dimW (ā) − n < 0,
which we will further assume.
Let L be given by matrix equation Bx̄ = 0. Consider the algebraic variety

V (ā, B) = {x̄ ∈ Kn : Bx̄ = 0} ×W (ā).

By the assumtion dimV (ā, B) < n and S = {〈x̄, exp(x̄)〉 : x̄ ∈ R} satisfies
the assumptions of Proposition 5 (the remark) with parameters. Hence the
statement follows.2
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Corollary 2 USC implies CIT with parameters.

Repeating the arguments in the proof of Proposition 1 we get from Lemma 3.1

Corollary 3 USC implies: Let W (ā) ⊆ Kn be an algebraic variety, Then
there is a finite set λ(W ) of proper Q-linear subspaces of Kn and a number
l = l(W ) such that, given L ⊆ Kn a K-linear subspace and R ⊆ L∩ lnW (ā)
a connected component of the analytic subset of Kn, there are c̄1, . . . , c̄l ∈ Kn

satisfying R ⊆ M + ci + 2πiz̄ for some i ≤ m, M ∈ λ(W ) and z̄ ∈ Zn, and
R is typical in L ∩ lnW (ā) with respect to M + ci + 2πiz̄.

Lemma 3.3 In Corollary above, denoting M ′ = M + ci + 2πiz̄,

dim(M ′ ∩ L) > dimM ′ + dimL− n

and
dim(M ′ ∩ lnW (ā)) > dimM ′ + dimW (ā)− n.

Proof By the assumption that R is typical with respect to M ′

dimR = dimM ′ ∩ L+ dimRM
′ ∩ lnW (ā)− dimM ′, (3)

where dimRM
′ ∩ lnW (ā) is the dimension of the connected component of

the intersection containing R.
Let

dimM ′ ∩ L = dimM ′ + dimL− n+ dL, (4)

dimRM
′ ∩ lnW (ā) = dimM ′ + dimW (ā)− n+ dW , (5)

where dL, dW are some non-negative integers which are just zero iff the cor-
responding intersections are transversal (intersect typically). It follows from
(3) and (4) that

dimR = dimL− n+ dL + dimRM
′ ∩ lnW (ā) ≤ dimL+ dimW (ā)− n+ dL

but dimR > dimL + dimW (ā) − n by the assumptions. It follows dL ≥ 1,
hence M ′ intersects L not transversally.
Symmetrically, using (3) and (5), dW ≥ 1.2
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Theorem 2 Assume USC. Then given a K-linear L ⊆ Kn not contained in
any proper Q-linear subspace of Kn, and an algebraic family W (ā) ⊆ Kn of
algebraic varieties there is a finite set η(L,W ) of K-linear hyperplanes of L
and a natural number l = l(W ) such that there are d1, . . . , dl ∈ Kn satisfying
the property that any atypical component R of L ∩ lnW (ā) is contained in
some H + di for H ∈ η(L,W ) and i ≤ l.

Proof By Corollary 3 the atypical component R is contained in some M ′ =
M+c+2πiz̄, c taking one of the l(W ) values depending on ā, M a Q-linear
subspace from ν(W ) and R is typical with respect to M ′. Since M ′ intersects
with L we may assume that c ∈ L.
By Q-linear transformation of variables we may assume that M is given by
p = codim M equations

x1 = . . . = xp = 0,

and M + c+ 2πiz̄ is given by

x1 = 2
k1

m
πi+ c1, . . . xl = 2

kl
m
πi+ cp

for k1, . . . , kp,m ∈ Z, c1, . . . , cp ∈ K. By Lemma 3.3M is not transversal to L,
hence there is a non-trivial K-linear equation of the form s1x1+. . .+spxp = 0
which holds on L. In other words the projection of L onto x1, . . . , xp denoted
prL is a proper subspace of Kp. Let N be the minimal K-linear subspace of
Cp such that

Zp ∩N = Zp ∩ prL.

In fact, N is Q-linear since it has a basis consisting of integer vectors. Since L
is not contained in a proper Q-linear subspace, N ∩prL is a proper subspace
of prL.
Let 〈x1, . . . , xn〉 ∈ R. Then by the construction 〈x1, . . . , xp〉 ∈ prL and
〈x1, . . . , xp〉 = 2πi 1

m
z̄ + pr(c) for some integer vector z̄. Since pr(c) ∈ prL,

〈x1, . . . , xp〉 ∈ 1
m
·Zp ∩ prL ⊆ N. Denote H = {y ∈ L : pr(y) ∈ N}, which by

the construction is a proper K-linear subspace of L and R ⊆ H + c. Notice
that we constructed H using only M and L and c depends only on the coset
M ′. Define η(L,W ) to be all the H constructed from M of ν(W ) and l(W )
the same as in Corollary 3.2
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4 The ’function field’ case of CIT

During 1997-98 Logic Year in MSRI, Berkeley, E.Hrushovski pointed out that
CIT can be treated by means of the theory of differential fields, and C.Wood
and A.Pillay showed me the paper by J.Ax which contains the following basic
theorem
Theorem of J.Ax [A] Let y1, . . . , yn, z1, . . . , zn be non-zero elements of a
differential field with subfield of constants C ⊃ Q such that Dyi = Dzi

zi
for

i = 1, . . . , n, and Dy1, . . . , Dyn are Q-linearly independent. Then

tr.d.C(y1, . . . , yn, z1, . . . , zn) ≥ n+ 1.

In the context of the broader conjectures it is interesting to mention that
W.D.Brownawell and K.K.Kubota in [BK] generalized the Ax’s result to
Weierstrass elliptic functions.

Proposition 6 Given V ⊆ K2n+k an algebraic variety there is a finite collec-
tion U of non-zero integer vectors such that for any ā ∈ Kk with dimV (ā) ≤
n for any infinite component S ⊆ V (ā) ∩ {exp(xi) = xn+i, i = 1, . . . n} for
one of u ∈ U there is a constant cS such that all 〈s1, . . . , s2n〉 ∈ S satisfy
u1s1 + . . .+ unsn = cS.

Proof Take y1, . . . yn, z1, . . . , zn to be the coordinate functions on V (ā).
Consider now the restriction of functions y1, . . . , yn, z1 . . . , zn to S and dif-
ferentiation D = d

dt
along a curve in a simple point s of the component.

Then
Dzi = ziDyi for i = 1, . . . , n (6)

in the differential field FS,s of germs of analytic functions on S in s, and

〈y1, . . . yn, z1, . . . , zn〉 ∈ V (ā)(FS,s). (7)

Now assume towards a contradiction that for any choice of finite collection
U of integer vectors there is ā and an infinite component Sā ⊆ V (ā) such
that the statement of the proposition fails.
Then in some formal differential field F (6) and (7) hold with F in place
of FS,s, and Dy1, . . . , Dyn are Q-linearly independent. This contradicts the
theorem of Ax.2
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It follows from the results of the preceding section

Corollary 4 Given an algebraic variety W (ā) ⊆ Kn there is a finite col-
lection µ(W ) of non-zero integer vectors such that for any torus T ⊆ Kn

and an infinite atypical component S ⊆ W (ā) ∩ T of the intersection there
is m̄ ∈ µ(W ) and a constant c such that all (a1, . . . , an) in the component
satisfy am1

1 · . . . · amn
n = c.

Correspondingly the proof of Theorem 2 yields

Corollary 5 Given a K-linear L ⊆ Kn not contained in any proper Q-linear
subspace of Kn, and an algebraic family W (a) ⊆ Kn of algebraic varieties
there is a finite set η(L,W ) of K-linear hyperplanes of L such that any
atypical infinite component R of L∩ lnW (a) is contained in some H + d for
H ∈ η(L,W ) and d ≤ L.

5 The real exponent, real CIT and the Mordell

conjecture

Theorem 3 If the real exponentiation satisfies the Schanuel conjecture then
it satisfies the Uniform Schanuel conjecture.

Proof 1 Let V ⊆ R2n be an algebraic variety, dimV < n. Denote

V e = {〈x1, . . . , xn, exp(x1), . . . , exp(xn)〉 ∈ V }.

Then by o-minimality of Rexp (see [W], but in fact the Hovanski’s results [Ho]
suffice) V e is an analytic subspace with finitely many connected components
V e
i , i = 1, . . . , k. By the Schanuel conjecture

V e ⊆
⋃

M⊂Rn Q-linear subspace

{〈x1, . . . , xn, exp(x1), . . . , exp(xn)〉 : {〈x1, . . . , xn〉 ∈M}

1This proof is incomplete. For the full proof see the joint note with J.Kirby The uniform
Schanuel conjecture over the real numbers. The author’s web-page and to appear in the
Bulletin of LMS
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thus, by the connectedness, each component V e
i lies in a set of the form

{〈x1, . . . , xn, exp(x1), . . . , exp(xn)〉 : {〈x1, . . . , xn〉 ∈M}.2

Corollary 4 for reals by the same o-minimality argument takes the form

Corollary 6 2 Given an algebraic variety W (ā) ⊆ Rn there are a finite
collection µ(W ) of non-zero integer vectors, a number m(W ) independent on
a, and c1, . . . , cm(W ) ∈ Rn, depending on a, such that for any torus T ⊆ Rn

and an infinite atypical component S ⊆ W (ā)∩T of the intersection there is
m̄ ∈ µ(W ) and i ≤ m(W ) such that all 〈a1, . . . , an〉 in the component satisfy
am1

1 · . . . · amn
n = ci.
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