Complex roots of unity on the real plane

B.Zilber

April-July, 2003 *

We consider the theory of the structure

$$\mathbb{C}_{\mathbb{R},\mathrm{roots}} = (\mathbb{C},+,\cdot,R,U)$$

where R is a unary predicate for the real axis of the complex plane \mathbb{C} and U the unary predicate for the complex roots of unity.

A weaker structure $(\mathbb{C}, +, \cdot, U)$ is known to be ω -stable (see [Z]). Anand Pillay asked if $\mathbb{C}_{\mathbb{R},\text{roots}}$ is well behaving in the context of real model theory, and this has been further discussed in [Mi].

We give here a complete axiomatisation of the theory of $\mathbb{C}_{\mathbb{R},\text{roots}}$ and prove that the theory allows elimination of quantifiers in a reasonable language. The elimination of quantifiers in fact shows that definable sets in the standard model are finite boolean combinations of some countable unions of semi-algebraic cells.

Let $U_0 = U(\mathbb{C})$, the complex roots of unity. We use the following **Lang property** of U_0 (see [L], Ch.I, s.6 for details):

For every polynomial $p(x_1, \ldots, x_n)$ over $\mathbb{Q}(U_0)$ (the extension of \mathbb{Q} by the roots of unity) there is a finite collection of cosets S_1, \ldots, S_k of algebraic subgroups of $(\mathbb{C}^*)^n$ given by a finite system of equations of the form

$$x^m = \gamma_m$$

for non-trivial monomials x^m and elements $\gamma_m \in U_0$ such that

^{*}with corrections suggested by O.Belegradek in January 2005

$$\{a \in U_0^n : p(a) = 0\} = \bigcup_i S_i \cap U_0^n.$$

Let $T_{\mathbb{R},roots}$ be the theory of $\mathbb{C}_{\mathbb{R},roots}$ and $(F,+,\times,R,U)$ a model of the theory. Since F=R+iR, and R=R(F) is a definable (formal real) subfield, a subset $S\subseteq F^n$ can be also vewed as a subset of R^{2n} . Call $S\subseteq F^n$ semi-algebraic if S is definable in the field structure $(R,+,\times)$.

Theorem 1 The complete theory $T_{\mathbb{R},roots}$ of $\mathbb{C}_{\mathbb{R},roots}$ is given by the following axioms:

- 1. The universe F has a field structure, F = R + iR with $i^2 = -1$ and R a real closed field;
- 2. U is a multiplicative divisible subgroup of F with n-torsion isomorphic to the cyclic group of order n;
- 3. for any $a \in U$ the unique representation

$$a = s + it, \quad s, t \in R$$

yields $s^2 + t^2 = 1$;

- 4. the projection pr U of U on the 'real' axis R is dense in [-1,1], that is, for any $-1 \le a < b \le 1$ we have $(a,b) \cap \operatorname{pr} U \ne \emptyset$;
- 5. Lang's property holds for U, that is

for every polynomial $p(x_1, ..., x_n)$ over $\mathbb{Q}(U_0)$ there is a finite collection of cosets $S_1, ..., S_k$ of algebraic subgroups of $(F^*)^n$ given by finite system of equations of the form

$$x^m = \gamma_m$$

for non-trivial monomials x^m and elements $\gamma_m \in U_0$ such that

$$\{a \in U^n : p(a) = 0\} = \bigcup_i S_i \cap U^n;$$

6. $R \setminus \operatorname{acl}(U)$ is dense in R, that is for any a < b in R and any semi-algebraic function $f: (0,1)^n \to R$ (with parameters)

$$(a,b) \setminus f((\operatorname{pr} U)^n) \neq \emptyset.$$

The proof of the theorem follows from the lemmas below. We write T for $T_{\mathbb{R}.\text{roots}}$.

Lemma 0.1 Let F be a model of T and A a multiplicatively independent over U_0 subset of U(F).

Then A is algebraically independent over U_0 in the field theoretic sense.

Proof Immediate from Lang's property. \Box

Now let F and E be models of T. By Jonsson's theory there are saturated models $F' \succ F$ and $E' \succ E$ of some cardinality κ (with $2^{\mu} < \kappa$ for any $\mu < \kappa$) we may assume that F' = F and E' = E and want to prove that $F \cong E$.

Lemma 0.2 Let μ be an ordinal less than κ , $A_{\mu} \cup A_{\mu}^{*}$ be a subset of R(F) $A_{\mu}^{*} \subseteq \operatorname{pr} U(F)$, $A_{\mu} \subseteq R(F)$, card $A_{\mu} \leq |\mu|$, card $A_{\mu}^{*} \leq |\mu|$, such that

- (i) $A_u^* \subseteq \operatorname{pr} U(F)$ is algebraically independent;
- (ii) A_{μ} is algebraically independent over U(F).

Then

- (a) pr $U(F) \setminus \operatorname{acl} A_{\mu}^* \neq \emptyset$ (b) $R(F) \setminus \operatorname{acl}(U(F) \cup A_{\mu}) \neq \emptyset$ and
- (c) for any $a_{\mu}^* \in \operatorname{pr} U(F) \setminus \operatorname{acl} A_{\mu}^*$ and $a_{\mu} \in R(F) \setminus \operatorname{acl}(U(F) \cup A_{\mu})$ the new sets $A_{\mu+1}^* = A_{\mu}^* \cup \{a_{\mu}^*\}$ and $A_{\mu} = A_{\mu} \cup \{a_{\mu}\}$ satisfy properties (i) and (ii).

Proof (a) follows by saturatedness from the fact that pr U(F) is infinite.

- (b) follows by saturatedness from axiom 6.
- (c) is obvious from assumptions. \Box

Corollary 1 There exists a transcendence basis of F of the form $A \cup A^*$ with $A^* \subseteq \operatorname{pr} U(F)$, $A \subseteq R(F)$, $\operatorname{pr} U(F) \subseteq \operatorname{acl} A^*$, $\operatorname{card} A = \operatorname{card} A^* = \kappa$.

For $X \subseteq R$ we denote $\operatorname{dcl} X$ the definable closure of X in the $(R, +, \times)$. We notice that dcl is just the closure under all semi-algebraic functions, that is the functions 0-definable in the formal reals.

We say that a bijection ϕ between subsets A and B of R is a semi-algebraic isomorphism if there is an extension of ϕ to a bijection ϕ : $dclA \to dclB$ preserving semi-algebraic functions and <.

Lemma 0.3 There exist transcendence bases $\tilde{A} \cup \tilde{A}^* \subseteq R(F)$ and $\tilde{B} \cup \tilde{B}^* \subseteq R(E)$ of F and E correspondingly with $\tilde{A}^* \subseteq \operatorname{pr} U(F)$, $\tilde{B}^* \subseteq \operatorname{pr} U(E)$, transcendence bases of $\operatorname{pr} U$ and a semi-algebraic isomorphism $\phi: \tilde{A} \cup \tilde{A}^* \to \tilde{B} \cup \tilde{B}^*$ such that $\phi(\tilde{A}) = \tilde{B}$.

Proof Let

$$A \cup A^* = \{a_i : i < \kappa\} \cup \{a_i^* : i < \kappa\}$$

and

$$B \cup B^* = \{b_i : i < \kappa\} \cup \{b_i^* : i < \kappa\}$$

be transcendence bases of F and E correspondingly constructed by Corollary 1.

We construct $\tilde{A} \cup \tilde{A}^*$, $\tilde{B} \cup \tilde{B}^*$ and ϕ by transfinite induction. Suppose that for $\mu < \kappa$

$$\tilde{A}_{\mu} \cup \tilde{A}_{\mu}^* = \{\tilde{a}_i : i < \mu\} \cup \{\tilde{a}_i^* : i < \mu\}$$

and

$$\tilde{B}_{\mu} \cup \tilde{B}_{\mu}^* = \{\tilde{b}_i : i < \mu\} \cup \{\tilde{b}_i^* : i < \mu\}$$

have been constructed with ϕ_{μ} given by the enumeration and

$$\operatorname{acl}(\tilde{A}_{\mu} \cup \tilde{A}_{\mu}^{*}) \supseteq \{a_{i} : i < \mu\} \cup \{a_{i}^{*} : i < \mu\}$$

and

$$\operatorname{acl}(\tilde{B}_{\mu} \cup \tilde{B}_{\mu}^*) \supseteq \{b_i : i < \mu\} \cup \{b_i^* : i < \mu\}.$$

By back-and-forth method it is enough to show that by letting \tilde{a}_{μ}^{*} equal to the first element of $A^{*} \setminus \operatorname{acl} \tilde{A}_{\mu}^{*}$ and \tilde{a}_{μ} equal to the first element of $A \setminus \operatorname{acl}(\operatorname{pr} U(F) \cup \tilde{A}_{\mu})$ we can extend the isomorphism ϕ to $\tilde{A}_{\mu+1} \cup \tilde{A}_{\mu+1}^{*}$.

Denote $p_{\mu,A}^*$ the semi-algebraic type of \tilde{a}_{μ}^* over $\tilde{A}_{\mu} \cup \tilde{A}_{\mu}^*$ and $p_{\mu,B}^*$ the corresponding type over $\tilde{B}_{\mu} \cup \tilde{B}_{\mu}^*$. Notice that the types are given by collections of formulas of the form $f_1 < x < f_2$ for f_1, f_2 semi-algebraic terms over the parameters. Since the parameters of the two types are semi-algebraically conjugated, by elimination of quantifiers in real closed fields, $p_{\mu,B}^*$ is consistent. Also the type contains the condition -1 < x < 1 for its variable x. Since the projection pr (U) of U on R is dense in [-1,1] and $p_{\mu,B}^*(R)$ is an intersection of intervals, the type is consistent with $x \in \operatorname{pr}(U)$. By saturatedness we find $\tilde{b}_{\mu}^* \in U(E)$ realising $p_{\mu,B}^*$.

Now let $p_{\mu,A}$ be the semi-algebraic type of \tilde{a}_{μ} over $\tilde{A}_{\mu+1}^* \cup \tilde{A}_{\mu}$ and $p_{\mu,B}$ the correspondent type in E. Again, $p_{\mu,B}(R)$ is a given as an intersection of intervals. By axiom 6 this is finitely consistent with the collection of formulas saying that $x \notin \operatorname{acl}(U \cup \tilde{A}_{\mu+1}^* \cup \tilde{A}_{\mu})$. Hence by saturatedness there exists

$$\tilde{b}_{\mu} \in R(F) \cap p_{\mu,B}(F) \setminus \operatorname{acl}(U(F) \cup \tilde{A}_{\mu+1}^* \cup \tilde{A}_{\mu}).$$

Proof of the Theorem. We extend the isomorphism ϕ of the bases of F and E of Lemma 0.3 can be extended to a semi-algebraic isomorphism $\bar{\phi}: F \to E$. Now let $A^U = \{a + i\sqrt{1 - a^2}: a \in \tilde{A}^*\}$. Obviously $A^U \subseteq U(F)$ and is a maximal algebraically independent subset of U(F). By Lemma 0.1 A^U is a maximal multiplicatively independent subset of U(F).

Denote G(A) the group generated by A^U and all the roots of any power of elements of A^U (the divisible hull of A^U . By definitions G(A) = U(F). Define B^U and G(B) similarly. $\bar{\phi}$ extends uniquely to a semi-algebraic isomorphism $A^U \to B^U$ and hence to $U(F) \to U(E)$. Further on we have a unique extension to a semi-algebraic isomorphism $\bar{\phi}: F \to E$. Since $\bar{\phi}$ preserves U, R and the field structure, we have the required isomorphism between the two models of $T.\Box$

We now want to see $\mathbb{C}_{R,\text{roots}}$ as a structure definable naturally in the reals. Let L^U be the definable extension of the language of the field of reals (including <) which contains a name $P_{\varphi,k}(x_1,\ldots,x_m,y)$ for each definable predicate on R of the form

$$\exists v_1, \ldots, v_k \bigwedge_{i < k} v_i \in \text{pr } U \& \varphi(x_1, \ldots, x_m, v_1, \ldots, v_k)$$

where φ is quantifier-free formula in the language of $(R, +, \cdot, <)$.

One can see that the predicate $U \subseteq R^2$ is definable in L^U , so \mathbb{R} in the language L^U is definable equivalent to the structure $\mathbb{C}_{R,\text{roots}}$.

Theorem 2 $T_{\mathbb{R},\text{roots}}$ has elimination of quantifiers in the language L^U .

Proof

Claim. For any \bar{a} , a tuple in a model F of T, the L^U -quantifier-free type $q = \text{qftp}(\bar{a})$ of the tuple is a complete type.

The theorem follows by compactness from the claim.

To prove the claim we assume that F is saturated and show that if \bar{b} is a tuple satisfying q in any other saturated model E of the same cardinality, then there is an isomorphism $F \to E$ sending \bar{a} to \bar{b} .

Up to enumeration we can assume that $\bar{a} = \langle a_1, \ldots, a_n \rangle$ with $\{a_1, \ldots, a_l\}$ algebraically independent over pr U(F) and for each $i \in \{l+1, \ldots, n\}$, $P_{f_i,k}(a_1, \ldots, a_l, a_i)$ holds for some semi-algebraic f_i and some k > 0. This effectively means that for some $a_1^*, \ldots, a_k^* \in \operatorname{pr} U(F)$ we have $a_i = f_i(a_1^*, \ldots, a_k^*, a_1, \ldots, a_l)$. By choosing k minimal possible we get a_1^*, \ldots, a_k^* algebraically independent. Since l, the minimal k and corresponding f_i are all invariants of type q we have similar $\{b_1, \ldots, b_l, b_1^*, \ldots, b_k^*\}$ for \bar{b} .

Thus we can start the construction of bases by Lemma 0.2 by letting $A_l = \{a_1, \ldots, a_l\}, A_l^* = \{a_1^*, \ldots, a_k^*\}$ (assuming $l \geq k$) and $B_l = \{b_1, \ldots, b_l\}, B_l^* = \{b_1^*, \ldots, b_k^*\}$. Then the construction of Lemma 0.3 extends $A_l \cup A_l^*$ and $B_l \cup B_l^*$ to isomorphic bases and we can finish by an isomorphism of the structures as in the proof of Theorem 1. The isomorphism $\phi : F \to E$ sending $\langle a_1^*, \ldots, a_k^*, a_1, \ldots, a_l \rangle$ to $\langle b_1^*, \ldots, b_k^*, b_1, \ldots, b_l \rangle$ we have thus constructed uniquely determines that $\phi(\bar{a}) = \phi(\bar{b})$, since type q tells how the tuple is coordinatised by the basis via semi-algebraic functions. This proves the claim

and the theorem. \Box

References

- [L]S. Lang **Number Theory III**, Springer-Verlag, Berlin-Heidelberg-New York 1991
- [Mi] C.Miller $\it Tameness~in~expansions~of~the~real~field$, to appear in Logic Colloquium '01"
- [Z] B.Zilber, A note on the model theory of the complex field with roots of unity, www.maths.ox.ac.uk/ \sim zilber