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We consider the theory of the structure
(CR,roots = ((Cu +, R7 U)

where R is a unary predicate for the real axis of the complex plane C and U
the unary predicate for the complex roots of unity.

A weaker structure (C,+,-,U) is known to be w-stable (see [Z]). Anand
Pillay asked if Cg yoots is well behaving in the context of real model theory,
and this has been further discussed in [Mi].

We give here a complete axiomatisation of the theory of Cgyoos and
prove that the theory allows elimination of quantifiers in a reasonable lan-
guage. The elimination of quantifiers in fact shows that definable sets in the
standard model are finite boolean combinations of some countable unions of
semi-algebraic cells.

Let Uy = U(C), the complex roots of unity. We use the following Lang
property of Uy (see [L], Ch.I, s.6 for details):

For every polynomial p(x1, ..., x,) over Q(Uy) (the extension of Q by the
roots of unity) there is a finite collection of cosets Si,..., Sk of algebraic
subgroups of (C*)™ given by a finite system of equations of the form

m
T = Ym

for non-trivial monomials 2™ and elements ~,, € Uy such that

*with corrections suggested by O.Belegradek in January 2005
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{a €U} p(a)zO}:USiﬂUO”.

Let Tk roots be the theory of Cgoots and (F,+, x, R,U) a model of the
theory. Since F' = R+ iR, and R = R(F) is a definable (formal real) sub-
field, a subset S C F™ can be also vewed as a subset of R?". Call S C F"
semi-algebraic if S is definable in the field structure (R, +, x).

Theorem 1 The complete theory Tk roots 0f Crroots @5 given by the following
axioms:

1.

The universe F has a field structure, F = R+ iR with i* = —1 and R
a real closed field;

U is a multiplicative divisible subgroup of F with n-torsion isomorphic
to the cyclic group of order n;

for any a € U the unique representation
a=s+it, s,teR
yields s* +t? = 1;

the projection pr U of U on the ’real’ axis R is dense in [—1,1], that
is, for any —1 < a < b <1 we have (a,b) Npr U # 0;
Lang’s property holds for U, that is

for every polynomial p(x1,...,x,) over Q(Uy) there is a finite collec-
tion of cosets Si,..., Sk of algebraic subgroups of (F*)™ given by finite
system of equations of the form

m
" = Ym

for non-trivial monomials x™ and elements v, € Uy such that

{acU™: pla)=0}=JSinU™



6. R~ acl(U) is dense in R, that is for any a < b in R and any semi-
algebraic function f: (0,1)" — R (with parameters)

(a,0) ~ f((pr U)") # 0.

The proof of the theorem follows from the lemmas below.
We write T" for T yoots-

Lemma 0.1 Let F' be a model of T and A a multipicatively independent over
Uy subset of U(F).
Then A is algebraically independent over Uy in the field theoretic sense.

Proof Immediate from Lang’s property. O

Now let ' and E be models of T'. By Jonsson’s theory there are saturated
models F’ > F and E' = E of some cardinality x (with 2# < k for any u < k)
we may assume that F/ = F' and E' = F and want to prove that F = F.

Lemma 0.2 Let p be an ordinal less than r, A, U A be a subset of R(F)
Ay CprU(F), Ay € R(F), card A, < ||, card A%, < |ul, such that

(i) Ay, C pr U(F) is algebraically independent;

(11) A, is algebraically independent over U(F).
Then

(a) pr U(F) \ aclAy # 0

(b) R(F)~ acl(U(F)UA,) #0

and

(c) for any a;, € pr U(F) \ aclA}, and a, € R(F) ~ acl(U(F) U A,) the
new sets Ar ., = Ay U{a.} and A, = A, U{a,} satisfy properties (i) and
Proof (a) follows by saturatedness from the fact that pr U(F') is infinite.

(b) follows by saturatedness from axiom 6.

(c) is obvious from assumptions. O



Corollary 1 There exists a transcendence basis of F' of the form AUA* with
A* Cpr U(F), AC R(F), pr U(F) C aclA*, card A = card A* = k.

For X C R we denote dclX the definable closure of X in the (R, +, x).
We notice that dcl is just the closure under all semi-algebraic functions, that
is the functions 0-definable in the formal reals.

We say that a bijection ¢ between subsets A and B of R is a semi-algebraic
isomorphism if there is an extension of ¢ to a bijection ¢ : dclA — dclB
preserving semi-algebraic functions and < .

Lemma 0.3 There exist transcendence bases AU A* C R(F) and BUB* C
R(E) of F and E correspondingly with A* C pr U(F), B* C pr U(E), tran-
scendence bases of pr U and a semi-algebraic isomorphism ¢ : AU A* —
B U B* such that ¢(A) = B.

Proof Let
AUA* ={a; i <rk}U{a] 1i <k}
and
BUB*={b:i<k}U{b; i<k}
be transcendence bases of F' and E correspondingly constructed by Corol-
lary 1. S
We construct AU A*, BU B* and ¢ by transfinite induction.
Suppose that for y < &
A UAn ={a; i< phuda; i< p}

i

and . 3 3 3
B,UB;, ={b:i<pupU{b:i<nu}

have been constructed with ¢, given by the enumeration and
acl(fl#Ule) O{a; i< ppU{al i< pu}

and ) 3
acl(B, U B;) 2 {bi i < p}U{b; i< p}.



By back-and-forth method it is enough to show that by letting a;, equal
to the first element of A* \ aclA;, and a, equal to the first element of
A~ acl(pr U(F)U A,) we can extend the isomorphism ¢ to 4,11 U Ay ;.
Denote py, 4 the semi-algebraic type of a;, over A U A* and py,  the cor-

responding type over B U B* Notice that the types are given by collections
of formulas of the form fi < x < fy for fi, fo semi-algebraic terms over the
parameters. Since the parameters of the two types are semi-algebraically con-
jugated, by elimination of quantifiers in real closed fields, p;, 5 is consistent.
Also the type contains the condition —1 < z < 1 for its variable z. Since the
projection pr (U) of U on R is dense in [—1, 1] and pj, 5(R) is an intersection
of intervals, the type is consistent with € pr (U). By saturatedness we find
Z;: € U(E) realising py, p. i )

Now let p, 4 be the semi-algebraic type of a, over A7 ., U A, and p,p
the correspondent type in E. Again, p, p(R) is a given as an intersection of
intervals. By axiom 6 this is finitely consistent with the collection of formulas
saying that z ¢ acl(U U A* 1 U A,). Hence by saturatedness there exists

by € R(F) Npup(F)~acl(U(F)U A, UA,).

Proof of the Theorem. We extend the isomorphism ¢ of the bases of
F and E of Lemma 0.3 can be extended to a semi-algebraic isomorphism
¢:F — E.Now let AV = {a+iV1—a2: a € A*}. Obviously AV C U(F)
and is a maximal algebraically independent subset of U(F'). By Lemma 0.1
AY is a maximal multiplicatively independent subset of U(F).

Denote G(A) the group generated by AY and all the roots of any power of
elements of AV (the divisible hull of AY. By definitions G(A) = U(F'). Define
BY and G(B) similarly. ¢ extends uniquely to a semi-algebraic isomorphism
AY — BY and hence to U(F) — U(FE). Further on we have a unique ex-
tension to a semi-algebraic isomorphism ¢ : F — E. Since ¢ preserves U, R
and the field structure, we have the required isomorphism between the two
models of 7.0



We now want to see Cpyoots as a structure definable naturally in the
reals. Let LY be the definable extension of the language of the field of reals
(including <) which contains a name P, (x1,...,Z,,y) for each definable
predicate on R of the form

Jug, ..., v /\v,; eprU & (a1, ..., Tm,v1,...,0)
i<k

where ¢ is quantifier-free formula in the language of (R, +, -, <).
One can see that the predicate U C R? is definable in LY, so R in the
language LY is definable equivalent to the structure C R.roots-

Theorem 2 Tg o015 has elimination of quantifiers in the language LY.

Proof
Claim. For any @, a tuple in a model F of T, the LY-quantifier-free type
q =qftp(a) of the tuple is a complete type.

The theorem follows by compactness from the claim.
To prove the claim we assume that F is saturated and show that if b is

a tuple satisfying ¢ in any other saturated model £ of the same cardinality,
then there is an isomorphism F' — E sending a to b.

Up to enumeration we can assume that a = (ay, ..., a,) with {as,...,q}
algebraically independent over pr U(F') and for each i € {l + 1,...,n},
Py k(a1,...,a;,a;) holds for some semi-algebraic f; and some k£ > 0. This
effectively means that for some aj, ..., a; € pr U(F') we have
a; = fi(aj,...,a},a1,...,a;). By choosing k minimal possible we get a7, . .., af
algebraically independent. Since [, the minimal £ and corresponding f; are
all invariants of type ¢ we have similar {by, ..., b, b%, ... b5} for b.

Thus we can start the construction of bases by Lemma 0.2 by letting
A =Aay,...,a}, Ay ={a},... a5} (assuming [ > k) and B; = {by,..., b},
Bf = {b},...,b;}. Then the construction of Lemma 0.3 extends A; U A
and By U B/ to isomorphic bases and we can finish by an isomorphism of the
structures as in the proof of Theorem 1. The ismomorphism ¢ : F' — E send-
ing (aj,...,a},a1,...,a;) to (bj,..., b5, by,...,b) we have thus constructed

uniquely determines that ¢(a) = ¢(b), since type ¢ tells how the tuple is co-
ordinatised by the basis via semi-algebraic functions. This proves the claim
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and the theorem. O
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