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We consider the theory of the structure

CR,roots = (C,+, ·, R, U)

where R is a unary predicate for the real axis of the complex plane C and U
the unary predicate for the complex roots of unity.

A weaker structure (C,+, ·, U) is known to be ω-stable (see [Z]). Anand
Pillay asked if CR,roots is well behaving in the context of real model theory,
and this has been further discussed in [Mi].

We give here a complete axiomatisation of the theory of CR,roots and
prove that the theory allows elimination of quantifiers in a reasonable lan-
guage. The elimination of quantifiers in fact shows that definable sets in the
standard model are finite boolean combinations of some countable unions of
semi-algebraic cells.

Let U0 = U(C), the complex roots of unity. We use the following Lang
property of U0 (see [L], Ch.I, s.6 for details):

For every polynomial p(x1, . . . , xn) over Q(U0) (the extension of Q by the
roots of unity) there is a finite collection of cosets S1, . . . , Sk of algebraic
subgroups of (C∗)n given by a finite system of equations of the form

xm = γm

for non-trivial monomials xm and elements γm ∈ U0 such that

∗with corrections suggested by O.Belegradek in January 2005
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{a ∈ Un
0 : p(a) = 0} =

⋃
i

Si ∩ Un
0 .

Let TR,roots be the theory of CR,roots and (F,+,×, R, U) a model of the
theory. Since F = R + iR, and R = R(F ) is a definable (formal real) sub-
field, a subset S ⊆ F n can be also vewed as a subset of R2n. Call S ⊆ F n

semi-algebraic if S is definable in the field structure (R,+,×).

Theorem 1 The complete theory TR,roots of CR,roots is given by the following
axioms:

1. The universe F has a field structure, F = R + iR with i2 = −1 and R
a real closed field;

2. U is a multiplicative divisible subgroup of F with n-torsion isomorphic
to the cyclic group of order n;

3. for any a ∈ U the unique representation

a = s+ it, s, t ∈ R

yields s2 + t2 = 1;

4. the projection pr U of U on the ’real’ axis R is dense in [−1, 1], that
is, for any −1 ≤ a < b ≤ 1 we have (a, b) ∩ pr U 6= ∅;

5. Lang’s property holds for U, that is

for every polynomial p(x1, . . . , xn) over Q(U0) there is a finite collec-
tion of cosets S1, . . . , Sk of algebraic subgroups of (F ∗)n given by finite
system of equations of the form

xm = γm

for non-trivial monomials xm and elements γm ∈ U0 such that

{a ∈ Un : p(a) = 0} =
⋃
i

Si ∩ Un;
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6. R r acl(U) is dense in R, that is for any a < b in R and any semi-
algebraic function f : (0, 1)n → R (with parameters)

(a, b) r f((pr U)n) 6= ∅.

The proof of the theorem follows from the lemmas below.
We write T for TR,roots.

Lemma 0.1 Let F be a model of T and A a multipicatively independent over
U0 subset of U(F ).

Then A is algebraically independent over U0 in the field theoretic sense.

Proof Immediate from Lang’s property. 2

Now let F and E be models of T. By Jonsson’s theory there are saturated
models F ′ � F and E ′ � E of some cardinality κ (with 2µ < κ for any µ < κ)
we may assume that F ′ = F and E ′ = E and want to prove that F ∼= E.

Lemma 0.2 Let µ be an ordinal less than κ, Aµ ∪ A∗µ be a subset of R(F )
A∗µ ⊆ pr U(F ), Aµ ⊆ R(F ), card Aµ ≤ |µ|, card A∗µ ≤ |µ|, such that

(i) A∗µ ⊆ pr U(F ) is algebraically independent;
(ii) Aµ is algebraically independent over U(F ).

Then
(a) pr U(F ) r aclA∗µ 6= ∅
(b) R(F ) r acl(U(F ) ∪ Aµ) 6= ∅
and
(c) for any a∗µ ∈ pr U(F ) r aclA∗µ and aµ ∈ R(F ) r acl(U(F ) ∪ Aµ) the

new sets A∗µ+1 = A∗µ ∪ {a∗µ} and Aµ = Aµ ∪ {aµ} satisfy properties (i) and
(ii).

Proof (a) follows by saturatedness from the fact that pr U(F ) is infinite.
(b) follows by saturatedness from axiom 6.
(c) is obvious from assumptions. 2
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Corollary 1 There exists a transcendence basis of F of the form A∪A∗ with
A∗ ⊆ pr U(F ), A ⊆ R(F ), pr U(F ) ⊆ aclA∗, card A = card A∗ = κ.

For X ⊆ R we denote dclX the definable closure of X in the (R,+,×).
We notice that dcl is just the closure under all semi-algebraic functions, that
is the functions 0-definable in the formal reals.

We say that a bijection φ between subsets A and B of R is a semi-algebraic
isomorphism if there is an extension of φ to a bijection φ : dclA → dclB
preserving semi-algebraic functions and < .

Lemma 0.3 There exist transcendence bases Ã∪ Ã∗ ⊆ R(F ) and B̃ ∪ B̃∗ ⊆
R(E) of F and E correspondingly with Ã∗ ⊆ pr U(F ), B̃∗ ⊆ pr U(E), tran-
scendence bases of pr U and a semi-algebraic isomorphism φ : Ã ∪ Ã∗ →
B̃ ∪ B̃∗ such that φ(Ã) = B̃.

Proof Let
A ∪ A∗ = {ai : i < κ} ∪ {a∗i : i < κ}

and
B ∪B∗ = {bi : i < κ} ∪ {b∗i : i < κ}

be transcendence bases of F and E correspondingly constructed by Corol-
lary 1.

We construct Ã ∪ Ã∗, B̃ ∪ B̃∗ and φ by transfinite induction.
Suppose that for µ < κ

Ãµ ∪ Ã∗µ = {ãi : i < µ} ∪ {ã∗i : i < µ}

and
B̃µ ∪ B̃∗µ = {b̃i : i < µ} ∪ {b̃∗i : i < µ}

have been constructed with φµ given by the enumeration and

acl(Ãµ ∪ Ã∗µ) ⊇ {ai : i < µ} ∪ {a∗i : i < µ}

and
acl(B̃µ ∪ B̃∗µ) ⊇ {bi : i < µ} ∪ {b∗i : i < µ}.
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By back-and-forth method it is enough to show that by letting ã∗µ equal

to the first element of A∗ r aclÃ∗µ and ãµ equal to the first element of

A r acl(pr U(F ) ∪ Ãµ) we can extend the isomorphism φ to Ãµ+1 ∪ Ã∗µ+1.

Denote p∗µ,A the semi-algebraic type of ã∗µ over Ãµ ∪ Ã∗µ and p∗µ,B the cor-

responding type over B̃µ ∪ B̃∗µ. Notice that the types are given by collections
of formulas of the form f1 < x < f2 for f1, f2 semi-algebraic terms over the
parameters. Since the parameters of the two types are semi-algebraically con-
jugated, by elimination of quantifiers in real closed fields, p∗µ,B is consistent.
Also the type contains the condition −1 < x < 1 for its variable x. Since the
projection pr (U) of U on R is dense in [−1, 1] and p∗µ,B(R) is an intersection
of intervals, the type is consistent with x ∈ pr (U). By saturatedness we find
b̃∗µ ∈ U(E) realising p∗µ,B.

Now let pµ,A be the semi-algebraic type of ãµ over Ã∗µ+1 ∪ Ãµ and pµ,B
the correspondent type in E. Again, pµ,B(R) is a given as an intersection of
intervals. By axiom 6 this is finitely consistent with the collection of formulas
saying that x /∈ acl(U ∪ Ã∗µ+1 ∪ Ãµ). Hence by saturatedness there exists

b̃µ ∈ R(F ) ∩ pµ,B(F ) r acl(U(F ) ∪ Ã∗µ+1 ∪ Ãµ).

2

Proof of the Theorem. We extend the isomorphism φ of the bases of
F and E of Lemma 0.3 can be extended to a semi-algebraic isomorphism
φ̄ : F → E. Now let AU = {a + i

√
1− a2 : a ∈ Ã∗}. Obviously AU ⊆ U(F )

and is a maximal algebraically independent subset of U(F ). By Lemma 0.1
AU is a maximal multiplicatively independent subset of U(F ).

Denote G(A) the group generated by AU and all the roots of any power of
elements of AU (the divisible hull of AU . By definitions G(A) = U(F ). Define
BU and G(B) similarly. φ̄ extends uniquely to a semi-algebraic isomorphism
AU → BU and hence to U(F ) → U(E). Further on we have a unique ex-
tension to a semi-algebraic isomorphism φ̄ : F → E. Since φ̄ preserves U, R
and the field structure, we have the required isomorphism between the two
models of T.2
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We now want to see CR,roots as a structure definable naturally in the
reals. Let LU be the definable extension of the language of the field of reals
(including <) which contains a name Pϕ,k(x1, . . . , xm, y) for each definable
predicate on R of the form

∃v1, . . . , vk
∧
i≤k

vi ∈ pr U & ϕ(x1, . . . , xm, v1, . . . , vk)

where ϕ is quantifier-free formula in the language of (R,+, ·, <).
One can see that the predicate U ⊆ R2 is definable in LU , so R in the

language LU is definable equivalent to the structure CR,roots.

Theorem 2 TR,roots has elimination of quantifiers in the language LU .

Proof
Claim. For any ā, a tuple in a model F of T, the LU -quantifier-free type

q =qftp(ā) of the tuple is a complete type.

The theorem follows by compactness from the claim.

To prove the claim we assume that F is saturated and show that if b̄ is
a tuple satisfying q in any other saturated model E of the same cardinality,
then there is an isomorphism F → E sending ā to b̄.

Up to enumeration we can assume that ā = 〈a1, . . . , an〉 with {a1, . . . , al}
algebraically independent over pr U(F ) and for each i ∈ {l + 1, . . . , n},
Pfi,k(a1, . . . , al, ai) holds for some semi-algebraic fi and some k > 0. This
effectively means that for some a∗1, . . . , a

∗
k ∈ pr U(F ) we have

ai = fi(a
∗
1, . . . , a

∗
k, a1, . . . , al). By choosing k minimal possible we get a∗1, . . . , a

∗
k

algebraically independent. Since l, the minimal k and corresponding fi are
all invariants of type q we have similar {b1, . . . , bl, b∗1, . . . , b∗k} for b̄.

Thus we can start the construction of bases by Lemma 0.2 by letting
Al = {a1, . . . , al}, A∗l = {a∗1, . . . , a∗k} (assuming l ≥ k) and Bl = {b1, . . . , bl},
B∗l = {b∗1, . . . , b∗k}. Then the construction of Lemma 0.3 extends Al ∪ A∗l
and Bl ∪B∗l to isomorphic bases and we can finish by an isomorphism of the
structures as in the proof of Theorem 1. The ismomorphism φ : F → E send-
ing 〈a∗1, . . . , a∗k, a1, . . . , al〉 to 〈b∗1, . . . , b∗k, b1, . . . , bl〉 we have thus constructed
uniquely determines that φ(ā) = φ(b̄), since type q tells how the tuple is co-
ordinatised by the basis via semi-algebraic functions. This proves the claim

6



and the theorem. 2
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