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1 Completeness and quantifier elimination for

some classical theories

We first work out a basic example, with a proof that demonstrates geometro-
algebraic, as opposed to syntactical, methods in model theory.

We denote ACFp the theory of algebraically closed fields of characteristic p.

Theorem 1.1 ACFp is complete and allows quantifier elimination in the
language (+, ·, 0, 1)

First we prove

Lemma 1.0.1 (weak form of Steinitz’ Theorem) Let B and C of the
same uncountable cardinality µ be in ACFp. Then any isomorphism α0 :
B0 → C0 between subfields B0 ⊆ B and C0 ⊆ C of cardinality less than µ
can be extended to an isomorphism α : B → C.

Proof We enumerate the fields and proceed back-and-forth constructing αi :
Bi → Ci of cardinality less than µ.
Suppose Bi and Ci are isomorphic and of cardinality less than µ. Take the
first b ∈ B not in Bi. If b is transcendental over Bi then by cardinality
considerations we can find c transcendental over Ci. Then

Bi(b) ∼= Bi(x) ∼= Ci(x) ∼= Ci(c).
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If b is a root of fB(x) over Bi, irreducible, then the correspondent fC(x) has
a root c in C and

Bi(b) ∼= Bi[x]/{fB(x)} ∼= Ci[x]/{fC(x)} ∼= Ci[c].

2

Corollary 1.1 ACFp is µ-categorical for µ > ℵ0, and hence complete.

Lemma 1.0.2 For any A ⊆ F and any two n-tuples b̄ and c̄ TFAE:
(i) qftp(b̄/A) = qftp(c̄/A);
(ii)b̄ is conjugated with c̄ by an automorphism over A;
(iii) tp(b̄/A) = tp(c̄/A).

Proof We prove that (i) implies (ii). The rest is obvious.
First consider n = 1. W.l.o.g. we assume that A is a subfield. If b is tran-
scendental over A then so is c and

A(b) ∼= A(x) ∼= A(c) over A.

If b is a root of f(x) over A, minimal for b, then so is c and

A(b) ∼= A[x]/{f(x)} ∼= A[c] over A.

If b̄ = 〈b1 . . . , bn〉 and qftp(b̄/A) = qftp(c̄/A) then qftp(b1/A) = qftp(c1/A)
thus by induction there is an isomorphism

α : A(b1) → A(c1).

Let 〈b′2 . . . , b′n〉 be the image of 〈b2 . . . , bn〉 under α. Then

qftp(〈c1, b′2 . . . , b′n〉/A) = qftp(b̄/A) = qftp(c̄/A),

hence
〈b′2 . . . , b′n〉 conj with 〈c2, . . . , cn〉 over Ac1.

Finally b̄ is conjugated with c̄ over A.2
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Proof of QE.
Let ϕ(x̄) be any formula in the field language and

Φ(x̄) = {ψ(x̄) qfree : F |= ϕ(x) → ψ(x̄)}.
If Φ&¬ϕ is consistent then in monster F ′ Â F there is a realization b̄ of the
type. qftp(b̄) must be consistent with ϕ for otherwise ¬ξ(x̄) is in Φ for some
ξ ∈ qftp(b̄). Then there exists c̄ realizing qftp(b̄)&ϕ. A contradiction.
Thus |= Φ → ϕ and so Φ is equivalent to its finite part and Φ ≡ ϕ.2

Exercise 1.2 Prove a corresponding theorem for the theory of vector spaces.

We also consider the theory of differentially closed fields of character-
istic zero DCF0. It is based on the language of fields extended by a symbol
of a unary operation D corresponding to a differentiation operator. D obeys
the identities

D(x+ y) = Dx+ Dy and Dxy = xDy + yDx. (1)

DCF0 is axiomatised as an algebraically closed field with an operator D satis-
fying (1) and the axiom scheme stating that for any differential polynomials
g(y) of order n > 0 and f(y) of order m < n over the field there is a solution
of the system

g(y) = 0 & f(y) 6= 0.

Theorem 1.3 DCF0 is complete and allows elimination of quantifiers.

The proof of the theorem (see e.g. [P]) is quite similar to the proof of The-
orem 1.1. One studies extensions of an isomorphism between differential
subfields in a way similar to the proof of Lemma 1.0.1 and then uses the
back-and-forth method to establish an elementary equivalence between two
models of DCF0 and to prove QE.

We also want to consider as one of our basic examples the structure on the
complex numbers

Ce = (C,+, P (3)), where P (3)(x, y, z) ≡ ex + ey = ez.
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Notice that the subgroup 2πiZ is definable in Ce as

{v ∈ C : ∀x, y, z ex + ey = ez ↔ ex + ey = ez+v}.
Now, if we introduce a definable set C∗ = C/2πiZ and a definable canonical
homomorphism exp : C → C∗ we get an equivalent representation of the
structure as a two-sorted structure (C, C∗ ∪ {0}) with the additive group
structure (C,+) on the first sort, the field structure (C∗ ∪ {0}, ·,+) on the
second sort and exp mapping the first sort into the second sort.
To capture the most interesting properties of this structure it is not enough to
consider its first-order theory only. A more relevant language is the language
Lω1,ω allowing conjunctions and disjunctions over countable sets of formulas
with finite strings of variables.
We state without proof (which can be found in [Z1])

Theorem 1.4 A natural Lω1,ω-sentence axiomatising Ce has models and is
categorical in all uncountable cardinalities.
Any automorphism of the field on the second sort C∗ ∪ {0} can be lifted to
an automorphism of the structure Ce.

2 Closure operators in abstract structures

2.1 Algebraic closure

Definition Given A ⊆ M, a formula ϕ(x) with parameters in A is called
algebraic if for some m > 0

M |= ∃=mxϕ(x).

A type over A containing an algebraic formula is said to be algebraic.

acl(A) = {b ∈M : there is an algebraic ϕ(v) over A such thatM |= ϕ(b)}.
Lemma 2.1.1 The following properties of acl hold in any structure:

A ⊆ acl(A); (2)

A ⊆ B ⇒ acl(A) ⊆ acl(B); (3)

acl(acl(A)) = acl(A). (4)
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Proof Easy.2

Remark For any field F and A ⊆ F , letting the field theoretic algebraic
closure of A to be Acl(A), we have

Acl(A) ⊇ acl(A).

By elimination of quantifiers, in algebraically closed fields we have

Acl(A) = acl(A).

We hence have a classical

Corollary 2.1 If b and c are algebraic over A in a field F, then so are b+ c
and bc.

Definition An elementary monomorphism α : A → M ′, for A ⊆ M
and M, M ′ structures in the same language L, is an injective map which
preserves L-formulas. An elementary monomorphism which is a bijection of
A ⊆ M onto A′ ⊆ M ′ is called an elementary isomorphism between A
and A′.

Proposition 2.1 (Uniqueness of closure) Any elementary isomorphism
α between A ⊆M and A′ ⊆M ′ can be extended to acl(A) → acl(A′).

Proof Let B = acl(A) and B′ = acl(A′). Enumerate B = {bi : i < µ},
µ = card B, and go by transfinite induction extending α to A ∪ {bi : i < γ},
finding for bγ a corresponding element b′γ ∈ B′ such that

A ∪ {bi : i ≤ γ} 7→ A′ ∪ {b′i : i ≤ γ}

is an elementary isomorphism. In order to see this is possible notice that the
type

pγ = tp(bγ/(A ∪ {bi : i < γ}))
is algebraic by definition, and thus is principal. Hence the type pαγ obtained
by replacing parameters in pγ by their images under α is also algebraic and
principal. Hence pαγ is realised by some element of M ′ which we can take for
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b′γ. Notice also that before reaching γ = µ we list all elements of pγ as some
bi1 , . . . bin , and hence we get all elements of pαγ as some b′i1 , . . . , bin .
It follows that by reaching step µ we have B as a domain of α and, since all
the realisations of algebraic types over A′ are in B′, we have α(B) = B′. 2

2.2 λ-closure

We now generalise slightly the definition of algebraic closure.

Definition Given an infinite regular cardinal λ, a structure M of cardi-
nality at least λ and A ⊆ M we say that a formula ϕ(x) over A is λ-small
in M if card ϕ(M) < λ.
The λ-closure of A in M is defined as

clλ(A) =
⋃
{ϕ(M) : ϕ(x) is a λ-small formula over A}.

We say that λ-smallness is weakly definable in M if for any finite ā in
M and b ∈ clλ(ā) there exist formulas ϕ(x, ȳ) and ∃<λx ϕ(x, ȳ) (ȳ the only
free variables in ∃<λx ϕ(x, ȳ) ) without parameters such that ϕ(b, ā) and
∃<λx ϕ(x, ā) hold in M, and for any ā′ in M

M ² ∃<λx ϕ(x, ā′) ⇒ card ϕ(M, ā′) < λ.

Example It follows from Theorem 1.4, second clause, that in the structure
Ce, for λ = ω1, the λ-closure for A ⊆ C is exactly

clλ(A) = ln(Acl(expA)), where lnX = {z ∈ C : exp z ∈ X}.

Hence we deduce that in Ce

b ∈ cl(A) iff b ∈ ϕ(C) for some A-definable analytic
set ϕ(C) of (complex analytic) dimension 0.

Also, ω1-smallness is weakly definable in Ce by Theorem 1.4.
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Lemma 2.2.1 The following properties of cl = clλ hold in any structure:

A ⊆ cl(A); (5)

A ⊆ B ⇒ cl(A) ⊆ cl(B); (6)

If also λ-smallness is weakly definable in the structure then

cl(cl(A)) = cl(A). (7)

Proof The first two are obvious.
To prove (7) suppose B ⊆ cl(A) and c ∈ cl(B). We may assume that B =
{b1, . . . , bm}. We then have ² ψi(bi) for some λ-small A-definable ψi(y) and
φ(x, b̄) for some λ-small φ(x, b̄) such that φ(x, ȳ) is A-definable. We obviously
have

M ² ∃ȳφ(c, ȳ)&∃<λxφ(x, ȳ)&
∧
i

ψi(yi)

and, on the other hand, the A-definable set

⋃
{φ(M, b′1, . . . , b

′
m) : &∃<λxφ(x, b′1, . . . , b

′
m) &

∧
i

ψ(b′i)}

is of cardinality less than λ. 2

Remark The Uniqueness property for clλ ( Proposition 2.1) does not hold
in general, and does not hold in Ce in particular.

2.3 Closure in differentially closed fields

This is a new type of closure which anyway is linked to a notion of smallness
given in general by model theoretic means.

Definition Given a differential field F and its subfield A we say that b ∈ F
is differential-algebraic over A if b is a solution of a non-trivial differential
equation f(y) = 0 over A.
Define Dfcl(A) to be the set of all differential algebraic elements over A in a
given model of DCF0.
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Lemma 2.3.1 Given a differentially closed field F and letting cl = Dfcl we
have that (5),(6) and (7) hold in F.

Idea of Proof (5) and (6) are obvious. We discuss the proof of (7). One
uses a dimension theory based on Morley rank. Assuming that the field C
of constants of F (i.e. c ∈ F such that Dc = 0) is of dimension 1 we see
F as an infinite dimensional object. Correspondingly the space of solutions
of a differential equation f(y) = 0 of order m (that is Dmy is the maximal
differential occurring in f) is of dimension m, so is small. Hence, if b is a
solution of a differential equation g(y) = 0 with coefficients a1, . . . , an which
are differential-algebraic over some A, then b belongs to a finite-dimensional
space (of dimension depending on the order of g and the orders of the corre-
sponding equations for a1, . . . an). This space, by elimination of quantifiers,
is defined by an equation over A, and this proves that b ∈ Dfcl(A).2

Remark Uniqueness of closure holds for Dfcl in the following form

Given A ⊆ F, F a model of DCF0, there is a unique up to isomorphism
DCF0-model F (A), prime over A, and

F (A) = DfclF (A)(A).

The reasons that F (A) can be constructed in a unique way are similar to
those used in the proof of Proposition 2.1. Namely, going by a similar in-
ductive process we choose bγ so that pγ is of minimal Morley rank, then pγ
turns out to be principal.

3 Minimal structures

.
For a structure M with a closure operator cl the exchange principle states
that

For any A ⊆M, b, c ∈M : b ∈ cl(A, c) \ cl(A) ⇒ c ∈ cl(A, b). (8)
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Definition A structure M is said to be minimal if any definable (using
parameters) subset of M is either finite or a complement of a finite.

Lemma 3.0.2 In minimal structures, letting cl = acl, the exchange principle
holds.

Proof Suppose b ∈ acl(A, c)\acl(A). Then for some ϕ(x, y) over A and some
m

M |= ϕ(b, c)&∃≤mx ϕ(x, c).

W.l.o.g. we assume

M |= ϕ(x, y) → ∃≤mx ϕ(x, y).

Suppose, towards a contradiction, that ϕ(b,M) is infinite. Then
card (¬ϕ(b,M)) ≤ k for some k, i.e. M |= ∃≤ky¬ϕ(b, y) and

B = {b′ ∈M : M |= ∃≤ky¬ϕ(b′, y)}
is infinite, since b /∈ acl(A). Choose distinct b1, . . . , bm+1 ∈ B. Then

ϕ(b1,M) ∩ · · · ∩ ϕ(bm+1,M)

is infinite and thus contains a point c′. It contradicts M ² ∃≤mx ϕ(x, c′). 2

Again, we would like to generalise the notion of a minimal structure.

Definition A structure M is said to be λ-minimal if card M ≥ λ and
any definable subset of M is either λ-small or a complement of a λ-small
subset.
We say that a formula φ(y, z) has the strict λ-order property in M if
φ(y, z) defines on M a partial order (transitive but not necessarily antisym-
metric) with a chain of ordinal type λ.

Example Ce is λ-minimal, by section 2.2.

Lemma 3.0.3 Suppose M is λ-minimal and λ-smallness is weakly definable
in M. Then the exchange principle holds for clλ, or card M = λ and M has
the strict λ-order property.
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Proof We follow the proof of Lemma 3.0.2. Below cl stands for clλ.
Suppose b ∈ cl(A, c) \ cl(A). Then for some ϕ(x, y) over A and some m

M |= ϕ(b, c)&∃<λx ϕ(x, c).

By letting ϕ(x, y) := ϕ(x, y) &∃<λx ϕ(x, y) we assume

M ² ϕ(x, y) → ∃<λx ϕ(x, y).

If card ϕ(b,M) < λ then c ∈ cl(A, b), in correspondence with the exchange
principle.
Suppose that the exchange principle does not hold in M. Then, for some b, c
and A as above, card ϕ(b,M) ≥ λ. Then card ¬ϕ(b,M) < λ and

b ∈ B = {b′ ∈M : M |= ∃<λy ¬ϕ(b′, y)}
is of cardinality at least λ, since b /∈ cl(A).
Now, let {bi : i < λ} ⊆ B be a λ-sequence of distinct elements of B. For any
ordinal α < λ

card (
⋃
i<α

¬ϕ(bi,M)) < λ,

hence ⋂
i<α

ϕ(bi,M) 6= ∅,

and thus the set contains a point, say cα. We have correspondingly

{bi : i < α} ⊆ ϕ(M, cα).

If card M > λ then card B = card M > λ and we can find cλ ∈ B such
that {bi : i < λ} ⊆ ϕ(M, cλ), contradicting the definition of B. So card M =
card B has to be λ. In particular, we may assume {bi : i < λ} = B.
Let x1 ≺ x2 denote the formula stating that

B ∩ ϕ(x1,M) ⊆ B ∩ ϕ(x2,M).

Obviously this defines a partial order. Suppose c1 ≺ · · · ≺ ci . . . is a chain
in the partial order of ordinal type α, for some α < λ. We have then that

Bα =
⋃
i<α

B ∩ ϕ(ci,M)
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is of cardinality less than λ. Let bα be an element in M \Bα, then by above
there is cα ∈ M such that Bα ∪ {bα} ⊆ ϕ(cα,M). We then have ci ≺ cα for
all i < α, which means that the α-chain is not maximal and can be extended
to a chain of ordinal type λ. 2

Example Let λ > ℵ0 be a cardinal. Consider the structure (Mλ, <) with
Mλ = λ × Q and < the lexicographic order on the set. Then Mλ is densely
ordered without endpoints. This is known to have elimination of quantifiers
and so any definable subset S of Mλ is a union of finitely many intervals and
points. If one of the intervals is given by x > a then card S = card M = λ.
Otherwise card S < λ. Hence Mλ is λ-minimal, but it does not obey the
exchange principle.

3.1 The pregeometry and the geometry of a minimal
structure.

Definition An [abstract] pregeometry is a set M with an operator

cl : 2M → 2M

such that, for any A ⊆ M, cl(A) = {cl(A′) : A′ ⊆ A finite} and conditions
(5)-(8) above are satisfied.

A pregeometry is said to be a geometry if

for any a ∈M cl({a}) = {a} (9)

Getting a geometry from a pregeometry

Lemma 3.1.1 The relation ∼ on M \ cl(∅) defined as

x ∼ y iff cl(x) = cl(y)

is an equivalence relation.
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Proof Follows from the exchange principle.2

Definition For a pregeometry M define the set

M̂ = (M \ cl ∅)/ ∼
(quotient under the equivalence relation ∼ .)
Then any point in M̂ is of the form â = cl{a} \ cl ∅, for a corresponding
a ∈M \ cl
emptyset. For a subset Â = {â : a ∈ A} ⊆ M̂ define

cl(Â) = {b̂ : b ∈ cl(A)}.
The operator cl on M̂ satisfies then (5)-(9) and thus M̂ is a geometry.

Definition Given a subset D ⊆ M of a pregeometry we construct a prege-
ometry MD, the localisation of M with respect to D: the set of MD is
just M and clD(A) = cl(D ∪ A).
Subspaces of a pregeometry are subset of the form cl(A). Pregeometry is
said to be locally finite if cl(A) is finite whenever A is.

Example Vector spaces over division rings are pregeometries if we let

cl(A) = span(A).

The projective space associated with a vector space M is defined exactly
as the geometry M̂.

The affine space associated with a vector space M is defined on the same
set M by the new closure-operator:

claff(A) = A+ span(A− A)

where A− A = {a1 − a2 : a1, a2 ∈ A}.

Exercise Show that an affine space is a geometry and its localisation with
respect to any point is isomorphic to the initial vector space pregeometry.
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Definition A set A is said to be independent if cl(A) 6= cl(A′) for any
proper subset A′ ⊂ A.
A maximal independent subset of a set A is said to be a basis of A.

Lemma 3.1.2 Any two bases B and C of a set A are of the same cardinality.

Proof First consider the case when, say B, is finite and consists of n elements
b1, . . . bn. There exists c ∈ C such that

c ∈ cl(b1, . . . bn) \ cl(b1, . . . bn−1),

for otherwise B is not independent. By the exchange principle {c, b1, . . . bn−1}
is a basis of A. In the localisation Mc sets {b1, . . . bn−1} and C \{c} are bases
of A. By induction on n the statement follows.
Consider now the case when both B and C are infinite. It follows from the
finite character of cl that for any b ∈ B there is a minimal finite Cb ⊂ C
such that b ∈ cl(Cb). Thus there is a mapping of B into Pfin(C), the set of all
finite subsets of C. The mapping is finite-to-one, since by the above analysis
of the finite dimensional case the set

{d ∈ B : Cd = Cb}

is an independent subset of cl(Cb) and its size is not bigger than the size of
Cb.
It follows card B ≤ card C. By symmetry card B = card C. 2

Now we can give

Definition For any subset A of a pregeometry define the dimension dimA
to be the cardinality of a basis of A. If also B ⊆ A then dim(A/B) is the
dimension of A in pregeometry MB.

Lemma 3.1.3 (the addition formula) For any B ⊆ A ⊆M

dim(A/B) + dim(B) = dim(A).
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Proof One can construct a basis of A by adjoining a basis of A in MB to a
basis of B in M. 2

Examples The transcendence degree tr.deg.A of a subset A of an alge-
braically closed field F is defined as dimA in the above sense with cl = Acl.
Since any field is a subfield of an algebraically closed one, the definition is
applicable for subsets of any field.

Lemma 3.1.4 For X, Y ⊆M, subspaces of a pregometry,

dim(X ∪ Y ) ≤ dimX + dimY − dim(X ∩ Y ).

Proof Let Z be a basis of X ∩ Y . Let Z ∪ X0 and Z ∪ Y0 be bases of
X and Y, correspondingly. Then cl(X0 ∪ Z ∪ Y0) = cl(X ∪ Y ) and thus
dim(X ∪ Y ) ≤ |X0 ∪ Z|+ |Z ∪ Y0| − |Z|. 2

Homogeneity

Definition A subset A of a structure M is said to be indiscernible over
B if tp(ā/B) = tp(ā′/B) for any two n-tuples of distinct elements of A for
any finite n.

Proposition 3.1 Let M be a λ-minimal structure with λ-smallness weakly
definable, cl = clλ, A,B ⊆ M and A independent over B. Then A is indis-
cernible over B.

Proof Consider ā = 〈a1, . . . an〉, ā′ = 〈a′1, . . . , a′n〉 all with distinct coordi-
nates from A. In case the size n = 1 tp(a/B) is just the set of those formulas
ϕ(x) over B which have card ϕ(M) ≥ λ. The same characterises tp(a′/B).
Thus the types are equal.
For n > 1 suppose, as an inductive hypothesis, the tuples have the same type
over B. Then for an+1 ∈ A \ {a1, . . . an} and any formula ϕ(x̄, y) over B

M |= ϕ(ā, an+1) iff card ϕ(ā,M) ≥ λ iff M |= ∃<λx¬ϕ(ā, x).

14



Since tp(ā/B) = tp(ā′/B) we have card ϕ(ā′,M) ≥ λ which yields
M |= ϕ(ā′, a′n+1) for any a′n+1 ∈ A, distinct from the coordinates of ā′.2

Corollary 3.1 Any subset A independent over B in a minimal structure M
(with cl = acl) is indiscernible over B.

Definition A structure M is said to be homogeneous if given subsets
B,B′ ⊆ M of cardinality less that card M and an elementary isomorphism
α : B → B′ there is an extension of α to an automorphism of M.

Definition Given a structure M with a closure operator cl we say that M
satisfies the countable closure property if cl(X) is at most countable for
any finite X ⊆M.

Remark It is obvious that a structure in a countable language has the
countable closure property for cl = acl and indeed for cl = clℵ1 .

Lemma 3.1.5 Any minimal structure with a countable closure property is
homogeneous.

Proof Suppose B,B′ ⊆ M are of cardinality less than card M and there is
an elementary monomorphism α : B → B′. It follows dimB = dimB′.
By the addition formula dimM/B = dimM/B′ or dimB = dimM ≥ ℵ0.
The latter contradicts the cardinality assumptions since in this case card B ≥
dimB = card M.
Let A and A′ be bases of M over B and B′ correspondingly. Since

card A = card A′

there is a bijection β : A ∪ B → A′ ∪ B′ extending α. By Corollary 3.1 β is
elementary. Proposition 2.1 finishes the proof.2

Remark Homogeneity is very important in the study of pregeometries. The
uniqueness of closure (Proposition 2.1) is essential for the proof of homo-
geneity, but often weaker versions suffice. E.g. if F (A) is a differentially
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closed field of characteristic zero constructed as a prime model over a Dfcl-
independent subset A (see the remark in the end of section 2) then basically
the same argument as above yields homogeneity of M.
On the other hand it is possible to work effectively with a weaker version of
homogeneity.

Definition M is said to be ℵ0-homogeneous if for every two n-tuples ā
and ā′ in M of equal types over ∅ and any b ∈M there is a b′ ∈M such that

tp(āb/∅) = tp(ā′b′/∅).

M is said to be ℵ0-homogeneous over submodels, if it is ℵ0-homogeneous
and for every two n-tuples ā and ā′ in M and any M0 ≺ M, card M0 <
card M, such that

tp(ā/M0) = tp(ā′/M0)

and any b ∈M there is b′ ∈M satisfying

tp(āb/M0) = tp(ā′b′/M0).

Exercise 3.1 If M is countable and ℵ0-homogeneous then M is homoge-
neous.

Exercise 3.2 If M is ℵ1-minimal, satisfies the exchange principle for clℵ1 ,
card M = ℵ1 and M is ℵ0-homogeneous over submodels then any bijection
between two bases of M can be extended to an automorphism of M.

Example Ce is not homogeneous but is ℵ0-homogeneous over submodels.
Moreover, any elementary substructure of Ce of cardinality ℵ1 satisfies the
conditions of Exercise 3.2. Under GCH this holds for Ce itself.
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4 Dimension notion in strongly minimal struc-

tures

4.1 Strong minimality

Theorem 4.1 Minimal structures of infinite dimension are ℵ0-saturated.

Proof Let ϕ(x) be a formula over a finite A. Either ϕ(M) is finite, or
M \ acl(A) ⊆ ϕ(M). Thus for any type p over A

p(M) =
⋂
ϕ∈p

ϕ(M)

either contains the nonempty set M \acl(A) or is a nonempty subset of some
finite ϕi(M).2

Remark If M has the countable closure property then the same argument
proves that M is saturated.

Definition We say finiteness is strongly definable in M if for every
formula ϕ(x, ȳ) there is a number mϕ such that for any ā in M

card ϕ(M) > mϕ ⇒ card ϕ(M) ≥ ℵ0.

This is in fact a weak version of the negation of the finite cover property
often referred to as not f.c.p.

Remark The property defined above implies that for every ϕ(x, ȳ) we can
state by a first order formula that for any ā both ϕ(M, ā) and ¬ϕ(M, ā) are
infinite.

Remark One can naturally extend the definition to say λ-smallness is
strongly definable in M.

Lemma 4.1.1 Finiteness is strongly definable in any minimal structure of
infinite dimension.
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Proof Suppose towards a contradiction that ϕ(x, ȳ) is a counterexample.
Then for any m there is a ām in M such that ϕ(M, ām) is finite of size bigger
than m. Then its complement is infinite. Hence ām realises the formula

ψm(ȳ) := ∃>mx ϕ(x, ȳ) & ∃>mx ¬ϕ(x, ȳ).

It follows that the type p = {ψm : m ∈ N} is consistent. By ℵ0-saturatedness
there is a realisation ā of p in M. By construction both ϕ(M, ā) and ¬ϕ(M, ā)
are infinite. The contradiction.2

Corollary 4.1 Any structure elementary equivalent to a minimal structure
of infinite dimension is minimal too.

Definition A minimal structure is said to be strongly minimal (abbrevi-
ated s.m.) if it is elementarily equivalent to a minimal structure of infinite
dimension.

An important property of a s.m. structure M is that its minimality is first
order, i.e. the theory Th(M) of M forces every model of it to be minimal.
Moreover, we have

Lemma 4.1.2 If M is minimal, A ⊆ M and N = acl(A) an infinite sub-
structure, then N 4 M.

Proof By Tarski’s criterion we need to check that if a formula ϕ(x) over N
has a realisation b in M then it has one in N. If ϕ(M) is finite then it is a
subset of N by the properties of closure. If ϕ(M) is infinite then ¬ϕ(M) is
finite and so ϕ(M) ∩N 6= ∅.2

Remark The lemma has an obvious generalisation to λ-minimal structures.

Corollary 4.2 If an infinite dimensional M is minimal and has a countable
closure property then Th(M) is categorical in any uncountable cardinality,
in particular it has a model in any such cardinality independently on the
cardinality of the language.
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4.2 Rank notion for sets definable in s.m. structures.

We assume below M is minimal of infinite dimension. To any definable sub-
set S in M we attach a number called the (Morley) rank of S. This in fact is
a dimension notion dual to the dimension introduced above. It measures the
dimension of macrosets S ⊆Mn in contrast with the dimension of microsets
s̄ ∈Mn.

Definition Let A ⊆M be finite. For an A-definable subset S ⊆Mn let the
rank of S to be

rk S = max
〈s1,...sn〉∈S

dim({s1, . . . sn}/A)

Remark The rank notion coincides with the notion of Morley rank.

Lemma 4.2.1 (i) rk ϕ(M) has the same value in every infinite dimensional
structure elementary equivalent to a given s.m. one and
(ii)rk ϕ(M) does not depend on the choice of parameters A over which ϕ(M)
is definable.

Proof Suppose rk ϕ(M) = r and {s1, . . . , sr} is a basis of 〈s1, . . . sn〉 ∈ ϕ(M)
of maximal dimension over A. If A ∪ A′ ⊆ M ′, M ′ of infinite dimension and
M ′ ≡A∪A′ M then choose {s′1, . . . , s′r} ⊆ M ′ independent over A ∪ A′. Since
si, for all i ≤ n, are algebraic over {s1, . . . , sr} the type

ps1,...,sr = tp(〈s1, . . . , sn〉/{s1, . . . , sr} ∪ A)

is algebraic and principal. Since tp(〈s1, . . . , sr〉/A) = tp(〈s′1, . . . , s′r〉/A), the
type ps′1,...,s′r obtained by substituting {s′1, . . . , s′r} for {s1, . . . , sr} in all the
formulas of ps1,...,sr , is algebraic and principal too. Hence it has a realisa-
tion 〈s′1, . . . , s′n〉 which the type says is a point in ϕ(M ′) of dimension r
over A ∪ A′. This proves that rk ϕ(M) ≤ rk ϕ(M ′). By symmetry we have
rk ϕ(M) ≤ rk ϕ(M ′), and the rank remains the same when we extend the
set of parameters from A to A ∪ A′. Then also the rank has to be the same
as defined over A′. 2

19



Definition For an arbitrary s.m. structure M, rk ϕ(M) is defined as the
rank in a saturated elementary extensions of M.

Lemma 4.2.2 (Basic Rank Properties) For any s.m.structure M
(i) rk Mn = n;
(ii) rk S = 0 iff S is finite
(iii) rk (S1 ∪ S2) = max{rk S1, rk S2}
(iv) For projection pr : Mn →Mk

rk S ≤ rk pr(S) + max
t∈pr(S)

rk pr−1(t).

(v) Suppose rk pr−1(t) is the same for all t ∈ pr(S). Then

rk S = rk pr(S) + rk pr−1(t).

Proof (i)-(iii) are immediate from definition.
(iv) Let 〈s1, . . . sn〉 ∈ S be of maximal dimension in S. Then

rk S = dim({s1, . . . sn}/A) = dim({s1, . . . sn}/{s1, . . . sk} ∪ A)+

dim({s1, . . . sk}/A) ≤ rk pr−1(〈s1, . . . sk〉) + rk prS.

(v) If one chooses first a generic 〈s1, . . . sk〉 ∈ prS and then extends it to
〈s1, . . . sn〉 ∈ S of maximal possible dimension over {s1, . . . sk} ∪ A, then

dim({s1, . . . sn}/{s1, . . . sk} ∪ A) = rk pr−1(〈s1, . . . sk〉),

dim({s1, . . . sk}/A) = rk prS

and thus

rk S ≥ rk prS + rk pr−1(〈s1, . . . sk〉).
2
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Lemma 4.2.3 For any definable S ⊆Mn there is an upper bound for m ∈ N
such that S can be partitioned into k disjoint subsets

S = S1 ∪ · · · ∪ Sm
each of rank equal to rk S.

Proof We use induction on n. For n = 1 the statement follows by definition.
For arbitrary n let rk S = k. This means there is a point 〈s1, . . . sn〉 ∈ S
of dimension k and thus some {si1 , . . . sik} are independent. Let us assume
〈i1, . . . ik〉 = 〈1, . . . k〉.
Then sj ∈ acl{s1, . . . sk} for all j = 1, . . . , n, thus for some natural number
l = li1,...ik

M |= ∃=l〈x1, . . . xn〉 ∈ S : 〈x1, . . . xk〉 = 〈s1, . . . sk〉.

Denote the formula

ψ(y1, . . . yk) := ∃=l〈x1, . . . xn〉 ∈ S : 〈x1, . . . xk〉 = 〈y1, . . . yk〉

and notice that ψ(M) ⊆Mk is of rank k. Let

Si1,...ik = {〈s1, . . . sn〉 ∈ S : ψ(s1, . . . sk)}

Calculating by rank properties above we get rk Si1,...ik = rk ψ(M) = rk S.
Suppose

Si1,...ik = S1 ∪ · · · ∪ Sp
is a partition and all the summands are A′-definable of rank k, some A′. Then
necessarily for any j ≤ p there is 〈sj,1, . . . sj,n〉 ∈ Sj with the first k coordi-
nates independent over A′. By indiscernibility we can choose 〈sj,1, . . . sj,n〉 ∈
S0
j so that

〈sj,1, . . . sj,k〉 = 〈s1, . . . sk〉
for all j. It follows immediately that p ≤ l.
Taking into account all possibilities for 〈i1, . . . ik〉 we get

m ≤
∑

{i1,...ik}
li1,...ik .
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Remark The definition of rank makes sense for any λ-minimal structure of
infinite dimension.
Part (ii) of Lemma 4.2.1 holds for every λ-minimal ℵ0-homogeneous structure
with the same proof.
Correspondingly for such structures the statement of 4.2.3 takes form

Exercise 4.2 Given S of rank k, any family {Sj : j ∈ J} of pairwise disjoint
definable subsets of rank k of S is of cardinality less than λ.

Example The rank notion makes sense in Ce and the statement of the Exer-
cise is in close connection with the fact that any analytic subset has at most
countably many irreducible components.

Definition The exact upper bound for equirank partition of S is called the
(Morley) degree of S.
A definable set of degree one is said to be irreducible.

Definition For a type p(x̄) definable over A Morley rank of type is defined
as

rk (p) = min{rk ϕ(x̄) : ϕ ∈ p}.
For a point s̄ ∈ Mn and a subset A ⊆ M the Morley rank of the point over
A is defined as

rk (s̄/A) = rk (tp(s̄/A)).

Given an irreducible subset S defined over A, a point s̄ ∈ S is said to be
generic over A if

rk (s̄/A) = rk S.

Exercise 4.3 rk (〈s1, . . . , sn〉/A) = dim({s1, . . . , sn}/A).

Lemma 4.2.4 For S irreducible defined over A there is a unique complete
type p over A containing S of rank rk S. More exactly,

p = tp(s/A)

for s generic in S. In particular, any two generic points have the same type
over A.
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Proof By irreducibility

p = {ϕ(x̄) over A : rk (ϕ(M) ∩ S) = rk S}
is a type. The rest follows from definitions. 2

Lemma 4.2.5 (The addition formula for tuples)

rk (b̄c̄/A) = rk (b̄/Ac̄) + rk (c̄/A)

(Here Ac̄ = A ∪ |c̄|, |c̄| is the set of the coordinates of c̄.)

Proof This is just another form of the addition formula for dimensions 3.1.32

Definition Two points b̄ ∈ Mk and c̄ ∈ Mn are said to be independent
over A if

rk (b̄/Ac̄) = rk (b̄/A).

Lemma 4.2.6 The independence relation is symmetric

Proof rk (b̄c̄/A) = rk (b̄/Ac̄) + rk (c̄/A) = rk (c̄/Ab̄) + rk (b̄/A) by the addi-
tion formula. Then rk (b̄/Ac̄) = rk (b̄/A) implies rk (c̄/Ab̄) + rk (c̄/A).2

Lemma 4.2.7 (Definability of Morley Rank) For any formula ϕ(x̄, ȳ)
with length(x̄) = k, length(ȳ) = n, and any m the set

{ā ∈Mk : rk ϕ(ā,M) ≥ m}
is definable.

Proof By induction on n. For n = 1 rk ϕ(a,M) ≥ 0 iff ϕ(a,M) 6= ∅,
and rk ϕ(a,M) ≥ 1 iff ϕ(a,M) is infinite iff card ϕ(a,M) ≥ nϕ by strong
definability of finiteness (not f.c.p.).
For arbitrary n
rk ϕ(a, y1, . . . , yn) ≥ m iff {b ∈M : rk ϕ(a, b, y2, . . . , yn) ≥ m−1} is infinite
or {b ∈M : rk ϕ(a, b, y2, . . . , yn) ≥ m} 6= ∅
by the addition formula for ranks. The both conditions on the right hand
side are definable by induction hypothesis.2
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4.3 Sets definable in M.

We shall consider Morley rank for sets definable in strongly minimal M. Re-
call that any such set is of the form U = S/E, where S ⊆Mn is a definable
subset and E ⊆ S2 ⊆ M2n is a definable subset which is an equivalence
relation. We consider only U such that E is equirank, i.e. rk E(s,M) is of
the same value for all s ∈ S.

Definition For U = S/E definable in M with E an equivalence relation
with equirank classes

rk U = rk S − rk E(s,M) for s ∈ S.

Lemma 4.3.1 The definition is invariant under definable bijections, i.e. if
there is a bijection

f : S1/E1 → S2/E2

and f is a definable function, then rk S1/E1 = rk S2/E2.

Proof By definition f = F/E, where F ⊆ S1 × S2, E = E1 × E2 and the
following hold
for any s1, s

′
1 ∈ S1, s2, s

′
2 ∈ S2

F (s1, s2) & F (s′1, s
′
2) ⇒ (E1(s1, s

′
1) ↔ E2(s2, s

′
2)),

prS1
F = S1 and prS2

F = S2.

From the addition formula, projecting on S1, we get

rk F = rk S1 + rk E2(s2,M)

and projecting on S2

rk F = rk S2 + rk E1(s1,M).

It follows
rk S1 − rk E1(s1,M) = rk S2 − rk E2(s2,M).

2
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Proposition 4.1 Basic Rank Properties (i)-(v) as well as Lemma 4.2.3 and
definability of rank hold for definable sets.

Proof Follow the proofs of the statements mentioned.2

Notation For definable S1, S2 ⊆Mn

S1 @ S2 ⇔ rk (S1 \ S2) < rk S1

and

S1 @A S2 ⇔ S1 @ S2 & S2 @ S1.

We also say in words that S1 is almost a subset of S2 or S1 almost
coincides with S2, correspondingly.

Proposition 4.2 (Finite Equivalence Relation Theorem) For any A-
definable set S of rank k there is an A-definable subset S0 ⊆ S and an
equivalence relation E on S0 such that S0 @A S, S0/E is finite and each
equivalence class is of rank k and irreducible.

Proof Let Morley degree of S be m and

S =
⋃
i≤m

Ψi(bi,M)

be the partition of S into irreducible subsets of rank k with Ψi(z, x) A-
definable formulas and bi ranging in Mn for some n. Our aim is to define
an equivalence relation with m equirank classes such that each class almost
coincides with one of Ψi(bi,M).
Claim 1. We may choose Ψi = Ψ independently on i. To get this consider
formula Ψ of parameters b1, . . . , bm and c1, . . . cm, where c1, . . . cm are some
distinct elements in M :

Ψ(y, x) ≡
∧
i≤m

(y = ci → Ψ(bi, x)).

Evidently, Ψ(ci, x) ≡ Ψi(bi, x), which proves the claim.
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Put
P = {b ∈Mn : Ψ(b,M) ⊆ S & rk Ψ(b,M) = k &

& ∀c ∈Mn(rk (Ψ(b,M) ∩Ψ(c,M)) = k → (Ψ(b,M) @ Ψ(c,M)))}.
This set is A-definable, bi ∈ P for all i ≤ m, and for any b ∈ P, Ψ(b,M) is
an irreducible subset of S of rank k.
Define an equivalence relation on P

F (b, b′) iff Ψ(b,M) @A Ψ(b′,M).

There are exactly m equivalence classes of F with b1, . . . , bm representatives
of the classes.
Claim 2. Let b ∈ P, s ∈ Ψ(b,M) and rk (s/Ab) = k. Then

F (b,M) @ Ψ(M, s).

Proof of Claim. Let b′ ∈ F (b,M) be of maximal rank, i.e. rk (b′/Abs) =
rk F (b,M). Then rk (b′/Abs) = rk (b′/Ab), which means b′ and s are indepen-
dent over Ab. Then rk (s/Abb′) = rk (s/Ab) = k. Since Ψ(b,M) @A Ψ(b′,M)
it follows s ∈ Ψ(b′,M). In other words Ψ(b′, s) holds for all such b′ and hence
F (b,M) @ Ψ(M, s).
Claim 3. For any s ∈ S with rk (s/Ab1, . . . , bm) = k there is exactly one
class F (b,M) such that F (b,M) @ Ψ(M, s).
Indeed, suppose F (b,M) @ Ψ(M, s) for b = b1 and b = b2. Choose 〈b′1, b′2〉 ∈
F (b1,M)× F (b2,M) of maximal rank over Ab1b2s. Then rk (b′1b

′
2/Ab1b2s) =

rk F (b1,M) + rk F (b2,M) = rk (b′1b
′
2/Ab1b2). It follows rk (s/Ab1b2b

′
1b
′
2) =

rk (s/Ab1b2), and Ψ(b′1, s)&Ψ(b′2, s) holds. Hence rk (Ψ(b′1,M)&Ψ(b′1,M)) =
k, contradicting ¬F (b′1, b

′
2). Claim proved.

Define

S0 = {s ∈ S : there is exactly one class F (b,M) @ Ψ(M, s)}
and E on S0 to be

E(s1, s2) iff ∃b ∈ P F (b,M) @ Ψ(M, s1) ∩Ψ(M, s2).

By definition and claim 3 there is a one-to-one correspondence between E-
classes and F -classes. By Claim 2 Ψ(bi,M) @ E(si,M) for any generic
si ∈ Ψ(bi,M) for all i ≤ m. Thus Ψ(bi,M) @A E(si,M). 2
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Corollary 4.3 For A-definable S as above there is a finite A-definable set
S0 such that any irreducible equirank subset of S almost coinsides with an
Ab-definable subset for b ∈ S0.

Exercise Generalise results of this section to λ-minimal ℵ0-homogeneous
structures with λ-smallness weakly definable.
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5 Macro-geometries and the Trichotomy The-

orem

We explore further the geometries of minimal structures. We show in this
section that in cases when the geometry of a minimal structure becomes too
complicated for analysis, another type of geometry play an important role.
We call the new geometries macro-geometry as opposed to micro-geometries
introduced in section 3.

5.1 Macro- and micro-geometries on a s.m. structure.

Example 1. Macro-geometry of an algebraically closed field. Let F
be a field and A2(F ) an affine plane over the field, i.e. A2(F ) = F × F as a
set of points. Let also L2(F ) be the set of straight lines on A2(F ) that can
be identified as the set of triples (a, b, c) ∈ F 3, (a, b) 6= (0, 0), modulo the
equivalence relation E :

(a, b, c)E(a′, b, c) iff ∃λ 6= 0 (a, b, c) = λ(a′, b′, c′)

which define a straight line by equation

ax+ by + c = 0.

If we also add a triple (0, 0, 1) to L2(F ) we get the classical projective plane
over F denoted P2(F ).
(A2, L2) can be considered as a two-sorted structure with the incidence re-
lation I ⊆ A2 × L2 defined by

(x, y)I(a, b, c) iff ax+ by = c.

Through any two points there is a unique line. Any two lines intersect in
at most one point and for almost any pair of lines the intersection is
non-empty.

By the Main Theorem of Projective Geometry the field is definable in the
structure (A2, L2, I), in other words the macro-geometry bears all the infor-
mation on F.
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Example 2. Macro-geometry of a k-vector space. Let k be a field and
V an infinite dimensional vector space over k. Consider V 2 as a set of points
and, given α ∈ k, define a line in V 2 through a point (a, b) with a slope
α to be

{(x, y) ∈ V 2 : α(x− a) = y − b}.
We have as many lines through (a, b) as there are elements in k∗, bounded
independently on the cardinality of V.
If k is a finite field the set of lines is definable in V and indeed we can define
again a two-sorted structure of ’points and lines’ with an incidence relation I.

Example 3. Macro-geometry of a trivial structure.
Let M be a set. Consider M2 as a set of points and define a left line through
〈a, b〉 to be

{〈x, y〉 ∈M2 : x = a}.
Correspondingly define the right line.
This geometry of points and lines is very simple. Lines almost never meet,
and through almost no pair of points there is a common line.

Definition An [abstract] projective geometry is a set of ’points’ and ’lines’
satisfying:
(i) through any two points there is a line;
(ii) there are at least three points on every line;
(iii) two distinct lines intersect in at most one point;
(iv) for any distinct points a, b, c, d : if lines (a, b) and (c, d) intersect then
lines (a, c) and (b, d) do.
Any 3 points a, b, c of a projective geometry which do not lie on a common
line generate a projective plane as the set of points

S(a, b, c) =
⋃
{(a, z) : z ∈ (b, c)}.

By (iv) the plane generated by any non-collinear a′, b′, c′ ∈ S(a, b, c) coincides
with S(a, b, c). The n-subspaces of a projective geometry are defined by
induction as

S(a1, . . . , an+1) =
⋃
{(an+1, z) : z ∈ (a1, . . . , an)}

for a1, . . . , an+1 not in a (n−1)-subspace. Again by axiom (iv) the definition
is invariant on the choice of the points in the subspace.
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Theorem 5.1 Any projective geometry of dimension greater than two (gen-
erated by no less than 4 points) is isomorphic to a projective geometry over
a division ring.

Proof See [Se].2

Motivated by the definitions above A.Lachlan has introduced the notion of
a pseudoplane. We specialise the notion for our purposes

Definition A rank-two pseudo-plane is a two-sorted structure (P,L) of
’points and lines’ definable in a strongly minimal structure M with an inci-
dence relation I ⊆ P × L such that

P is irreducible, rk P = 2;

rk L ≥ 2;

rk Il = 1 for all l ∈ L;

if l1, l2 ∈ L, l1 6= l2 then Il1 ∩ Il2 is finite or empty.

(Here Il = {p ∈ P : ² pIl }.)
Proposition 5.1 Suppose M is a strongly minimal structure and there are
a1, a2, b1, b2, c ∈M every four of which are independent, c ∈ acl(a1, a2, b1, b2)
and

acl(a1, a2, c) ∩ acl(b1, b2, c) = acl(c).

Then a rank-two pseudoplane is definable in M.

Remark The condition in the Proposition can be stated more geometrically
in the localisation Mc of the micro-geometry of M : the lines (a1, a2) and
(b1, b2) of the micro-geometry lie on the same plane (a1, a2, b1, b2) but do not
meet. In other words the micro-geometry on (a1, a2, b1, b2) is not that of the
projective plane.

Proof of the proposition. Put P0 = M ×M, L0 = M ×M ×M, and let
I0 ⊆ P0 × L0 be an ∅-definable relation such that

〈b1, b2〉I0〈a1, a2, c〉

30



〈x1, x2〉I0〈y1, y2, z〉 → z ∈ acl(x1, x2, y1, y2).

A definable relation witnessing the dependence between a1, a2, b1, b2, c has
these properties.
Our first aim is to transform the incidence relation we have defined to an
incidence relation with iinfinite lines meeting in at most finitely many points.
Denote l0 = 〈a1, a2, c〉. Then I0l0 is an l0-definable set of Morley rank 1.By the
Finite Equivalence Relation Theorem using l0 one can define an equivalence
relation El0 on I0l0 with finitely many classes, and, say m of them of rank 1
irreducible.
Denote

I1 = {〈p, l〉 ∈ I0 : El is an equivalence relation on I0l with exactly

m infinite classes and p is in one of the infinite classes}.
Denote a binary relation E on I1 :

〈p, l〉E〈p′, l′〉 iff l = l′ & pElp
′.

Define
L1 = I1/E

and for k ∈ L1, p ∈ P0 write pI2k iff k = 〈p, l〉 for some l ∈ L0.
By definitions there is a canonical mapping

α : L1 → L0,

corresponding to the projection I1 → L0, which is exactly m-to-one mapping.
Also,

for all k ∈ L1 rk (I2k) = 1.

By definitions, for k0 corresponding to l0 via α, I2k0 is irreducible.
Define

L2 = {k ∈ L1 : ∀k′ ∈ L1 rk (I2k ∩ I2k′) = 1 → I2k @ I2k
′}.

It follows from the above remark that k0 ∈ L2 and, for all k ∈ L2, rk (I2k) =
1.
Any two lines represented in L2 either almost coincide or meet in at most
finitely many points.
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Define an equivalence relation on L2

kFk′ iff I2k @A I2k
′.

We are now in the situation of Claim 2 of the proof of the Finite Equivalence
Relation Theorem. It follows that

kF @ pI2

whenever p is generic in I2k over k and p is generic in P0.
Define

L3 = L2/F

and, for l̄ ∈ L3, p ∈ P0,
pI3l̄ iff l̄ @ pI2.

From the above proved p0I3l̄0 holds, where l̄0 is obtained throughout the
construction from l0, p0. Also, by the construction l̄0 ∈ acl(l0).
Since p0 ∈ I3l̄0 it follows rk (I3l̄0) ≥ 1. On the other hand, if p ∈ I3l̄0 is
of maximal rank over l̄0 and k ∈ l0F is of maximal rank over p, l̄0 then by
definition pI2l holds and k and p are independent over l̄0. It follows rk (p/l̄0) =
rk (p/l̄0, k) ≤ 1. Thus

rk (I3l̄0) = 1.

Let
L = {l̄ ∈ L3 : rk (I3l̄0) = 1}, P = {p ∈ P0 : ∃l̄ ∈ L pI3l̄},

I = I3 ∩ (P × L).

Now we need to show that for distinct l̄1, l̄2 from L Il̄1 ∩ Il̄2 is finite.
So, suppose p is a point in the intersection. Choose 〈k1, k2〉 ∈ l1F × l2F of
maximal rank over p, l̄1, l̄2. Then p ∈ I2k1 ∩ I2k2 and p is independent from
k1, k2 over l̄1, l̄2. Then

rk (p/l̄1, l̄2) = rk (p/l̄1, l̄2, k1, k2) < 1

since ¬k1Fk2.
To finish the proof we need to show that rk (L) ≥ 2 which would follow from
rk (l̄0/∅) ≥ 2.
Suppose towards the contradiction rk (l̄0/∅) ≤ 1. Then, since rk (p0/l̄0) =
1 < rk (p0/∅), we have rk (l̄0/p0) < rk (l̄0/∅), i.e. l̄0 ∈ acl(p0) = acl(b1, b2).
Then, from the assumptions of the proposition c /∈ acl(l̄0).
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On the other hand l̄0 ∈ acl(l0) = acl(a1, a2, c). It follows b1 /∈ acl(l0), b2 /∈
acl(l0). Therefore there exists c′ ∈M such that

tp(cc′/l̄0) = tp(b1b2/l̄0) = tp(p0/l̄0).

Thus rk (cc′/l̄0) = 1 and so

c′ ∈ acl(l̄0, c) ⊆ acl(a1, a2, c) ∩ acl(b1, b2, c).

Hence acl(c′) = acl(c), contradicting acl(b1) 6= acl(b2). 2

Remark Note that P and L are ’coordinatised by M in a very strong sense.
That is P is a subset of M ×M, by construction and L is in finite to finite
correspondence with M ×M. To see the latter note that from the very be-
ginning of the construction we could replace L0 by L0(c) = M ×M × {c},
and carry on with the same construction to obtain L1(c), L2(c), L3(c) and
finally L(c). The observation at the end of the proof that c /∈ acl(l̄0) implies
that almost all equivalence classes are represented in the smaller sets, that
is rk L(c) = 2 and L(c) is in finite to finite correspondence with a rank 2
subset of L.

5.2 The Trichotomy Theorem

The condition detected in the Proposition 5.1 can be interpreted as an ab-
stract notion of non-linearity of the geometry. The alternative to the con-
dition is, as follows from the remark to the proposition, that the planes of the
geometry of M localised in a generic point are abstract projective or trivial.
In this section we study the trichotomy in more details.

Theorem 5.2 (weak Trichotomy Theorem) For any strongly minimal
M either
(i) a rank-two pseudoplane is definable in M
or one of the following hold:
(ii) the geometry of M is trivial, i.e. for any X ⊆ M̂, acl(X) = (X) in M̂ ;
(iii) the geometry of M is locally projective, i.e. for generic c ∈ M the
geometry M̂c is isomorphic to a projective geometry over a division ring.
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Proof Assume no pseudoplane is definable in M and c is a fixed generic
element in M.
Claim 1. For any x, y ∈M and Z ⊆M finite

x ∈ acl(y, c, Z) implies ∃z ∈ acl(c, Z) : x ∈ acl(y, z, c).

We may assume that Z is independent over c and proceed by induction on
#Z. For #Z = 1 there is nothing to prove.
Suppose Z = {z1, z2}∪̇Z ′, x ∈ acl(y, c, Z), y /∈ acl(c, Z). Then, by Proposi-
tion 5.1, in MZ′ either
(i) some quadruple from x, y, z1, z2, c is dependent
or
(ii) ∃z ∈M \ aclZ′(c)

aclZ′(z1, z2, c) ∪ aclZ′(x, y, c) ⊇ aclZ′(z, c).

In case (i) only x ∈ aclZ′(y, z1, z2) is non-trivial. Which means in M x ∈
acl(y, z1, {z2Z

′}). Since #{z2, Z
′} < #Z by induction hypothesis there is

z ∈ acl(z1, z2, Z
′) : x ∈ acl(y, z1, z). If then dim(y, z1, z, c) = 3, we have

x ∈ acl(y, z1, c) or x ∈ acl(y, z, c) and we get the desired. Otherwise, there
is a point z′1 ∈ acl(z1, z, c) \ (acl(z1, z) ∪ acl(c, z1) ∪ acl(c, z)). Assuming x /∈
acl(y, z) we have then that any four points of {x, y, z, z′1, c} are independent.
Again, using the Proposition and our assumption, there must exist z′ ∈
M \ acl(c) such that

acl(z, z′1, c) ∩ acl(x, y, c) ⊇ acl(z′, c).

Clearly z′ ∈ acl(c, Z) ∩ acl(x, y, c), so x ∈ acl(y, z′, c) and we are done.
In case (ii) z ∈ acl(c, Z) and x ∈ aclZ′(y, z, c), i.e. x ∈ acl(y, c, z, Z ′). By
the induction hypothesis there is z′ ∈ acl(c, z, Z ′) such that x ∈ acl(y, z′, c).
Claim proved.
Claim 2. If acl(x, y, c) = acl(x, c) = acl(y, c) for some x, y independent over
c then the geometry M̂ is degenerate, i.e.

acl(x0, . . . , xn) = acl(x0) ∪ · · · ∪ acl(xn)

for any x0, . . . , xn ∈M.
Indeed, under the assumption, acl(x0, x1, x2) = acl(x0, x1) ∪ acl(x0, x2) for
any independent triple. We show first that the claim is true for n = 1.

34



Assume towards a contradiction y ∈ acl(x1, x2) \ (acl(x1) ∪ acl(x2)). Choose
x0 /∈ acl(x1, x2). Then

y ∈ acl(x0, x1, x2) = acl(x0, x1) ∪ acl(x0, x2).

But if y ∈ acl(x0, xi) for i = 1 or i = 2 then x0 ∈ acl(y, xi) = acl(x1, x2), the
contradiction.
Now we proceed by induction on n. Suppose y ∈ acl(x0, . . . , xn). Then by
Claim 1 there is x ∈ acl(x0, . . . , xn−1) such that y ∈ acl(xn, x, x0). From what
is proved already y ∈ acl(x, x0) ∪ acl(xn, x0). Hence y ∈ acl(x0, . . . , xn−1) ∪
acl(x0, xn) = acl(x0, . . . , xn−1) ∪ acl(xn) ∪ acl(xn) = acl(x0) ∪ · · · ∪ acl(xn).
This finishes the proof of the claim and of the Theorem.2

5.2.1 Geometries with finite closure property

Definition A pregeometry (or a minimal structure) M is said to have the
finite closure property (sometimes also said locally finite) if for any finite
set X ⊆M, cl(X) is finite.

It is useful to note that if the theory of a structure M is ℵ0-categorical (or
definable in such one) then, as a direct consequence of the Ryll-Nardzewski
Theorem, M has the finite closure property. In particular the following
theorem fully characterises the geometries of strongly minimal structures
definable in ℵ0-categorical theories.
A very important consequence of the finite closure property is the possibility
to introduce a stronger ’counting function’ on definable sets.

Notation For a definable set S in M eq and a subset X ⊆M denote

S(X) = cl(X) ∩ S,

where cl(X) is taken in M eq. In particular, M(X) = cl(X) ∩M.

Proposition 5.2 Assuming the finite closure property holds in a s.m. struc-
ture M, for every set S in M eq over parameters C there is a polynomial
pS ∈ Q[x] and a number nS such that for every finite C ⊆ X ⊆M :
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(i) letting |M(X)| = x ≥ nS, we have |S(X)| = pS(x);
(ii) rk S = deg pS, the degree of the polynomial;
(iii) if g(S)=T for some automorphism g of M then pS = pT and nS = nT .

Proof We construct the polynomial for a given S.
W.l.o.g. we may assume that S is an atom over C, that is defined by a
principal type over C. It then has a form S = U/E where U ⊆ Mn is an
atom over C of rank k ≤ n and E a C-definable equivalence relation on U.
Claim 1. For any finite X ⊇ C

|U(X)| = mU(x− u0) · · · · · (x− uk−1) = pU(x),

where
u0 = |M(C)|, . . . , uk−1 = |M(C ∪ {d1, . . . , dk−1})|, . . .

d1, . . . , dk−1 any independent over C elements ofM, and given such d1, . . . , dk−1,

mU = |{〈dk, . . . , dn〉 ∈Mn−k : 〈d1, . . . , dk−1, dk, . . . , dn〉 ∈ U}|

when we assume that enumeration of coordinates is such that, for 〈a1, . . . , an〉 ∈
U, a1, . . . , ak are independent over C.
Proof Indeed U(X) consists of all possible n-tuples independent over C in
the first k coordinates in M(X) and the rest of the coordinates algebraic over
them.

We also see from the description of pU that it is invariant under automor-
phisms and nU = 0.
As a corollary of the claim we have polynomials with the same properties for
any definable subset of Mn.

Claim 2. Let s ∈ S and Es ⊆ Mn be the s-definable E-equivalence class
representing s. Then pEs(x) = |Es(X)| for any x ≥ ns, some ns, and

|S(X)| = pU(x)

pEs(X)
= pS(x)

for a polynomial pS ∈ Q[x].
Proof Choose ns to be the cardinality of M(C ∪ {s} ∪ {d1, . . . , dl}) for a
minimal {d1, . . . , dl} ⊆M independent over C ∪ {s} such that Es(C ∪ {s} ∪
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{d1, . . . , dl}) 6= ∅. Using automorphisms one sees that Es is an atom over
C ∪ {s}, thus the construction of Claim 1 applies and we get a polynomial

pEs(x) = ms(x− e0) · · · · · (x− el−1),

for some ei of the same description as uj in the definition of pS, l = rk Es ≤ k.
More precisely e0 = ur, . . . , el−1 = ur+l−1 for some r ≤ k − l. The claim and
the proposition follow. 2

Notation We thus introduced a counting function |S| = pS, the polynomial
of a definable set S and in particular m(S) the leading coefficient of the
polynomial |S|. mS is called also the (relative) multiplicity of S.

Theorem 5.3 The geometry of a minimal structure with the finite closure
property is either trivial or isomorphic to an affine or a projective geometry
over a finite field.

Idea of Proof. First notice that the structure is saturated and thus is
strongly minimal. We first want to establish that the geometry of M is
locally projective or trivial. In order to do this, by the Trichotomy Theorem,
we only need to prove that there is no two-rank pseudoplane in M. It is
done by developing a combinatorial-geometric analysis of the pseudoplane
(P, I, L), assuming it exists.
The main tool of the analysis is the powerful rank notion |S| introduced above
for a structure with the finite closure property, or rather the multiplicitym(S)
in combination with the Morley rank rk (S). See [Z] for the proof.
After one proves that M is locally projective or trivial one can use a com-
binatorial result by Doyen and Hubaut which states that any finite locally
projective geometry of dimension ≥ 4 with equal number of points on all its
lines is either affine or projective. 2

Corollary 5.1 Any geometry satisfying the finite closure property and the
homogeneity assumption (any bijection between bases can be extended to an
automorphism) is either trivial or isomorphic to an affine or a projective
geometry over a finite field.
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Proof In an appropriate language such a geometry can be represented as a
strongly minimal structure with finite closure property (see [Z]).2

The weak Trichotomy Theorem generates the natural question: Does the
definability of a rank-two pseudoplane in M imply that the micro-geometry
of M is isomorphic to that of an algebraically closed field F. The answer
is ’NO’ in general (E.Hrushovski [H]) and ’YES’ if one assumes some extra
topological-kind (Zariski) assumptions for M (E.Hrushovski and B.Zilber
[HZ]). Both results have been actively developed and applied in model the-
ory and elsewhere in mathematics.

Problem Generalise results of this section to λ-minimal ℵ0-homogeneous
structures with λ-smallness weakly definable.
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6 Categoricity in uncountable powers

6.1 Large models realising few types

Stability theory started with the Ehrenfeucht-Mostowski Theorem which,
rather characteristically for this field, is based on a fundamental theorem of
infinite combinatorics

Ramsay’s Theorem Let A be an infinite set and

A(n) = {X ⊆ A : |X| = n}
the set of all its n-element subsets. Suppose that

A(n) = C1∪̇ . . . ∪̇Ck
is a partition into k subsets. Then there are a Ci and an infinite subset
B ⊆ A such that B(n) ⊆ Ci.
Proof See [CK, Thm 3.3.7]2

Definition An infinite subset A ⊆ M with an order < (not-necessarily
definabe) of a structure M is said to be an indiscernible sequence if for
any
a1 < · · · < an and a′1 < · · · < a′n from A

tp(a1, . . . , an) = tp(a′1, . . . , a
′
n).

Lemma 6.1.1 For any theory T with infinite models there is a model M
with an infinite indiscernible sequence A.

Let P (x), < be new names for a unary predicate and a binary relation

T ′ = T∪{′<′ is a linear order on P}∪{∀ a1 < · · · < an ∈ P ∀ a′1 < · · · < a′n ∈ P
ϕ(a1, . . . , an) ≡ ϕ(a′1, . . . , a

′
n) : ϕ formulas of L}.

Proof By Compactness Theorem it is enough to prove that for any finite set
∆ of L-formulas ϕ(x1, . . . , xn) the theory

T∆ = T ∪ {′<′ is a linear order on P}∪
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∀ a1 < · · · < an ∈ P ∀ a′1 < · · · < a′n ∈ P
∧
ϕ∈∆

ϕ(a1, . . . , an) ≡ ϕ(a′1, . . . , a
′
n).

Let M be any infinite model of T, < an arbitrary linear ordering of M and
M (n) the set of all its n-subsets. We define an equivalence E∆ on M (n)
letting

{a1 < · · · < an}E∆{a′1 < · · · < a′n} iff
∧
ϕ∈∆

ϕ(a1, . . . , an) ≡ ϕ(a′1, . . . , a
′
n).

There are obviously at most 2|∆| classes of equivalence thus, by Ramsay’s
Theorem, there is an infinite subset P ⊆ M such that any two n-tuples of
elements of P are equivalent. This P satisfies T∆.2

Lemma 6.1.2 For any theory T with infinite models, for any cardinal κ
there is a model M with an indiscernible sequence (A,<) order-isomorphic
to κ.

Proof Let
{cα : α ∈ κ}

be a set of new constant symbols and

T ′′ = T ′ ∪ {P (cα) : α ∈ κ} ∪ {cα < cβ : α < β ∈ κ}

for T ′ as in the proof above. Then any finite subcollection of new formulas is
consistent with T ′ by obvious reasons. Applying the Compactness Theorem
again we get a model M of T ′′ with the new constants distinguishing a subset
of P (M) indiscernible in the language L and ordered as κ.2

Theorem 6.1 (Ehrenfeucht-Mostowski) If a countable theory T has in-
finite models then for any infinite cardinal κ there is a model M of T such
that for any B ⊆M the number of complete 1-types over B realised in M is
of cardinality at most card B + ℵ0.

40



Proof Let T̄ be the theory with built-in Skolem functions extending T, and
let (A,<) be a well-ordered set of type κ. We again assume that A ⊆ M
is a subset of a monster-model of T̄ and let M̄(A) be a closure of A under
Skolem functions. Then M̄(X) is a model of T̄ of cardinality κ and (A,<)
an indiscernible sequence. Let B ⊆ M̄(A) and C a subset of A of cardinality
|B|+ℵ0 such that every b ∈ B has a representation b = t(c1, . . . , ck) for some
term t and c1, . . . , ck ∈ C.
We say that two n-tuples of A, a1 < · · · < an and a′1 < · · · < a′n are equivalent
over C if for all c ∈ C

ai < c iff a′i < c.

It follows that for every L-formula ψ, any b1 = t1(c1, . . . , ck), . . . , bm =
tm(c1, . . . , ck) ∈ B and any two n-tuples a1 < · · · < an and a′1 < · · · < a′n
equivalent over C

² ψ(a1, . . . , an, t1(c1, . . . , ck), . . . , tm(c1, . . . , ck)) iff
² ψ(a′1, . . . , a

′
n, t1(c1, . . . , ck) . . . , tm(c1, . . . , ck)).

Hence, if y = s(a1, . . . , an) and y′ = s(a′1, . . . , a
′
n) are two elements of M̄(A)

with similar representations and (a1, . . . , an) and (a′1, . . . , a
′
n) equivalent over

C, then for any L-formula ϕ

² ϕ(y, b1, . . . , bm) iff ² ϕ(y′, b1, . . . , bm),

that is
tp(y/B) = tp(y′/B).

It remains to notice that we have at most |C| equivalence classes of n-tuples
from A over C.
Let for an a ∈ A

c(a) = min{c ∈ C ∪ {∞} : a < c}.

It is immediate from definitions that a1 < · · · < an and a′1 < · · · < a′n are
equivalent over C iff c(a1) = c(a′1), . . . , c(an) = c(a′n), hence each equvalence
class is determined by an n-tuple (c1, . . . , cn) = (c(a1), . . . , c(an)) of elements
of C ∪ {∞}. 2
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6.2 ω-stability

Definition A countable theory T is said to be ω-stable (or totally tran-
scendental) if for any model M of T and any countable subset A ⊆ M the
set S(A) of complete 1-types over A is of cardinality at most ℵ0.

Proposition 6.1 T is ω-stable if and only if for any n, any model M of T
and any countable subset A ⊆ M the set Sn(A) of complete n-types over A
is of cardinality at most ℵ0.

Proof It is enough to prove that ω-stability implies that Sn(A) is countable
for all countable A. We prove this by induction on n.
For n = 1 the statement is by ω-stability.
We assume M is a monster-model, that is realises all types over any subset
we consider.
For n > 1, assuming by induction argument that Sn−1(A) is countable find
a countable M0 ≺ M such that A ⊆ M0 and M0 realises all the types in
Sn−1(A). We can further extend M0 ≺M1 ≺M so that M1 is countable and
realises all types of S1(M0). Then M1 realises all the types of Sn(A). Indeed,
if 〈b1, . . . , bn〉 an n-tuple in M then there is a 〈b′1, . . . , b′n−1〉 in M0 such that

tp(b′1, . . . , b
′
n−1/A) = tp(b1, . . . , bn−1/A).

The type pA,b1,...,bn−1 of bn over A ∪ {b1, . . . , bn−1} corresponds via swapping
the bi for b′i to a type pA,b′1,...,b′n−1

. The latter is realisable in M1, say by b′n.
It follows that 〈b1, . . . , bn〉 and 〈b′1, . . . , b′n〉 satisfy the same formulas with
parameters in A, that is they realise the same type of Sn(A). Hence every
type of Sn(A) is realised in a countable M1, which implies that Sn(A) is
countable.2

Theorem 6.2 If a countable theory T is categorical in some uncountable
cardinality κ then T is ω-stable.

Proof We are going to prove a formally stronger statement: for any M ² T
and any A ⊆ M with card A < κ the set S(A) is of cardinality at most
card A+ ℵ0.
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Assume otherwise, that is for some M and A with ℵ0 ≤ card A = λ < κ

card S(A) > λ.

By the Compactness Theorem and Lowenheim-Skolem up- and down-theorems
we may assume that M realises at least λ+ types of S(A) and card M = κ.
On the other hand by the Ehrenfeucht-Mostowski Theorem there is a model
M ′ of T of the same cardinality such that for any A′ ⊆M ′ with card A′ ≤ λ
there are at most λ types of S(A′) realised in M ′. Hence M can not be iso-
morphic to M ′. This contradicts the assumptions on categoricity in κ.2

Exercise 6.3 For any countable ω-stable theory for any infinite cardinal κ
there is an ω-staturated model M of the theory of cardinality κ.
In fact, the property that S(A) is at most countable for finite A suffices.

Our next goal is to give a more general definition of Morley rank for ω-stable
theories.

For a topological space X the Cantor-Bendixson Derivative d(X) is
defined as the set of all the limit points in X.
Let, by induction:
d0(X) = X
dα+1(X) = d(dα(X))
dλ(X) =

⋂
α<λ d

α(X) for λ limit.
For compact X, dα(X) is compact too. The first α where the process is
stabilised, i.e. dα+1(X) = dα(X), is called the Cantor-Bendixson rank
of X, or CB(X). For α = CB(X), dα(X) is empty or perfect (the perfect
kernel), that is compact without isolated points. By Cantor’s arguments a
perfect kernel in a space with countable basis is of cardinality 2ℵ0 .

Thus one easily gets

Cantor-Bendixson’s Theorem For a countable compact space

CB(X) < ℵ1, dCB(X)(X) = ∅ and CB(X) is a successor ordinal.
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Definition Let now M be an ω-saturated model of an ω-stable theory T.
For an n-variable formula ϕ(v̄) with parameters in M let
CB(ϕ) be the Cantor-Bendixson rank of the Stone space

Snϕ(M) = {p ∈ Sn(M) : ϕ ∈ p}.

Example Let M be a strongly minimal structure (and T its theory). Then
S(M) \ d1(S(M)) consists of all the types determined by a formula v = a,
a ∈ M and d1(S(M)) consists of the unique type containing ¬v = a for all
a ∈M. CB(v = v) = 2.

Proposition 6.2 Given an ω-stable theory, its ω-saturated model M and a
definable subset U of Mn

CB(U) ≥ α + 2 iff there exists a countable family {Vi : i ∈ N} of definable
mutually disjoint subsets of U such that CB(Vi) ≥ α + 1 for each i.

Proof Define for a complete type p ∈ Sn(M)

CB(p) = min{α : p /∈ dα+1(Sn(M))}.

Equivalently, CB(p) = α iff p is isolated in dα(Sn(M)).
Then CB(ϕ) > α+ 1 iff Snϕ(M)∩ dα+1(Sn(M)) 6= ∅ iff dα(Sn(M)) is infinite.
But the countable compact dα(Sn(M)) is infinite iff the set of its isolated
points is infinite. Thus, equivalently we can choose some p1, . . . , pi, . . .
isolated in dα(Sn(M)). Let ψi for each i ∈ N be a formula isolating pi
in dα(Sn(M)). Then dα(Snψi

(M)) 6= ∅, that is CB(ψi) ≥ α + 1. We may
also assume that ψi is disjoint from ψj for distinct i and j by changing to
ψ′i = ψi & ¬ψ1 & . . . & ¬ψi−1. Under these assumptions Vi = ψi(M) form a
family of disjoint subsets of U = ϕ(M) with CB(Vi) ≥ CB(pi) + 1 = α + 1.
Conversely, such a family of ψi immediately gives rise to a sequence of
pi ∈ dα(Snψi

(M)) which witnesses that CB(U) > α + 1.2
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Corollary 6.1 For any definable U there is a finite m such that U can not
contain more than m disjoint definable subsets of CB-rank equal to CB(U).

Definition The minimal m in the corollary is called the Morley degree of U
and denoted deg∗(U).
A definable U in an ω-saturated M is said to be irreducible if deg∗ U = 1.

Definition In an ω-saturated model of an ω-stable theory the Morley rank
of definable subset U ⊆Mn is defined as

rk∗(U) = CB(U)− 1

or, equivalently, by induction:
rk∗(U) ≥ 0 iff U 6= ∅
rk∗(U) ≥ α iff for any β < α there are infinitely many disjoint definable

subsets of Morley rank greater or equal to β.

Lemma 6.2.1 Under the assumptions of the definition above assume also
that rk∗U is finite and f : U → Mm is a definable function. Then rk∗f(U)
is finite and

rk∗f(U) + min{rk∗f−1(a) : a ∈ f(U)} ≤ rk∗U

Proof Induction on rk∗f(U) = γ.
For γ = 0 the inequality is obvious. For γ > β ≥ 0 we have by definition
infinitely many disjoint definable subsets Vi ⊆ f(U) of Morley rank greater
or equal to β. Hence, by induction hypothesis

β + min{rk∗f−1(a) : a ∈ Vi} ≤ rk∗f−1(Vi)

Since f−1(Vi) is a family of disjoint subsets of, again by definition

γ + min{rk∗f−1(a) : a ∈ f(U)} ≤ rk∗U.

2
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Lemma 6.2.2 Assuming that M is ω-saturated, U definable in M and f :
U →Mn definable function with finite fibers f

−1(a),

rk∗f(U) = rk∗U.

Proof Induction on rk∗U = γ. It is obvious for γ = 0.
By assumptions f−1(a) is finite for any a ∈ f(U), and by saturatedness we
have a common bound: |f−1(a)| ≤ m for all a ∈ f(U).
Suppose γ > α. Let {Vi : i ∈ N} be a countable disjoint family of definable
subsets of U of rank α. We may assume that each Vi is irreducible. Then
{f(Vi) : i ∈ N} is a family of irreducible subsets of rank α (by inductive
hypothesis) with the property that an a ∈ f(U) can be a common point of
at most m of the sets of the family. It follows that for a given i0 there are at
most m distinct i ∈ N such that rk∗(f(Vi0) ∩ f(Vi)) = α. By removing those
Vis we can get an infinite disjoint subfamily {f(Vi) : i ∈ I} of subsets of rank
α. This witnesses that rk∗f(U) > α and thus rk∗f(U) ≥ rk∗U. Combining
with Lemma 6.2.1 we get the equality.2

The following statement establishes the link between ω-stability and the the-
ory of strongly minimal sets.

Proposition 6.3 Let M be an ω-saturated model of an ω-stable theory and
S its infinite definable subset. Then there exists a definable set U ⊂ S of
Morley rank 1, irreducible. Such an U as a structure with relation induced
from M is strongly minimal.

Proof By assumptions rk S ≥ 1. Let U be a definable subset of S with
minimal positive Morley rank and irreducible. Then by definition rk U = 1.
Also, any partition of U into two definable subsets, U = U1∪̇U2, implies that
rk U1 = 0 or rk U2 = 0, thus one of the sets has to be finite. This imples
that U is minimal as a set in M and also as a substructure with the induced
relations. Since M is saturated, the pregeometry of U is of infinite dimen-
sion. Hence U is strongly minimal.2

As a corollary of lemmas above we also have

46



Proposition 6.4 If U ⊆ Mn is strongly minimal, then rk∗Un = n and for
any definable subset T ⊆ Uk

rk∗T = rk T.

Proof Suppose T ⊆ Uk is defined over a finite A ⊆M, and let 〈u1, . . . , uk〉 ∈
T be a tuple of a maximal dimension, say equal to r, over A. That is,
up to the numeration of variables, {u1, . . . , ur} is independent over A and
ur+1, . . . , uk ∈ acl(A ∪ {u1, . . . , ur}. Then r = rk T, the Morley rank of
section ??. We may assume that T is irreducible and that xr+1, . . . , xk ∈
acl(A ∪ {x1, . . . , xr} for all 〈x1, . . . , uk〉 ∈ T.
The projection pr : Uk → U r along the last k − r coordinates sends T
to a subset prT ⊆ U r and the fibers of the projection are finite. Hence
rk∗T = rk∗prT. If r < k then by induction we have rk∗prT = rk T = r.
If r = k, rk∗T = γ > α let {Vi : i ∈ N} be a disjoint family of sub-
sets of T of rank α. Let Ai ⊇ A be a finite set of parameters for Vi and
vi ∈ Vi of maximal dimension over Ai. By irreducibility, for all i, except for
maybe one, rk Vi = rk (vi/Ai) < r. It follows by the argument above that
α = rk∗Vi = rk Vi < r. Hence, by definition, γ = rk∗T ≤ r. The converse in-
eqality is obvious from the fact that U r has infinitely many definable subsets
of the form {a} × U r−1, a ∈ U, each of them, by induction, of rank r − 1.2

Hence, rk∗ coincides with rk on strongly minimal subsets and we omit ∗ from
now on.

Theorem 6.4 In any uncountably categorical theory Morley rank of any de-
finable set is finite, and all properties of the rank proved for sets definable in
strongly minimal structures hold.

Proof In the literature
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