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In [Z2] we studied the theory of formal exponentiation (raising to powers) and proved
that it is very nice (superstable) provided a certain diophantine conjecture CIT is true
(see [Z1] for a discussion of CIT). We believe that in fact the theory describes the
genuin complex exponentiation. To show this we need two statements, one of them
being the Schanuel conjecture [L] and the other is the exponential-algebraic closedness
of C, i.e. the solvability of any non-obviously-inconsistent system of equations. Here
we give a proof of the latter in case of real powers modulo the Schanuel conjecture and
CIT. The proof is based on the theory of exponential sums developed by D.Bernstein,
A .Kushnirenko, B.Kazarnovski and A.Khovanski, see [Kh] (the Russian edition).

1 Exponential sums

Let V C C" be a zero-set of p polynomials
mel;

where y = (yi1,...,y,) are variables, m = (my,...,m,) € Z", y™ = y{"* - ...y,
a,, € C and I'; some finite subsets of Z".
Let L C C" be a K-linear subspace of C™ for some subfield K C C. Up to the

numeration of coordinate functions zi,...,x, we may assume L is given by n — k
linear equations of the form x; = (s;,2), 7 = k+1,...,n, where z = (z1,...,2%), 5; =
(Sj1s---sSjk) € K¥ and (s;,2) = <y 85,7 We assume also s; = (0,...,0,1,...0)
with 1 on jth place for j =1,... k, thus

(sj,2) =z foral j=1,... n (2)

We also identify the points ¢t € K™ with the K-linear mapping (¢t,x) =, -x1 + ...+
t, - x, from C" to C. The restriction of such a mapping to L denote ¢.

Denote A the linear mapping ¢t — ¢, from the space K" of K-linear forms on C" onto
the space of K-linear forms L* on L.

With this notation we associate to the system (1) the system of exponential sums
in coordinates z ranging in L

> aimexp(mp,z) (i=1,...,p) (3)

mel’;



or, equivalently, after gathering summands with common exponent, we get from (1)
the system of equations

reLl& N D biaexp(d,z)=0 (4)

i=1,...,p dEA;
with A; = {m, :m € I;} C L* and

big = > @i -

{meT;: d=X(m)}

The set of solutions of the system (4) can be identified as L NInV, where
InV = {(x1,...,2,) : (exp(x1),...,exp(z,)) € V}.

Thus the correspondence between pairs (L, V') and exponential systems, depending
only on the choice of coordinate functions, is established.

Definition Let L be a linear subspace of C" and V an algebraic variety in C".
Given a pair (L, V'), a Q-affine subspace M of C" and a point a € M NLNInV it is
said that (L, V') restricted to M in a is free if M is the minimal Q-affine subspace
of C" containing M N L and exp(M) is the minimal (shifted) torus containing the
connected component of V' N exp(M) passing through exp(a).

If M = C" in the definition and exp(C") is the minimal torus containing a connected
component of V' then (L, V) is said to be free.

Notice that if L is free of additive dependencies, in particular, if the pair if free, then
for any d € K* there is no more than one m € Z" such that m; = d, in other words
the mapping t — ?; is injective on Z". In this case also b;4 = a;,, for d = my in
equations (4).

The following notions are basic in [Z].

Definition A pair (L,V) with V defined over A C C is said to be normal if there
are (ay,...,a,) € L and (by,...,b,) € V such that for any [ < n independent integer

vectors m; = (m;1,...m;p), 1 =1,...,1, and
a, =miay + ...+ mipa,, b=b"" - pn
it holds
lind.x(al, ..., a) +tr.d.(b],...,b/A) > L.
Equivalently, for the K-linear subspaces L) _; = linlocus(a}, ..., a;), the minimal K-
linear subspace of C' containing (a}, . . ., a;), and varieties W{ _; = alglocus 4 (b}, ..., b)),
the minimal algebraic subvariety of C' defined over A and which contains (0}, ..., a}),

it must hold
dim L}, +dim W], >1.

The following connects the normality and freeness conditions to the basic invariant
of the theory of exponential sums, the mixed Minkovski volume of Newton
polytopes of the system, see [Kh] and [GW].
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Lemma 1.1 Assume V is given by a system f =0 of p = k independent polynomial
equations. If (L, V') is normal and free and dim L +dim V' = n, (dim L = k) then for
the corresponding exponential system of k equations in k variables the mixed Minkouvski
volume of convex envelopes i, ... A,

VOI(Al, c Ak) # 0.

Proof By a suitable replacement of variables we may assume that in each equation
non-trivial constant term occurs. I.e. each I'; contains the zero-point.

We use the fact that, assuming each A; contains the zero point, Vol(Ay,...A;) # 0
provided that for any distinct i1,...,74, < k

lin.d.spang (A, U...UA;) > 1.

Notice that, since V is free of multiplicative dependencies and V' is non-empty, V N
(C) £0.

Notice that since L has no additive dependencies the mapping m +— my, is injective
on Z" and (Ty), = A,.

Suppose towards a contradiction that spang(Aq,...4A;) = Ha C L* is of dimension
less than [. Since the mapping A : K™ — L* is linear, for Hr = spang(I'y,...T}),

AN Hr) = Ha

and
dim kerr A = dim Hr — dim Ha,

for kerr A, the kernel of the mapping restricted to Hr. Denote s = dim Hy. Then
dimkerr A > s —[.

Since Hy is generated by integer points, there is a Z-linear transformation of variables
on C” of the form ) = (¢;, x), for some ¢; € Q", such that ¢, ..., ¢ is a basis of Hp
which also generates the abelian subgroup containing I'y, ..., I';. Letting vy, = exp(z})
we can equivalently rewrite equations (1) so that in the first [ equations only v}, ..., v,
occur. Denote V; the projection of V' onto the subspace of the first variables v}, ..., y.
and L, correspondingly, the projection of L onto (z,. ..,z )-subspace C*. Since the
equations f = 0 were independent, dim V; < s — [. The dimension of Ly we deduce
from that of kerr A. Notice that kerr A is the set of all K-linear ¢t : C* — C which are
zero on Lg. Thus the quotient K*/kerr A can be identified with the space L of all
K-linear forms on L, the dual space to L. Since dim L} = dim L, we get

dim L, = s — dim kerr \.
Thus
dim Vi +dim Ly < (s — 1) 4+ (s — dimkerp A) < s,
which contradicts the normality of (L, V).0

We use below the widely known Schanuel Conjecture SchC and a conjecture of diopan-

tine type, the conjecture on intersection varieties with tori in atypical components
CIT, discussed in [Z]. It is proved in [Z]



Theorem 1 Assume SchC+CIT. Then given a K-linear L C C™ not contained in
any proper Q-linear subspace of C", and an algebraic family W(a) C C™ of algebraic
varieties there is a finite set n(L,W) of K-linear hyperplanes of L and a natural
number | = (W) such that there are dy,...,d; € C" satisfying the property that any
atypical component R of L NInW(a) is contained in some H + d; for H € n(L, W)
and 1 < [.

Notation Fix an exponential system given by p = k polynomial equations (1) in
C" and a K-linear subspace L C C" in the final form (4). Denote V' the family of
all systems V'(a) of p = k independent equations (1). We assume all a;,, # 0 in
the initial system and also that L is free, i.e. not contained in any proper Q-linear
subspace of C". We also assume that the projective completion V(a) € P"(C) of
V(a) has no component lying in the subvariety y; = 0 or y;* = 0 for i < n.

It is well known that the family V can be coordinatized by points of C? for some
d so, that the coordinatization identifies family V' as an algebraic set C'(V), i.e. a
set of the form S; \ Sy with S; and Sy algebraic varieties, and each point of C(V)
corresponds to an algebraic variety V(a) of the family. W.l.o.g. we assume C(V) is
irreducible (i.e. S is).

We give now several key definitions and results from [Kh|, see also earlier publi-
cation [K]. We assume from now on K = R ( [Kh] considers only this case).

Definition Let »; C I'; be faces of corresponding convex polytopes. The faces are
said to agree if there is a common R-linear function ¢ on R" that takes its minimum
on each convex polytope exactly on ;. To each agreed set Xi,... 3, of faces one
associates a shortening of the initial system f = 0 of equations defined as

meX;

If f =0 determines variety V C C" we denote V> the variety corresponding to the
shortened system.

Correspondingly the definition is applicable to any exponential system with real pow-
ers.

One can easily see that under assumption that an exponential system is associated
to a pair (L, V) any shortening of the exponential system has the form L N1nV* for
a correspondent shortening V* of V.

Definition Given G, a domain in R¥, the exponential system associated to a pair
(L,V) is said to be non-degenerate on infinity in domain R* x «G (:* = 1) if all
points of L N1InV lying in the domain are isolated and all shortenings L NInV* do
not have points in the domain.



Definition An ultrafilter D on N is a family of subsets of N satisfying for any
X,Y C N the conditions:

(i) X,Y € D implies X NY € D;

(ii)) X € D and X CY implies Y € D;

(i) X ¢ DIt N\ X € D.

In a 7-topological space a point ¢ is said to be the limit point of a sequence ( = {(; :
i € N} along an ultrafilter D if for any neighborhood V' of &

{ieN:(eV}eD.

Notation We denote the limit point £ = (/D.
Remark In a compact topological space (/D always exists.

Lemma 1.2 For L and V' as above there is a finite set p(L, V') of algebraic families
of algebraic varieties W such that for any W € p(L,V') there are | = (W) < n and
a Q-linear transformation of basis of C™ to a new basis x1, ..., x,, which induces the
basis y1, ..., Yn (yi = exp(x;)) of C" such that

(i) the projection pr)(L) of L into the (z1,...,x;)-subspace S C C" along (41, ..., Ty)
1s of dimension less than dim L;

(i) for any a € C(V) W(a) is a subvariety of the space exp(S) and | — dim W (a) >
n—dimV;

(1) given sequences {a; € C(V) :i € N}, ((i) € exp(L) NV (a;) and an ultrafilter D
on N, the limit point /D of the sequence along D belongs to the projective closure
V(a) for some a. Suppose a € C(V) (i.e. dimV (a) =n —k) but (/D ¢ (C*)". Then
there is W € p(L, V') such that pr,(¢/D) € W(a) Nexppr,(L).

Proof Let ( = ((y,...,(,) be as in (iii). Then up to numeration of variables there is
an [ < n such that (;.1/D,...,(,/D takes values 0 or oo and (;/D,...,(;/D are in
C*.

By transformations of the form g; — y; ' (corresponds to the sign-changing rational
transformation x; — —x;) we may assume

Gi1/D =...= (/D =0,

Notice that there are only finitely many choices of subsets of variables and sign-
changing transformations for all choices of (.

From that point on we begin an algorithm constructing a new basis.

For any non-negative integer d such that d > dimV(a) + [ — n for any distinct
i1,...,0q € {1,...,1} (if d = 0 then the set is empty) the projection pr; ,; ., ,V

onto the space of coordinates v;,,...,¥i, Yi+1,---,Yn is of dimension less than the
dimension n — [ 4+ d of the ambient space. Hence there is a non-zero polynomial

hil ..... ig,l+1,..., n(a> Yiys- s Yigs Y41, - - - 7yn)



whose construction depends on iy,...,4i4,l 4+ 1,...,n but not on (, which is zero on
V(a). Write the polynomial in the form

J— m
hil,...,id7l+1,...7n = Z gm,il,...,id,l—i-l,...,n(aa Yiys - - - ,yid) : <yl+1, e ,yn> )
mEMLl ,,,,, iq
where M;, ;. is a set of (n — l)-tuples (myiq,...,m,) of integers, Gy, isi+1,..n
non-zero polynomials, and (Y41, ..., y,)™ denotes y}'{" .. .-y Notice that M;, _;,

contains at least two distinct elements for otherwise there is a component of projective
completion V' (a) of V(a) in the subvariety y; = 0 or y; * = 0 for some i of P"(C).
The next step in the algorithm depends on the cases.

Case 1: ((iq1,-.., )™ ™ /D is either 0 or oo for all distinct m,m’ € M;
Case 2: (Gy1,--+5Cu)™ ™ /D is in C* for some distinct m,m’ € M,, ;..
In the second case, assuming 1,11 —m;_; # 0 we change the variables z;(new) = x; for
all © # I+1 and ;11 (new) = (myp1—mi, ) 21+ ..+ (my,—m),)-x,. Correspondingly,
yi(new) = exp(z;(new)). Then in the new variables (i/D,...,(;41/D are in C*,
Cu2/D = ... =(,/D =0, and we come to the first step of the algorithm with [ + 1
instead of [.

In case 1 find mo,,, iji+1,..n € M;, . i, which satisfies the "minimality” condition:

1yeeerbd

(Ca1s - vy Gy M0tiatt b [ 1) = () for all m € M, ;, distinet from mo g, iy it1,..m-

Since

hil,...,id,lJrl,...,n(aa C/D) =0

we get necessarily

,,,,,

Notice that this case is not possible for d = 0 since the polynomial has not been
identically zero.

We terminate the algorithm and define T (a) to be the algebraic subvariety of S = C!
determined by the set of equations

{ H ng,il,m,id,l-&-l ,,,,, n(a7 Yigs - - 7yid) =0 <... <y < l}

M0iq,eigol+ 1, ,n €EMig iy

in variables y1, ..., y;. Notice that the length of the algorithm is restricted by n and on
every step we choose between finitely many possibilities. Thus there are only finitely
many outcomes of the algorithm.

Also, dimW(a) < d since any d coordinates on W (a) are algebraically dependent.
Hence, by the choice of d, | —dim W (a) > n — dimV(a).

Consider now the projection pr)(L) = pr; (L) of L into C' in coordinates z, ...,
along x;.1,...,x,. Notice that the mapping

pr; o L — pry(L)



has a non-trivial kernel. Otherwise the mapping is the linear isomorphism and hence
for [ < i <n there are real s;1,...,s;; € K such that for any (z1,...,2,) € L

ZEZ‘:SZ‘71'$1+...—|—81‘7Z'1][.
It follows

G = eXP(Sz‘,l -In Cl) el eXP(Sz‘,z -In Cl)u

and going to limit we obtain the contradiction with the fact that, for i < < n, j <,
by the construction (;/D = 0, while exp(s; ; - In(;/D) are non-zero.
Since the kernel is non-trivial, dim pr;(L) < dim L.O

Remark The varieties W (a) constructed in Lemma above are just shortenings of
V(a) in the terminology of [Kh].

Notation Denote for a subset X C CF
Re(X) = {Re(x) : =z € X}.
Notice that Re(L) under the assumption that K C R is an R-linear subspace of RF.

Lemma 1.3 There are a real number R = R(L,V) and a positive integer m =
m(L, V) satisfying the following: Given a € C(V), there is a set u(L,V,a) of m
R-affine hyperplanes of Re(L), such that for any ball B C Re(L) of radius R which
intersect no hyperplane from (L, V,a) there is a point in (Re(L) +:B)NLNInV (a).

Proof By [Kh, section 6] taking into account Lemma 1.1, for any closed ball B C
Re(L) of a large enough radius the set

Cp(L,V)={ae C(V): LNInV(a) is non-degenerate in Re(L) + 1B}

is dense in C(V) (in the real topology) and any exponential system in the family
Cp(L,V) has a solution in Re(L) + +B.

Suppose a € C(L, V). Then a = a;/D the limit point of a sequence {a; € Cp(V) :i €
N} along an ultrafilter D on N. By the above for each i one can find a solution

£(i) € (Re(L) +:B) NInV(a;)
(notice that Re(L) + 1B C L). Correspondingly, exp(£(i)) = ¢(i) € LNV (a;). The
limit £/D of the sequence £(7) is either a point in (Re(L) +:B) NInV (a) or (/D =
exp(&£/D) satisfies the conditions of Lemma 1.2 (iii). Then pr,((/D) € exp(pr,(L)) N
W (a) for one of finitely many W € p(L, V). Thus
pr;(§/D) € pr;(Re(L) +:B) NIn W (a).

It follows from (ii) of Lemma 1.2 that any point in the intersection is atypical. Thus
by Theorem 1 pr;({/D) must lie in one of finetely many affine hyperplanes of pr;(L)
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of the form H +¢; for H € n(pr,(L), W) and i < p(pr;(L), W). Thus B must intersect
one of the hyperplanes of Re(L) of the form Re[pr; '(H + ¢;)].
Take all such hyperplanes to be (L, V,a). O

Lemma 1.4 Given a natural number m, there is a real constant R*(m) such that
given a ball B* in Re(L) of radius R*(m) and a set H of m affine hyperplanes in the
space there is a ball B C B* of radius R which does not intersect with any hyperplane

of H.

Proof By induction on m one easily sees that R*(m) = 2™ - R fits.O

Theorem 2 Assume SchC+CIT. Let L C C" be an R-linear subspace and V' a family
of algebraic varieties given by equations (1) such that (L,V (a)) is normal and free for
any a € C(V). Then there is a constant R(L,V) such that, given a ball B* of radius
R(L, V), there is always a solution x of the exponential system with

z € (Re(L) +1B").
Proof Take R = R(V,L) = R*(m(L,V)) of Lemma 1.4. Then for any B* of radius

R there is B C B* such that B does not intersect any hyperplane from p(L,V,a).
Apply now Lemma 1.3.0

Remark The theorem can be strengthened to fulfill the requirement that, given any
extra [ R-affine hyperplanes, we can choose R(V, L,[) so that one can find a solution
in Re(L) 4 ¢B* outside the [ hyperplanes.
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