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In [Z2] we studied the theory of formal exponentiation (raising to powers) and proved
that it is very nice (superstable) provided a certain diophantine conjecture CIT is true
(see [Z1] for a discussion of CIT). We believe that in fact the theory describes the
genuin complex exponentiation. To show this we need two statements, one of them
being the Schanuel conjecture [L] and the other is the exponential-algebraic closedness
of C, i.e. the solvability of any non-obviously-inconsistent system of equations. Here
we give a proof of the latter in case of real powers modulo the Schanuel conjecture and
CIT. The proof is based on the theory of exponential sums developed by D.Bernstein,
A.Kushnirenko, B.Kazarnovski and A.Khovanski, see [Kh] (the Russian edition).

1 Exponential sums

Let V ⊆ Cn be a zero-set of p polynomials

fi(y) =
∑
m∈Γi

ai,my
m (i = 1, . . . , p) (1)

where y = 〈y1, . . . , yn〉 are variables, m = 〈m1, . . . ,mn〉 ∈ Zn, ym = ym1
1 · . . . ymn

n ,
am ∈ C and Γi some finite subsets of Zn.
Let L ⊆ Cn be a K-linear subspace of Cn for some subfield K ⊆ C. Up to the
numeration of coordinate functions x1, . . . , xn we may assume L is given by n − k
linear equations of the form xj = (sj, z), j = k+1, . . . , n, where z = 〈x1, . . . , xk〉, sj =
〈sj,1, . . . , sj,k〉 ∈ Kk and (sj, z) =

∑
l≤k sj,lxl. We assume also sj = 〈0, . . . , 0, 1, . . . 0〉

with 1 on jth place for j = 1, . . . , k, thus

(sj, z) = xj for all j = 1, . . . , n. (2)

We also identify the points t ∈ Kn with the K-linear mapping (t, x) = t1 · x1 + . . .+
tn · xn from Cn to C. The restriction of such a mapping to L denote tL.
Denote λ the linear mapping t→ tL from the space Kn of K-linear forms on Cn onto
the space of K-linear forms L∗ on L.
With this notation we associate to the system (1) the system of exponential sums
in coordinates z ranging in L∑

m∈Γi

ai,m exp(mL, z) (i = 1, . . . , p) (3)
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or, equivalently, after gathering summands with common exponent, we get from (1)
the system of equations

x ∈ L &
∧

i=1,...,p

∑
d∈∆i

bi,d exp(d, x) = 0 (4)

with ∆i = {mL : m ∈ Γi} ⊆ L∗ and

bi,d =
∑

{m∈Γi: d=λ(m)}
ai,m.

The set of solutions of the system (4) can be identified as L ∩ lnV, where

lnV = {〈x1, . . . , xn〉 : 〈exp(x1), . . . , exp(xn)〉 ∈ V }.

Thus the correspondence between pairs (L, V ) and exponential systems, depending
only on the choice of coordinate functions, is established.

Definition Let L be a linear subspace of Cn and V an algebraic variety in Cn.
Given a pair (L, V ), a Q-affine subspace M of Cn and a point a ∈M ∩L∩ lnV it is
said that (L, V ) restricted to M in a is free if M is the minimal Q-affine subspace
of Cn containing M ∩ L and exp(M) is the minimal (shifted) torus containing the
connected component of V ∩ exp(M) passing through exp(a).
If M = Cn in the definition and exp(Cn) is the minimal torus containing a connected
component of V then (L, V ) is said to be free.

Notice that if L is free of additive dependencies, in particular, if the pair if free, then
for any d ∈ Kk there is no more than one m ∈ Zn such that mL = d, in other words
the mapping t 7→ tL is injective on Zn. In this case also bi,d = ai,m for d = mL in
equations (4).

The following notions are basic in [Z].

Definition A pair (L, V ) with V defined over A ⊆ C is said to be normal if there
are 〈a1, . . . , an〉 ∈ L and 〈b1, . . . , bn〉 ∈ V such that for any l ≤ n independent integer
vectors mi = 〈mi,1, . . .mi,n〉, i = 1, . . . , l, and

a′i = mi,1a1 + . . .+mi,nan, b′i = b
mi,1

1 · . . . · bmi,n
n

it holds
lin.d.K(a′1, . . . , a

′
l) + tr.d.(b′1, . . . , b

′
l/A) ≥ l.

Equivalently, for the K-linear subspaces L′1,...,l = linlocus〈a′1, . . . , a′l〉, the minimal K-
linear subspace of Cl containing 〈a′1, . . . , a′l〉, and varietiesW ′

1,...,l = alglocusA〈b′1, . . . , b′l〉,
the minimal algebraic subvariety of Cl defined over A and which contains 〈b′1, . . . , a′l〉,
it must hold

dimL′1,...,l + dimW ′
1,...,l ≥ l.

The following connects the normality and freeness conditions to the basic invariant
of the theory of exponential sums, the mixed Minkovski volume of Newton
polytopes of the system, see [Kh] and [GW].
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Lemma 1.1 Assume V is given by a system f = 0 of p = k independent polynomial
equations. If (L, V ) is normal and free and dimL+ dimV = n, (dimL = k) then for
the corresponding exponential system of k equations in k variables the mixed Minkovski
volume of convex envelopes ∆̄1, . . . ∆̄k

Vol(∆̄1, . . . ∆̄k) 6= 0.

Proof By a suitable replacement of variables we may assume that in each equation
non-trivial constant term occurs. I.e. each Γi contains the zero-point.
We use the fact that, assuming each ∆̄i contains the zero point, Vol(∆̄1, . . . ∆̄k) 6= 0
provided that for any distinct i1, . . . , il ≤ k

lin.d.spanK(∆i1 ∪ . . . ∪∆il) ≥ l.

Notice that, since V is free of multiplicative dependencies and V is non-empty, V ∩
(C∗)n 6= ∅.
Notice that since L has no additive dependencies the mapping m 7→ mL is injective
on Zn and (Γi)L = ∆i.
Suppose towards a contradiction that spanK(∆1, . . .∆l) = H∆ ⊆ L∗ is of dimension
less than l. Since the mapping λ : Kn → L∗ is linear, for HΓ = spanK(Γ1, . . .Γl),

λ(HΓ) = H∆

and
dim kerΓ λ = dimHΓ − dimH∆,

for kerΓ λ, the kernel of the mapping restricted to HΓ. Denote s = dimHΓ. Then

dim kerΓ λ > s− l.

Since HΓ is generated by integer points, there is a Z-linear transformation of variables
on Cn of the form x′i = (qi, x), for some qi ∈ Qn, such that q1, . . . , qs is a basis of HΓ

which also generates the abelian subgroup containing Γ1, . . . ,Γl. Letting y′i = exp(x′i)
we can equivalently rewrite equations (1) so that in the first l equations only y′1, . . . , y

′
s

occur. Denote Vs the projection of V onto the subspace of the first variables y′1, . . . , y
′
s

and Ls, correspondingly, the projection of L onto (x′1, . . . , x
′
s)-subspace Cs. Since the

equations f = 0 were independent, dimVs ≤ s − l. The dimension of Ls we deduce
from that of kerΓ λ. Notice that kerΓ λ is the set of all K-linear t : Cs → C which are
zero on Ls. Thus the quotient Ks/ kerΓ λ can be identified with the space L∗s of all
K-linear forms on Ls, the dual space to Ls. Since dimL∗s = dimLs, we get

dimLs = s− dim kerΓ λ.

Thus
dimVs + dimLs ≤ (s− l) + (s− dim kerΓ λ) < s,

which contradicts the normality of (L, V ).2

We use below the widely known Schanuel Conjecture SchC and a conjecture of diopan-
tine type, the conjecture on intersection varieties with tori in atypical components
CIT, discussed in [Z]. It is proved in [Z]
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Theorem 1 Assume SchC+CIT. Then given a K-linear L ⊆ Cn not contained in
any proper Q-linear subspace of Cn, and an algebraic family W (ā) ⊆ Cn of algebraic
varieties there is a finite set η(L,W ) of K-linear hyperplanes of L and a natural
number l = l(W ) such that there are d1, . . . , dl ∈ Cn satisfying the property that any
atypical component R of L ∩ lnW (ā) is contained in some H + di for H ∈ η(L,W )
and i ≤ l.

Notation Fix an exponential system given by p = k polynomial equations (1) in
Cn and a K-linear subspace L ⊆ Cn in the final form (4). Denote V the family of
all systems V (a) of p = k independent equations (1). We assume all ai,m 6= 0 in
the initial system and also that L is free, i.e. not contained in any proper Q-linear
subspace of Cn. We also assume that the projective completion V̄ (a) ⊆ Pn(C) of
V (a) has no component lying in the subvariety yi = 0 or y−1

i = 0 for i ≤ n.
It is well known that the family V can be coordinatized by points of Cd for some
d so, that the coordinatization identifies family V as an algebraic set C(V ), i.e. a
set of the form S1 \ S2 with S1 and S2 algebraic varieties, and each point of C(V )
corresponds to an algebraic variety V (a) of the family. W.l.o.g. we assume C(V ) is
irreducible (i.e. S1 is).

We give now several key definitions and results from [Kh], see also earlier publi-
cation [K]. We assume from now on K = R ( [Kh] considers only this case).

Definition Let Σi ⊆ Γi be faces of corresponding convex polytopes. The faces are
said to agree if there is a common R-linear function ϕ on Rn that takes its minimum
on each convex polytope exactly on Σi. To each agreed set Σ1, . . . ,Σk of faces one
associates a shortening of the initial system f = 0 of equations defined as

fΣi
i =

∑
m∈Σi

amy
m = 0 (i = 1, . . . , k).

If f = 0 determines variety V ⊆ Cn we denote V Σ the variety corresponding to the
shortened system.

Correspondingly the definition is applicable to any exponential system with real pow-
ers.

One can easily see that under assumption that an exponential system is associated
to a pair (L, V ) any shortening of the exponential system has the form L ∩ lnV Σ for
a correspondent shortening V Σ of V.

Definition Given G, a domain in Rk, the exponential system associated to a pair
(L, V ) is said to be non-degenerate on infinity in domain Rk × ıG (ı2 = 1) if all
points of L ∩ lnV lying in the domain are isolated and all shortenings L ∩ lnV Σ do
not have points in the domain.
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Definition An ultrafilter D on N is a family of subsets of N satisfying for any
X, Y ⊆ N the conditions:
(i) X, Y ∈ D implies X ∩ Y ∈ D;
(ii) X ∈ D and X ⊆ Y implies Y ∈ D;
(iii) X /∈ D iff N \X ∈ D.

In a τ1-topological space a point ξ is said to be the limit point of a sequence ζ = {ζi :
i ∈ N} along an ultrafilter D if for any neighborhood V of ξ

{i ∈ N : ζi ∈ V } ∈ D.

Notation We denote the limit point ξ = ζ/D.
Remark In a compact topological space ζ/D always exists.

Lemma 1.2 For L and V as above there is a finite set ρ(L, V ) of algebraic families
of algebraic varieties W such that for any W ∈ ρ(L, V ) there are l = l(W ) < n and
a Q-linear transformation of basis of Cn to a new basis x1, . . . , xn, which induces the
basis y1, . . . , yn (yi = exp(xi)) of Cn such that
(i) the projection prl(L) of L into the (x1, . . . , xl)-subspace S ⊆ Cn along (xl+1, . . . , xn)
is of dimension less than dimL;
(ii) for any a ∈ C(V ) W (a) is a subvariety of the space exp(S) and l − dimW (a) >
n− dimV ;
(iii) given sequences {ai ∈ C(V ) : i ∈ N}, ζ(i) ∈ exp(L) ∩ V (ai) and an ultrafilter D
on N, the limit point ζ/D of the sequence along D belongs to the projective closure
V̄ (a) for some a. Suppose a ∈ C(V ) (i.e. dimV (a) = n− k) but ζ/D /∈ (C∗)n. Then
there is W ∈ ρ(L, V ) such that prl(ζ/D) ∈ W (a) ∩ exp prl(L).

Proof Let ζ = 〈ζ1, . . . , ζn〉 be as in (iii). Then up to numeration of variables there is
an l < n such that ζl+1/D, . . . , ζn/D takes values 0 or ∞ and ζ1/D, . . . , ζl/D are in
C∗.
By transformations of the form yi → y−1

i (corresponds to the sign-changing rational
transformation xi → −xi) we may assume

ζl+1/D = . . . = ζn/D = 0.

Notice that there are only finitely many choices of subsets of variables and sign-
changing transformations for all choices of ζ.
From that point on we begin an algorithm constructing a new basis.
For any non-negative integer d such that d > dimV (a) + l − n for any distinct
i1, . . . , id ∈ {1, . . . , l} (if d = 0 then the set is empty) the projection pri1,...,id,l+1,...,nV
onto the space of coordinates yi1 , . . . , yid , yl+1, . . . , yn is of dimension less than the
dimension n− l + d of the ambient space. Hence there is a non-zero polynomial

hi1,...,id,l+1,...,n(a, yi1 , . . . , yid , yl+1, . . . , yn)
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whose construction depends on i1, . . . , id, l + 1, . . . , n but not on ζ, which is zero on
V (a). Write the polynomial in the form

hi1,...,id,l+1,...,n =
∑

m∈Mi1,...,id

gm,i1,...,id,l+1,...,n(a, yi1 , . . . , yid) · 〈yl+1, . . . , yn〉m,

where Mi1,...,id is a set of (n − l)-tuples 〈ml+1, . . . ,mn〉 of integers, gm,i1,...,id,l+1,...,n

non-zero polynomials, and 〈yl+1, . . . , yn〉m denotes y
ml+1

l+1 · . . . ·ymn
n . Notice that Mi1,...,id

contains at least two distinct elements for otherwise there is a component of projective
completion V̄ (a) of V (a) in the subvariety yi = 0 or y−1

i = 0 for some i of Pn(C).
The next step in the algorithm depends on the cases.
Case 1: 〈ζl+1, . . . , ζn〉m−m

′
/D is either 0 or ∞ for all distinct m,m′ ∈Mi1,...,id

Case 2: 〈ζl+1, . . . , ζn〉m−m
′
/D is in C∗ for some distinct m,m′ ∈Mi1,...,id .

In the second case, assuming ml+1−m′l+1 6= 0 we change the variables xi(new) = xi for
all i 6= l+1 and xl+1(new) = (ml+1−m′l+1)·xl+1+. . .+(mn−m′n)·xn. Correspondingly,
yi(new) = exp(xi(new)). Then in the new variables ζ1/D, . . . , ζl+1/D are in C∗,
ζl+2/D = . . . = ζn/D = 0, and we come to the first step of the algorithm with l + 1
instead of l.
In case 1 find m0,i1,...,id,l+1,...,n ∈Mi1,...,id which satisfies the ”minimality” condition:

〈ζl+1, . . . , ζn〉m−m0,i1,...,id,l+1,...,n/D = 0 for all m ∈Mi1,...,id distinct from m0,i1,...,id,l+1,...,n.

Since
hi1,...,id,l+1,...,n(a, ζ/D) = 0

we get necessarily

gm0,i1,...,id,l+1,...,n
(a, ζi1/D, . . . , ζid/D) = 0.

Notice that this case is not possible for d = 0 since the polynomial has not been
identically zero.
We terminate the algorithm and define W (a) to be the algebraic subvariety of S = Cl

determined by the set of equations

{
∏

m0,i1,...,id,l+1,...,n∈Mi1,...,id

gm0,i1,...,id,l+1,...,n
(a, yi1 , . . . , yid) = 0 : i1 < . . . < id ≤ l}

in variables y1, . . . , yl. Notice that the length of the algorithm is restricted by n and on
every step we choose between finitely many possibilities. Thus there are only finitely
many outcomes of the algorithm.

Also, dimW (a) < d since any d coordinates on W (a) are algebraically dependent.
Hence, by the choice of d, l − dimW (a) > n− dimV (a).
Consider now the projection prl(L) = pr1,...l(L) of L into C l in coordinates x1, . . . , xl
along xl+1, . . . , xn. Notice that the mapping

pr1 : L→ prl(L)
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has a non-trivial kernel. Otherwise the mapping is the linear isomorphism and hence
for l < i ≤ n there are real si,1, . . . , si,l ∈ K such that for any 〈x1, . . . , xn〉 ∈ L

xi = si,1 · x1 + . . .+ si,l · xl.

It follows
ζi = exp(si,1 · ln ζ1) · . . . · exp(si,l · ln ζl),

and going to limit we obtain the contradiction with the fact that, for l < i ≤ n, j ≤ l,
by the construction ζi/D = 0, while exp(si,j · ln ζj/D) are non-zero.
Since the kernel is non-trivial, dim prl(L) < dimL.2

Remark The varieties W (a) constructed in Lemma above are just shortenings of
V (a) in the terminology of [Kh].

Notation Denote for a subset X ⊆ Ck

Re(X) = {Re(x) : x ∈ X}.

Notice that Re(L) under the assumption that K ⊆ R is an R-linear subspace of Rk.

Lemma 1.3 There are a real number R = R(L, V ) and a positive integer m =
m(L, V ) satisfying the following: Given a ∈ C(V ), there is a set µ(L, V, a) of m
R-affine hyperplanes of Re(L), such that for any ball B ⊆ Re(L) of radius R which
intersect no hyperplane from µ(L, V, a) there is a point in (Re(L) + ıB)∩L∩ lnV (a).

Proof By [Kh, section 6] taking into account Lemma 1.1, for any closed ball B ⊆
Re(L) of a large enough radius the set

CB(L, V ) = {a ∈ C(V ) : L ∩ lnV (a) is non-degenerate in Re(L) + ıB}

is dense in C(V ) (in the real topology) and any exponential system in the family
CB(L, V ) has a solution in Re(L) + ıB.
Suppose a ∈ C(L, V ). Then a = ai/D the limit point of a sequence {ai ∈ CB(V ) : i ∈
N} along an ultrafilter D on N. By the above for each i one can find a solution

ξ(i) ∈ (Re(L) + ıB) ∩ lnV (ai)

(notice that Re(L) + ıB ⊆ L). Correspondingly, exp(ξ(i)) = ζ(i) ∈ L ∩ V (ai). The
limit ξ/D of the sequence ξ(i) is either a point in (Re(L) + ıB) ∩ lnV (a) or ζ/D =
exp(ξ/D) satisfies the conditions of Lemma 1.2 (iii). Then prl(ζ/D) ∈ exp(prl(L)) ∩
W (a) for one of finitely many W ∈ ρ(L, V ). Thus

prl(ξ/D) ∈ prl(Re(L) + ıB) ∩ lnW (a).

It follows from (ii) of Lemma 1.2 that any point in the intersection is atypical. Thus
by Theorem 1 prl(ξ/D) must lie in one of finetely many affine hyperplanes of prl(L)
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of the form H+ ci for H ∈ η(prl(L),W ) and i ≤ p(prl(L),W ). Thus B must intersect
one of the hyperplanes of Re(L) of the form Re[pr−1

l (H + ci)].
Take all such hyperplanes to be µ(L, V, a). 2

Lemma 1.4 Given a natural number m, there is a real constant R∗(m) such that
given a ball B∗ in Re(L) of radius R∗(m) and a set H of m affine hyperplanes in the
space there is a ball B ⊆ B∗ of radius R which does not intersect with any hyperplane
of H.

Proof By induction on m one easily sees that R∗(m) = 2m ·R fits.2

Theorem 2 Assume SchC+CIT. Let L ⊆ Cn be an R-linear subspace and V a family
of algebraic varieties given by equations (1) such that (L, V (a)) is normal and free for
any a ∈ C(V ). Then there is a constant R(L,V) such that, given a ball B∗ of radius
R(L, V ), there is always a solution x of the exponential system with

x ∈ (Re(L) + ıB∗).

Proof Take R = R(V, L) = R∗(m(L, V )) of Lemma 1.4. Then for any B∗ of radius
R there is B ⊆ B∗ such that B does not intersect any hyperplane from µ(L, V, a).
Apply now Lemma 1.3.2

Remark The theorem can be strengthened to fulfill the requirement that, given any
extra l R-affine hyperplanes, we can choose R(V, L, l) so that one can find a solution
in Re(L) + ıB∗ outside the l hyperplanes.
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