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Finite homogeneous geometries

by B.Zil'ber

The notion of a pregeometry (matroid) was introduced at the

beginning of the 1930s to study a genera1notion of dependence: Recen Uy it was
found out that the combinatorics of homogeneous pregeometries is closely

connected with importa11\ problems in stability theory. From the other' hand the

techniques and ideology of stability theory allow one to get serious results on

homogeneous geometries. The aim of the present paper is to give a proof of the

following: -

~-,
'\;

~
\
~,
i
I
I

Main Theorem. A finite homogeneous ,geometry of (projective)

dimension not less than 7 with more than 2 points on its lines is an aff'1Jleor

projective geometry (possibly truncated).

- StricUy speaking we present here only the draft of the proof omitting
.details. However we hope the draft is quite comprehens~le. in fact. the details

omitted could be reconstructed using the proof of the infinite version of the

theorem in [Z1]. [Z2l and a close work [Z3],

The methods of the proof are based on simple ideas of stability theory

and develop those of [Z1]-[Z3].

A ore2eometrv is a set A together with a closure operator cl: 2A -4 2A

satisfying the following conditions for any X. Y ~ A. x. YEA:

(1) ~ ~ cHX);

(iD X ~ cl(Y) ~ cl(X) ~ c1(Y.);

(iiDx E c1(Xu(y})\c1(X) ~ y E cHXu(x).

If A is allowed to be infinite then usually the following condition is added:

- (iv) cHX) = U(c1(X') : X' ~ X. X' is finite).

Here we- consider only finite A.

~
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An automorphism of a pregeometry is any bijection «: A -+ A for
which

c1(<«X» = «(c1(Ul

holds for any X ~ A. The group of all automorphisms fixing a set X pointwise is

denoted Aut(A/X) and Aut(A/~) - Aut(A).

i
~

I
I

I

A pregeometry is said to be homo,eneous if x. yEA \ cHX) implies the

existence of an « E Aut(A/X) such that «(x) .. y.

any x E A.
A pregeometry is called a ,eometry if c1(~) - ~ and c1(x}) . (x) for

. -

For any pregeometry A one can construct the geometry A. by putting

g
!: = (cl({x}) : X E X \ c1(~»)

for any X ~ A and defining the closure on A to be as foUo:ws: c1(!:) = c1(X)A.

Another construction called localization gives a new pregeometry on

the set A given a subset C ~ A. Define the new closure clC to be: clC(X) = c1(XuC)

A for any X ~ A. The new pregeometry on A is denoted AC' dim X denotes the

cardinality of a maximal independent (in the sense of cl) subset of X. called a base

of X. The cardibality does not depend on the choice of the base.

dimCXis the dimension of X in AC'

Note that dim X-I is what is caUed the projective dimension of X.

1. Sets over a ore,eometry

We shall call a subset 5 ~ An X-definable for an X ~ A if 5 is invariant

under all automorphisms from Aut(A/X). This definition defines also X-definable
- relations on 5 as subsets of ink.

An X-definable set over "6.is a'set of the form 5/E. where 5 is an.



188 \

X-definable subset of An and E is an X-definable equivalence relation on S.

It is easy to See that Aut(A/X) acts on anyX-definable set U ,.S/E. ~y
Aut<A/X)-invariant subset of U can be in a natural way presented as an
X-definable set, so we call it X-definable too.

If E is trivial then S/E can be identified as S, so the X-definable

subsets of An are in this sense I-definable sets over A.

If u E U and U is an X-defina.ble set then denote by O(u/X) the orbit of

u under the action of Aut(A/X). This is an X-defina.ble set (cf. tp(u/X) in model
theory).

We shall call an X-defina.ble set S/E (S C;;;;;An) strictly coordinatiza.ble

over X if for any <Sl,,,,,sn>' <s'l,...,s'n> E S, <sl"",sn> E <s'I,...,s'n> implies

c1X(SI"",sn)" c1X(s'1,.~.,s'n)'

Throughout the paper all I-definable sets are considered to be strictly
coordinatizable over I.

An example: The set L of all1ines in a geometry A is a O-defina.ble set

over A. More precisely L .. S/E, whereS .. «x,y> E A2 : x ;. y),

<X,y>E <x',y'> iff c1(x,y).. c1(x',y').

If U .. S/E is an X-definable set, uI,...,uk E U, ul "slE, si . <sit,,,,,sin> E S C;;;;;An then

we put

(u 1, uk'X) .. c1({sU sln,...,skl ,skn) u X).

Note that for al, ak E A

(al ak) . c1(a:1,,~...ak)'

i
!
j

!
;

thus we can use the operator ( ) instead of cl.

For u e U we define "
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rank(u/X) .. dimX(u.X).
, ,

It follows from the definition that

1.1. rank«uI.u2>/X) ..

.. rank(u 1/(u2'x» + rank(u2/X)

. rank(u2/(ul,Xn- + rank(uI/X).

Define for sets

rank(U/X) = max (rank(u/X) : u e' U).

"
~
':,i

1.2. From the homogeneity it follows that rank(U/X) .. rank(U/Y)

provided U is X-def'1D.able.X ~ Y ~A. rank(U/X) .. r. r < dimXA. r < dimyA. [J

For any Y ~ A. define U[YJ .. (u e U : (u'x) <;;;(y)).

1.3. Polynomial Theorem. For any X-definable strictly coordinatizable

set U over A there is a unique polynomial Pu(v) of one v~iable over the

rationals such that

(i) for any closed Y ~ A. if IYI .. n. Y ~ X. then

IU[YJI .. PU(n).

(ii) deg Pu .. rank(U/X).

(ill) if U' is an X'-definable set over A such that for some a. e Aut(A).

X' .. a.(X), U' .. a.(U). then PU' .. PU'

A proof of the the,orem is in fact given in [ZI J. Theorem 2.2.

1.4. Let U be an X-definable, set. rank(U/X) .. r. Define for any n a

binary relation En on U:
J '
"

,,,,-,-,,"",

, I:
, i'
I,,!
j, ,
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Ut En u2 ~ there are Yt""'Yn e A independent over (Ut.u2'X) and

a. e Aut(A/(Yt'''''Yn'X» such that a.(Ut) = u2'
It J

If n + 21' lIEcodim X. (X) " 0 and planes in A are not projective. then

En is an equivalence relation on U.

Proof. The only problem is transitivity. Let Ut En u2 and. u2 En u3'

. By homogeneity to prove Ut En u3 it is sufficient to find Yt""'Yn independent over

(Ut.u2'X) as well as over (u2.u3'x) and over (Ut.u2'X), If Yt'''''Yi (i < n) have been

found already then

Dei

Yi+l e A \ (ul.u2'Yl'''''Yi'X) U (u2.u3.Yt'''''Yi'X) U (ul.u3'Yl'''''Yi'X),

pro
The sum of the three subspaces is less than A since the number of points on a line

in A(X.yl""'Yi) is greater than 3. 0

1.5. Suppose n + '21' lIEcodim X. En is an equivalence relation on U.

n ~ l' = rank(U/X). set

ra.ti

Under these conditions any class Uo of the equivalence En is

(Z)-defina.ble.provided X ~ Z ~ A..dimXZ~. r.

Proof. It suffices to find Uo e U such that (uO.X) ~ (Z). Let Ut e UO'

rank(UO/(X.u 1» ~ 1'0' By 1.2 we can find u2 e U with rank(u2/(Z» = 1'0 and u3 e U

with rank(u3/(Z.u2» = 1'0' Since

dim(X.u2)(X.u3) = 1'0 E dim(X.u2) Z. X' =

there is a. e 'Aut(A/(X.u2» such that a.«u3» ~ (Z). Uo is invariant under a.. Put

Uo = a.(u2)' 0

bina

Let Uo be an X'-definable set X ~, X' ~ A. rank(UO/X') = r. Uo is called

a.lmost X-definable if for any Z ~ X with dimXi ~ r. Uo is (Z)-definable.
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rank(u/X) .. dim,X(u,X).
" -

It follows from the definition that

I'
I"

1.1. rank«ul,U2>/X) ..

.. rank(ul/(u2'x» + rank(u2/X)

.. rank(u2/(ut'x»- + rank:(uI/X).

,r
Define for sets

n

rank(U/x) .. max (rank(u/X) : u e-U).

1.2. From the homogeneity it folloW'sthat ran.k:(U/X) .. rank(U/Y)

provided U is X-definable, X ~ Y C;;A, rank:(U/X) .. r, r ("dim,XA, r < dimyA. 0

For any Y ~ A, define U[YJ '" (u e U : (u,l) ~ (Y)}.

1.3. Polynomial Theorem. For any X-definable stricUy coordinatizable_-

set U over A there is a unique polynomial PU(v) of one v~iable over the

rationals such that

(n for any closed Y ~ A, if IYI .. n, Y ;;2X, then

IU[YJI .. PU(n),
),

eU
(ii) deg PU .. rank(U IX),

(ill) if U' is an X'-definable set over A such that for some "a.e Aut(A),

X' .. a.(X), U' .. a.(U), then PU' .. PU'

A proof of the theorem is in fact given in [ZI], Theorem 2.2..

1.4. Let U be an X-deIUlable.set, rank(U/X) .. r. DeIUle for any n a

binary relation En on U:
~d
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Ut En u2 <=> there are Yt'''''Yn e A independent over (Ut.u2'X) and

a. e Aut(A/(Yt yn.X» such that a.(Ut) .. u2.

If n + 2r :E codim X. (X) >I0 and planes in A are not projective. then

En is an equivalence relation on U.

Proof. The only problem is transitivity. Let Ut En u2 ana ui En u3'
, '

By homogeneity to prove Ut En u3 it is sufficient to find Yt'''''Yn independent over

(Ut,U2'X) as well as over (u2.u3'X) and over (Ut.u2'X), If Yt'''''Yi G < n) have been

found already then

, "

Yi+t e A \ (ul.u2'Yl'''.'Yi'X) U (u2.u3'Yl'''.'Yi'X) U (ul.u3'Yl""'Yi'X).

The sum of the three subspaces is less than A since the number of points on a line
, ,

in A(X;Yl'''''Yi) is greater than 3. 0

1.5. Supposen + 2r :E codim X, En is an equivalence relation on U.

n ;,:r .. ra.n.k(U/X).

Under these conditions any class Uo of the equivalence En is

(Z)~efinable. provided X ~ Z ~ A. dimXZ ;,: r.

Proof. It suffices to find Uo e U such that (uO.X) ~ (Z). Let u 1 e UO'

rank(UO/(X.Ut» .. rO' By 1.2 we ~an find Uz e U with rank(u2/(Z» .. rO and u3 e U

" with ra.n.k(u3/(Z.u2» .. rO' Since

dim(X.u2)(X.u3) .. rO :E dim(X.u2)Z,

there is a. e "Aut(A/(X,u2» such that a.«u3» ~ (Z). Uo is invariant under a.. Put'

Uo .. a.(u2)' ,0

Let Uo be an X'~efinable set X ~.X' ~ A. rank(UO/X') .. r. Uo is called

almost X-definable if for any Z ~ X with dimXZ;,: r. Uo is (Z)~efinable.
8
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.d 1.6. Under the conditions of 1.5. Uo satisfies the following: for any Z

with dimX Zen and any (Z)~efinable set. V.

1 rank(UonV /(Z» < rO or rank(UO \ V/(Z» < rO'

This follows from the defini40n of En' 0

~.

'er Uo as in 1.6 will be 'called n-irreducible.

en

2. Parallelism
I
I

In what. follows in this section A is a finife homogeneous geometry. L
the set. of all lines in A.

.e

. I
i
~~

Two lines fl' f2 are called weak Iv oarallel if (1 =.f2 or dim«i.f2) = 3

and «1 )n«2) .. {lJ. The fact. is denoted fl I f2'

We say three lines fl' f2' f3 satisfy the relation of trinle paral1elism if

. (11(3 & f21t3 & fl ~ f2 & «3) g;; «(1'(2)'

This fact. is denoted (lft2ft3'

10'

eU 2.1. Suppose tl1f21t3 holds.

(1) dim(fl.f2'(3) '" 4 ;

(iD (tl.f2) n «3) = {lJ;

OiD for any a e A \ «1 .(2) there is a uniquef e L such th'at. a e (t)

Then:.

t.
and tl ft2ft ;

(iv) t1 I(2 ;

(v) . «i.tti2tti3) for any permU't8.t1on°1.i2.13)'

~d The proof is an exerci$e in elementary properties of homogeneous.
geometr1es.

~

/~:[W,iif~:;SYS/l1j;JIr~flj:t;.?{?i#.~q~~~:'::.~~:;~"..
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Fix a pair of distinct points a, b e A and put

Rab = «tl,t2> e L2 : a e (tl) &.b e (t2) &.(3te.L) tlft2fO.

For"( = <tl.t2> e Rab denote

='£= {teL: tlft2tO.

2.2. If "(1'"(2 e Rab'"(1 .;."(2' then ='£In='£2contains at most one line.

Proof. Let "(1 = <tll,t12>' "(2 = <t21.t22>' m1' m2 e ='£In='£2'ml .;.m2'

For some i. j e {l.2}. (mi) ~ (t1j.t2j)' Otherwise (m1.m2) .;;

(tll.t21)n(t12,t22)' this implies (l11.t21) ;,. (t12.t22)' since dim(m1,m2) ~ 3.

Moreover (ml.m2) .. (tll.tI2) ..(t21,t22)' This contradicts with tllftl2fml'

So, let (ml) ~ (tU,t21)' Together with ml e ='£In='£2it implies

tuft21fml' provided tll .; t21' By 2.1(iv) it contradicts a e (tll)n(t21)' Thus

tu .. t21' Now we have tuft12fml and tuft22fml and b e (t12)n(t22)' By 2.1(v)

and Uii) we get t12 - t22' thus "(1 = "(2.0

2.3. It is easy to see that ~ is an (a.b)-definable set with

rank(~/(a.b» .. 1. Let R1ab' Rmab be all the El-classes. Riab are almost

(a.b)-definable and I-irreducible by 1.6. provided dim A iI=6. ~ .;. ~.

If "(1 e Riab' "(2 e Rjab' i.j. e {l m}. "(1 .;. "(2' ='£In='£2 .;. ~ then for any

distinct "('I e Riab' "('2 e Rja it holds that ='£'1n='£'2.;.~ and ("('1) .;. ("('2)'

.Proof. OJle can assume "(1 = "('I' Note that ("(1) ; ('(2)' since there is

te1:1n='£2 and by 2.2. (f) .;; ('(1'"(2)' but by the definition of ='£1(f) ~ ("(1)' We show

that we may assume ("(1) ~ ('( 1."('2) and this will finish the proof by using the

definition of El'

dir

a"

('(]

fix

DeJ

foll

ifS

and
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So. suppose (,:1) ~ ('(2:('2)' then either ('(2) =(,:'2) = ('(1) or

dim('(a)('(2.'('2) = 1. The first one is impossible. If the second holds there is

« e Aut(A/('(1» such that (<«'('2» g; ('(2,'('2)' Denote «('('2) = '("2' then

('(1) g; ('(2.'("2)' Take '("2 instead of '('2' 0

2.4. Denote

sij .. ('(1''(2.t> : '(1 e Ri. '(2 e Ri. t e ;:1n;:2. '(1 ~ '(Z).

fix to e L. such that (to) n (a..b) = 0, and a plane of the form (a.b,c), c e A \ (a,b).

Denote

A" Itol. pi.. 1(1:e Riab : to e ;:}I. 1T" 1.(a.b.c)l.

)Ai .. 1(1: e Ri : ('() .. (a.b.c)}I.

~j . { :
it i ,. j,

it i . j.

If we put z .. IZIfor any closed set Z ~ A containing c, a. b. then the

following hold:

z(z -1} .
(I) IL[zJl= ).().- 1} ,

. Z-1I"
(ii) IRI[ZJI = ).- 1 .pi + J.l1;

if Sij ~ 0

(liD ISii(Z]1 .. IRi[Z]1 . (IRi[Z]1 - )Aj) ;

and also

(iv)lsij [zJl = (z -).)(z - 11) .pi. (pj ...6i;)A(A- 1) .
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Proof. (i) is well-mown and easy. (ii) follows from computations of
"-

the number of elements in

Ti[Z] = {<"t,t>: c e (n, f e UZJ,f e 1:,1:e Ri[Zn.

For ("t) = (a,b,C>there is no f e ~ with c e f by 2.HiD. If ("t) r (a,b,c) then there is

a unique t such that <z,t> e T1. It follows that

ITi[Z]1 = IRi[Z]1- }.ri.

From the other hand for any t e L, provided c e (n and (0 g; (a,b,c) there are

exactly pi elements "t e Riab such that <"t,b e Ti. Using 2.Hiii) one gets

. Z -1T .
ITI[ZJI = .plA-I

where (z - U)/(A - 1) is counted as the number of f e UZ] such that c e (U

g; (a,b,C>.

(iiD follows from 2.3 and2.Z if one counts ISij[Z]1as the number of

<"tI,"t2>e Ri[Z] x Rj[Z] such that 1:1n 1:Zr eIS.

(iv) is the result of counting first the number of the lines in

(t e UZ] : (3"tl e Riab)(3"tZ e Rjab)<"tI,"tZJ> e sij)"

= (t e UZ] : dim(a,b,U = 4).

This number is equal to (z - A)(Z - U)/A(A - 1). .Now for each t from the set there

are exactly pi~(pj - 6ij) pairs of different "tl' "tZ such that <"tl,"t2,h e SihZ]. 0

2.5. If dim A S!=6, then for any "tI' '(2e Rab

1:I n1:Z r eIS iff "tI = "t2'

Proof. It suffices to show that Sij = eISfor all i. j e (1 m). For this use

ZA and compare the leading ~oefficients of tb,e.polynomials given by (liD and (iv)
;

T

, ".:

I

t

I
{i

1

2

2

!
j
J

j,. c,.

I

(

t

I

t

; .

i !
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if sij ~ f/J. The coefficients are distinct though the polynomials must coincide

by 1.3. 0

2.6. If dim A S!= 6 then one of the following hold:

(i) every plane in A is projective;

(ii) every plane in A is affine;

(ill) there are two distinct lines t1' f2 such that t11l2 & -'(3tHl ttZft.

Proof. Suppose (i) and (ill) do not hold. Then there are fl' fZ e L.

II .; t2' and there is f e L such that tltt2tt. Let a e (t). a Ef(tl.fZ), f' e L. a e (t')

and flit'. Then f'ttZttl and by Z:l, f'= t Thus we have proved that through any

a Ef(tl.fZ) there is a uniquet such that tit 1. By homogeneity we get the same for

any t1 and any a Ef«1). This is exactly (ii). 0

fi.

A geometry (A.cD is called truncated orolective(affihe) if one can

define a new closure ct on A such that (A.ct) is isomorphic to a projective
. * .

(affine) -geometry over a field and there is d :Edim A (dimension. of A with respect
to cl*) such that cHX) = cl* (1) if dim*x :Ed and cHX) = A ifdini *X> d. .

2.7~ If all planes in A are projective (affine). then A is a truncated

projective (affine) geometry.

This is a consequence of the transitivity of Aut(A) on the set of all

non-collinear triples of points from A and Theorem lof [CKl 0

2.8. If dim. A S!=6 then one of the following hold:

(i) A is a truncated projective geometry;

(ii) A is a truncated affine geometry;

(iii) the binary relation I on the set of lines is not empty:

llHZ ~ tlltz & -,(30 tlttZtt.

This is a reformulation of Z.6 taking into account 2.7. 0



196!

3. Ouasi-des'19n over A.

In this section we suppose dim A is finite, homogeneous and the

rela.tion I defined in 2.8 is not empty . We denote for { e L

H = (fe L : un.

The' results of the section and their proofs are completely analogous to thoSe of

[Z1. section 3]. We only improved the proofs and modified them to the

finite-dimensional case.

3ri: (i) rank<IUU» = 1 for all { e L;
, ;#,

(iD if {1 :f f2 for fl' f2 e L. then rank(H1nH2/U1,f2» = 0 or

H1nH2 = 0.

The proof is immediate from the definitions. D

Studying L with respect to I it is convenient to treat elements of L as

points and subsets of the form If as blocks. As in [Zl] we will call this incidence

system a quasi-design.

To the end of the section we fix X ~ A such that codim X ;,: 3 and the

partition of L

L = L1 u ... u Ln

where Li are orbits with respect to Aut(AIX). 'By homogeneity among L1' ..., Ln

there is exactly one set of rank 2. Let

3.2. rank(L1 IX) = 2; rank(L/X) E 1 for i > 1.

3.3. If rank(L/X) = 1. f e L, rank(LinIU(X,f» = 1 then t e UX).

Proof. Under the hypotheses there is f e Li n H such that <f') g; <foX).

Since rankU'/X) = 1 and rank(U(f'» = 1. one has

~
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!
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2 i'/iidimX(f.n > dimX(t).

Since codimU.f.X) ~ 1. hence supposing U) ~ (X) we Ca11find f' e L such that

(t") g:; (U',X) and there is et e Aut(A/(t'.X» such tha.t a.(t) = f'. Then t"H'.

(0 {.t <U"). thus it holds that t"fUr, which contradicts Ufo IJ

3.<{. If raJlk(L/X) = 1 and ratlk(LinH/(X,t» < 1 for all t e L then for

any q e Li \ Li[!] there is t1 e Li such that rankUt/(X,q» = 1 = rank(tl/(q».

Proof. Fix Li' Denote for an t e L

-
St = {<tl.t2> e I : t2It &.tl e Li &.tl # t}.

It is easy to compute rank(St/(X.£» = 1.

Take an arbitrary closed Y ~ A such that (t,x).~ Y. By 1.3. ISt[Y]1is

the value of a polynomial of degree 1 depending on IYI. Denote otj. j .. 1 m. all

orbits on L under Aut(A/(t». except m. Denote

Lt.. = L.nOt.
1J 1 J

and let Li \ m.= Ltil U ... u J}im' Then

(1)
ISt[Y]1 = I'h:j:Em ILtij[YJI . vtj

where vtj is IUnItll when tl e Ltij'

From the other hand

(2) ISt[Y]1 = Il:Ek:En IHnLk[YJI . Atk'

J. where Atk = 1H2nLi\WI when t2 e Lt.

Count now the ranks of ~1 the subsets involved and the degrees of all
the polynomials' and consider the leading coefficients of the polynomials (1cp).
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Then- fronM2) ve have

,(3) lcp ISl[Y]1 ~ 1cp IHnLI[Y]1 . ).ll'

Now we assume (n g; (X). Then by 3.2 and 3.3

lcp IH n LI [Y]I = lcp IH[Y]I

and thus

(.() lcp ISl[Y]1 .. 1cp IH[YJI . ).ll'

Now we consider two possibilitiesfor t: t.. q E Li[Y] and t .. p ELl [Yl

, It is easy to see that). ql .. ).PI - 1, therefore

t», 1cp ISq[Y]1 < 1cp ISp[Y]I. .

Looking to (1) we get

(6) lcp ISp[Y]1 .. 1cp ILit [Y]I . vPI '

since any two tl' t'l E Li \ Li[P] are conjugated by Aut(A/(p». And also vPI=

IHlnIpl when rankUI/(p» = 2. en, (6) and (1) imply 'that vPI >vqj for any j

such that rank(Lqij/(X,q» = 1. It implies that dl'P> and dl,q> are not conjugated

when II E Lqij' i.e. rankUI Iq) .; 2. 0

3.5. If Z E '(y,X) and codim X ;!: 3, then there are xl' x2 E (X) 'such that

Z E (yoXt,x2)'

'Proof. If (i) or (ii) of 2.8 holds then it is evident. Otherwise we use 3.3

and 3.4.

Let y .; z, Z ~ (X), let q be the line through y and z, Li the orbit of q

under Aut(A/X). Then rank(L/X) .. 1.

(Xl'

UI)

UI)

(n

rest

4. .
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If there is te 'L such that rank(LinH) = 1 then (t) ~ (X) by 3.~ and let

(Xl,X2) = (t).

If not then use 3.4. There are two possibilities for tl from 3.4:
- ,

Ut )n(q) ; 0 or'there is t e L such thatqttttt. In the first case (xl) = (x2) =

Ut )n(q) ~ (X). In the Second case Ut) ~ (x) or'it is possible to find't such that

(t) ~ (~) an~qttltt. ,Then rank(q/h:t,x2» "',I ,for ~xl~2) =,Hl) or,(xl,x2) = t

respectively. C

~-J !

4. Definable transformations.

Under the assumption dim A iIJ7 and A is neither a projective nor an

affine geo~etry, we construct here a definable set V over A so that therear~" "
. " - . - . - , . . . .." " .

"sufficiently many" definable transformations on V.

We begin with a broader notion. An a.lmost X-definable

semitransformation on A is an almost X-defin~le set f~AxA of rank t which is

2-irredu.cible and does not contain <V;U>,with ve (X) or ue UJ.

, . , -
, ' . , "

, 4.1.' If cod.un X ~ 5, <~,v> e A2, rank«u,v>/X) ~1. v,u . (X),then there
is an almost X-definable semitraQ.sformation f on A with <u',v>'e f.

This follows from 1.6.

4.2. If fi is an almost Xi-deiUlable semitransformation on A for i .. 1,2

and dim XtUX2~ dim Xl + 2, rank(ftnf2 I XluX2) >0 thenrank(ft \f2 I XtUX2)=O.

This isa consequence of 2-irreducibility. C

4.3. If dim A ~ 7, codim X ~ 3, <tJ,v>as in 4.1. then there are

xl' x2 e (X) and an almost (Xt,x2)-definable semintransforlJla,tio.Q.:f on. A with

<u,v> e f.

This follows from 3.5 and,4.1. C
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Denote F the set. of all almost. (xl,x2):-<!efinable semit.ransformations on

A for ill xl' x2 E A. It. is'easy to see that. if f E F, theri rl e F, where rl =

«v,u>:<u,v> EO.

(f) .

For almost. X-definable sets SI' e2 of rank 1 we denote by SI I:: S2 the

fact. that. ~k(S2 \Sl / X) = 0, and SlC&2 denotesgtl::S2 & S21::S1'
geo!!

..~<{.It. follows from 4.2 that. I:: coincides with c on F and c is an

equivalence re~tion on F. It. follows,from 4.3 that. for any f I' f2 E F there are

Sl""'&k E F such that. Slu...uSk c flof2' where

flo.f2 .. «u,w>: (3v) <u,V> e ft & <V,w> ~ f2)'
then

If fi is almost (xil,xi2}-definable ,for i = 1.2 then Sj are almost. (Yjl'Yj2)-definable

for some Yjl' Yj2 e (xll' x12' x21' x22)' ~he set (Sl"",Sk) is uniquely determined up
to c.

<t,v)r

whieb

Define FI to be the subset. of F containing all almost (xt,X2)-deImable

semitransformations f such that.: if <u,V>E f, (u,v) .. (q), q e L, u . (xl,x2)'

(Xl,x2) = (t), t e L, then qU.

4.5. FIr- fIjiff A is neither a projective nor an affine truncated
max{ls'

ra.nk(~
seometry .

exists ;

This is in fact 2.8. 0

'4.6. If fi EFl' i = 1,2, flc f2 and fi are almost (xil,xi2)-definable, then

(xll,x12) =!x21,x22)'

let <V,l

This follows from 3.1(iD. 0 Since f

The observation above makes it possible to treat. the quotient.-set F'r!c

.. 1'1 as 9J-definable. An. element of tI correspondids, to f e FI will be denoted t,

iff <v,U

I



p

~n

201 '

(t) = (xl,x2)' rank(t!X) = diroX(xl,x2) if f is almost (x1,xZ)-defina.ble.

4.7. (i) If l' e tI' then ,,-1 E tI ;

(ii) if ft e F, f2 eFl' rank<l'2/(tt» = 2, f r: flof2' then 'f e FI'

(i) is evident. . (iD is again a consequence of 2.1 a..o.delementary

geometric considerations. 0

It is natura! to use the following notation for yeA, f e F:

fey) .. (u : <V,u> e 11.

4.8. If g, f eFl' rank(g/(t» = 2, v e A \ <t,g), ul,u2 e fey) and Ut F u2'

then g(Ut) n g(uZ) .. f2J.

Proof. Assume the contrary, w,e g(Ut) n g(u2)' ,Then u,t, u2 e

<t,v)n(g,w), hence u2 e <t,ul) n (g,Ut). It follows that rank(g/(uU'uZ» lE 1.

!

I

I
I
!

I
~
I
I
I

!
I

J
1

which contradicts

rank(g/(ul'uZ» ;=rank(g/<t.ul.u2» .. rank(g/(t,v» = 2. 0

4.9. Let f. h EFl' rank(t!Oi» = 2 and k= If(v)1 =

max{ls(v)1 ~s e FI' v e A \, (s». Taking g c rloh we get h cfog. g e FI (by 4.7) and ,., .

rank(g/(l'» = 2. Under these assumptions for any v e A \ (t,g). u e fey) there
exists a unique w e g(u) n hey).

,

I
i
!

I
J
!
~
I

I
i
;,
!

I

Proof. Let fey) =(Ut ,uk)' ui # Uj if i # j. Denote mi .. Ig(ui) n f(v)l.

let '<v,u> e f, <U,w>e g, <v,w>e h,

f' = {<v',u'> : (3w')(w' e g(u') n hey'»~.

Since f' ~ f and <v,U>E f', rank(f'/(t,fi» = 1. hence f' c f. It follows that <v,ui> e f

iff <v.ue e f'. therefore g(u~) n hey) # f2Jand mi > 0 for i = Loo.k.

From the other hand Ihiik&mi lIEk, since Ui~k g(ui) n fey) .. hey). Thus
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mi = I for all i = L...k. 0

4.10. Fix f e FI,as a set. For any <v.u>e f. <t,W>e fsuch that

rank«v.w>lt) = 2 there exist xl' x2 e A and an <t,xl,x2)-i!efinable mapping

r:f~f such that rank«v,u>I<t,xl,x2» = 1 a:nd r«v.u» .. <t.w>.

Proof. For given <v,u> e f take g, h e FI as in 4.9 so that

w e g(u) n hey). Such a choice is possible by homogeneity. Note that 4.9 gives an

<t,h)-i!efinable mapping a.::f ~ h by the law a.:'<v.u>~ <v.w>. Let i be the

inversion i: <v,w>~ -<v.w>. Let pbe again an <t,.ti)-i!efinablemapping h-l ~ rl
such that <w.v>-+ <w.t>. Then r = cxoiopoiis the required mapping.

(xI,x2) = (h). 0
,

4.11. r in 4.10 is a bijection of f \ (t,xl.x2)2 ontO itself.

This is easily seen from the construction. 0

An <t.xI,x2)-i!efinable bijection of f \ <t,xI.x2)2 onto itself will be

called a transformation of f. One constructed as in 4.10 will be 'called generic.

, -

4.12. For any vI' v2' tl' t2 e A such that rank«vl.v2.tl.t2>ltr .. 4, any

ul' u2 e A such that <vl,ue e ,. <v2.u2> e f, there exists a transformation r' and

wl' w2 e A.with <t-I,wee f, <t2,"9I2>e f. y'«vI.ul» = <tl.wl>' r'«v2,u2» = <t2.w2>'

Proo~. Let r, h be as in the proof of 4.10, rank«vl;v2>/<t.h» = 2. Let

r«vl.ue) = <1'l.w'l>' r«v2.u2» = <t'2,w'2>' It is easy to see that'(vI.v2.t'I,t'2J) =

(vl.v2.w'l,v'2J) .. (vl.v2,.tiJ) and therefore vI' vi. '1'1.1'2 are independent over (t).

, Take cx e Aut(A/(t,vl.v2» such that cx(t'l) .. tl' cx(t'2) .. t2' and put 'W'1.. cx(w'l)'

w2" cx(w'2)' r' .. cx(r). 0

4.13. Let rl be a. (t.xl,x2)-i!efinable t.ra.nsformation. r2 a generic,

(t,h2)-i!efinable transformation and rankUi2/(t,xl.x2» .. 2. Then there is a. '

unique generic r3 which is (t.h)-i!efUlablefor(~) ~ <t.h2,xl,x2) such that for

,
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any <v,u> E f \ (t,!i2,x1,x2)2,

. .

Y3«v,u» = Y2(Y1«v,u>)). "

,. ',-,

Pro:of\ Let <v,u> E f \ (t$2,x1,x2)2, Yl«v,~» = <s,r;, Y2«s,r» = <t,W>.

Then by 3.5,r E hl(v) for hlE F, hLa.1mos~ (t,X;l,x2)-<t~fin~ble, s ~ r1(r\and

W E h2(s), i.e.wEh10r1oh2(v);By 4.7 there is:hE FI such.:that (!i) ~ (!i1J1$2)

and W E h(v), rank(!i/(t» = 2. This is sufficient to construct Y3 as in 4.10 with
. . ". '

, '

Y3( <v,u» = <t,w>. By 4.3, Y3 is unique. d '

, <, , ' , ," . ... U"

.", , ''';'d

4.14. If Pi is a (t,xi1,xi2)-defin~ble transformation, i = 1.2, and" "

dim(t,xll.,xJ~')!:21'xc2Z) E 5, then ther~ ,is a ~nique (t,'Y,ltrZ )-defin~blr

transformation with Y1' yz E (t,xll,x1Z,xZ1,xZ2) such that P3«v,u» = P2(P1«v,u>))

for any<v,u>e f \ (t,xll,x12,XZ1,xZZ)2. , "?

'? <.,.:

lY

Proof. As in the proof of 4.13 there are h1' hZ E F, such that :)} ~: (

- r E h1 (v). W E h2(s), W E h1or1ohZ(v) a.nd h1' hZ are almost

(t,xll,x12,xZ1')!:Z2)-definable. Hence W E h(v), h E F, h is almost (Y1'Y2)".definable,

Y1' Y2 E(t,xll,x12,.x2Vx22)'

'. There are tllree possibilities for h:

t L h EFl' rank(!i/(t» = 2. Ip this,ca.seP3 can be constrl.Jctedas.in.
4.10.

2. h EFl" rank(ll/(t» E'l. Then dim(t,!il = k 'E 3 and 'let P3 be an

almost (t,1i)-<tefinable <5'"'k):"'irreduciblesubset of

. (<y',u',t',w'> ,: W'E h(v') & U' E f(v').&w' Ef(t'J}

by 1.4. Then P3 aP1 oP2'

3. h ~ FI' Then W E (-v,t,y) for some y E (t,Y1'Y2) and we get P3
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repeating the previous point. 0

4.15. Any <t,xl,xZ)""({efinabletransformation p satisfies one of the

followin g :

,and P' c p;

(D P is generic;

(ii) there is y e a,xl'xZ) and P' such that pois almost (t,y)-definable

if p" c P and p" is ~lmost (t,y')-definable then (t,y) = (f,y').:

(ili) there is powhich is almost (t)""({e(inableand ~oc ~.

Proof. Let <v,u> e f \ (t,Xl,x2)Z, P«v,u» = <t.w>. Since w e (v.l',xl'xZ)'

there is h e F which is (Yl'YZ)""({efinable,Yl' Y2 e (t,xl,x2)' There-are three

possibilities:

(1) h eFl' rankHi/(t» = 2. This case like case 1 of 4.1'{ gives (D.
/

(2) h eFl' rankHi/(t» E 1. Again act like in 4.14 and get poc. P

which is almost (t,J3J-definable, (t,ll) = (t,y) and we get (iD if y ~ (t) or (liD if

y e (t).

(3) h ~ FI' The same as (2). 0

For any transformation P of .{.15, (t,P) isdefi4edas (t,xl,x2) i4 the

case (D, (t,y) in (li) and (t) i4 (liD. .

.{.16. The set of all transformations forms a group r. The set f and

multiplica~on i4 f ~e (t)-defi4able, as well as the partial action of f on f:
if l' e f, v e f \ (t,f) then 1'(v) is defi4ed.

In general f is not strongly coordi4atizable' over (t) but:

(D th,esubset f 0 =(1' e f : l' is generic) is str()ngly coordi4atizable

over (1');

(iD f is strongly coordinatizable over any ai' a2 e A which are

i4dependent over (1');

(ill) rank(f/(al,aZ.l'» = 2, rank(fO/(t» .. 2,rank(f\fO/(al,a2.l'» < 2.
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5. The structure of r.

If r has a proper (t)-definable subgroup of rank 2, take a minimal

such one instead of r. So we may assume r has no proper (t)-defiriable subgroup

of raD.k 2.

5.1. The center C of r is an (t)-definable subgroup of rank O. .

Proof. For v e f \ (t)2 there is w e f \ (t,v)2 and a subset

r vw = (y e r 0 : y(v) =w}

with rank(r vw/(t,w.v» = 1. Suppose rank(C/(l',v,w» > O. Then fo.r any

Yl' Y2 e r VW'u e f \ (t.v,W'Yl'Y2)2 one can firid a, e C such that

a,(v) = ij, it ~ (l',Yl'a,) u (t'Y2'cx.).

Then Yl (u) = Yl (a,(v» = a,(YI (v» = a,(Y2(v» = Y2(a,(v» = Y2(U)' It follows that

Yl = Y2' contradiction. 0

5.2. r is 2-irreducible, provided dim.A ~ 8.I

Proof. Let E2 be the equivalence relation on fO defined in 1.4, Uo an

E2-class of rank 2. It is easy to see that if Y e r then y,UO c Ul for some EZ-class

Ul' It follows that the (t).~efiriable group

(Y er: rUi c Ui for any E2-class Ui of rank 2)

is of rank 2, thus it coincides with r. Moreover, if -.; e Uo then Uo.r-l c r, thus r

is 2-irreducible. 0
;

,,
I
I
f

i
I
I
f

5.3. r = r IC is a cen~r1ess (t).-definable group.

Proof. If Yis a central element ofr and Y the corresponding el~ment
~
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of r, then,r = ,.C is finite, therefore Cr(,) is of rank 2. Thus it coincides with r,

, e C,y =e. 0

5.4. The same arguments show that if can not be pf rank 0 for

y ~ e.d

5.5. Suppose Il is an X-<1efinablegroup over A, rank(Il/X) = 1.
d.. .' , , . ,

cowm X ~ 3. Then there is a unique l-irreducible X-<1efinablenormal subgroup
Ilo of Il with rank(llo/X) = 1.

The proof is analogous to 5.2. 0

The subgroup Il 0 will be called the connected component of Il. If

Il = Il 0 .Il! is; called,conne'cted.

~

'\

t

5.6. If Il is as in 5.5 and connected then Il is abelian.
0

Proof. For 6 e Il \C( Il) consider the, co'njugicy class fill = 4>~ Il. 4>or

1l\4> is of rank 0 over (X,6). only the second is possible, since CIl(6) is of rank O.
'. " , , I.. '

Take now the polynomials P4> andp Il given by 1.3. From 4>[J Il it follows' that the

leading coefficients of the polynomials coincide. On the other hand p~ =',

ICIl (6)I.p4>' thus ICIl (6)1 = 1. contradiction. 0,

r

0

, We assume now that r is a centerless 2-irreducible 0-<1efinable group

over a pregeometry A', rank(r /0) = 2, dim A' ~ 6'.

5.7. There is no normal subgroup Il of r which is (xl,x2)-<1efinable

for some xl' x2 e A' and rank(Il/(xl,x2» = 1.

w

t.b

cc

Proof. Repeating the known construction [Cl we can define a

(xl.x2.x3)-<1efinable field structure on Il. provided Ilis connected. which we may

assume by 5.5. But such a field can not exist since the mapping definable, in the

field v ~ v2 - v maps Il on a subset 4>~ Il and contradicts 1.3 as in 5.6. 0
[c:

[CJ
5.8. Let P be a maximal p-subgroup of r for some prime p, Y a closed

subset of A', dim Y'i/=3. P[YJ a maximal p~ubgroup of trYJ. Then one a.nd only one!,
of the following holds:

[2:
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(1) IprY]1 does not depend on IYI;

(ii) P is an almost (y)-<Iefinable' subgroup for some l' E -P,

rank(P/(y)) = 1. IprY]1 is a polynomial of IYI of degree tits connected componeilt

po is (1')-<lefinable. '.

j

Proof. Choosel' e pry] n Cr(P) \ {e}, denote /). = Cr(y). T~en pg/).,

rank(/)./(y)) E 1. If rank(/)./(y)) = 0 then /)'[Y] does not depend on Y by 1.3, the

same is true for pry].

If rank(/)./ty» = 1 and /).°nP # (e) then /).0 g P and all /).°-cosets in P

are almost (y)-definable, so is P. This gives (ii). If /).l)nP = (e) then P intersects
- ,

wi thatty /).0-cosel at most in one point. The cosetsare almost (1' )'-definable,

therefore the nlJmber of cosels in /)'[Y] which intersect with P does not depend

on IYI. ,1

Ir 5.9. There is at most one prime p for which 5.8(il) holds.

Proof. From 5.8(iD and 5.7 it follows that the set of allp-elements is of

rank 2. Now recall 5.2. 0

!
!

I
!
I
i
I

i
!
I
!
\

5.10. The polynomial Prey) counting ny] by 1.3 is of degree 2. On the

other hand the Sylow Theorem together with 5.8 and 5.9 gives

InY]1 = Plm. '... . Pn mn. pp(Y)

where Pl,...,Pn are all the prime divisors of ny] for which 5.8(i) holds and pp(Y) is

the polynomial of degree 1 counting PLY] satisfying 5.8(iD. This is the final
contradiction. Thus r does not exist. 0
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