Proceedings of the

6. 〇iterkonferenz $\mathfrak{H B e r}$ Modeltheorie

$6^{\text {eme }}$ Colloque Pascal
de Theorie des Modeles
$6^{\text {a }}$ Wielkanocna Konferencja
o Teorii Modelów
6. Velikonočni Konference Teorie Modelù
$6^{\text {ая }}$ Tасхальная Конференция
на Тему "Теория Молелей"
$6^{\text {a }}$ Conferenca di Pasqua di Theoria dei Modelli

Wendisch-Rietz, April 4-9, 1988

Editors: Bernd Dahn, Helmut Wolter
Berlin, August 1988

SEKTION MATHEMATIK
DER HUMBOLDT-UNIVERSITÄT ZU BERLIN
1086 BERLIN, PSF 1297
DEUTSCHE DEMOKRATISCHE REPUBLIK
Contents Page
Preface i
List of Participants ii
Conference Programme iii

- Appenzeller F. Unsuperstable Theories and Stationary Logic 1
Baudisch A. On Stable Solvable Groups of Bounded Exponent* 7
Belegradek O. Some model theory of locally free algebras 28
Dahn B. An Analog of the Least-Herbrand Model for non-Horn Theories* 33
Flum J. On n-to-one Images of Compact Ordinals ${ }^{*}$ 53
Hodges W. Extending Beth's Theorem* 57
Kaye R. Axiomatizations and Quantifier Complexity* 65
Krajicek J. A Theorem on Uniform Provability of Schemes* 85
Mundici D. $\quad \mathrm{K}_{0} \mathrm{AF} \mathrm{C}^{*} \boldsymbol{\ell} \Gamma \mathrm{MV}:$ a brief outline* 93
Newelski L. More on Locally Atomic Models* 109
Newelski L. A Proof of Saffe's Conjecture ${ }^{*}$ 123
Pacholski L. Counting and the Polynomial-Time Hierarchy* 141
Pillay A. \quad On Fields Definable in $\mathbf{Q}_{\mathbf{p}}{ }^{*}$ 151
Poizat B. Groups Definable in an Abelian Group: An Answer to a Query from Wilfrid Augustine Hodges* 164
Wolter H. Order Properties of Exponential Fields whose Elements are Term Defined Functions* 166
Ziegler M. Ein stabiles Modell mit der finite cover property aber ohne Vaughtsche Paare 179
Zil'ber B. Finite Homogeneous Geometries 186

[^0]
Finite homogeneous geometries

by B. Zil'ber

The notion of a pregeometry (matroid) was introduced at the beginning of the 1930s to study a general notion of dependence. Recently it was found out that the combinatorics of homogeneous pregeometries is closely connected with important problems in stability theory. From the other hand the techniques and ideology of stability theory allow one to get serious results on homogeneous geometries. The aim of the present paper is to give a proof of the following:

Main Theorem. A finite homogeneous geometry of (projective) dimension not less than 7 with more than 2 points on its lines is an affine or projective geometry (possibly truncated).

Strictly speaking we present here only the draft of the proof omitting details. However we hope the draft is quite comprehensible, in fact, the details omitted could be reconstructed using the proof of the infinite version of the theorem in [Z1], [22] and a close work [23].

The methods of the proof are based on simple ideas of stability theory and develop those of [21]-[23].

A pregeometry is a set A together with a closure operator cl: $2^{\mathrm{A}} \rightarrow 2^{\mathrm{A}}$ satisfying the following conditions for any $X, Y \subseteq A, X, y \in A$:
(i) $X \subseteq \operatorname{cl}(X)$;
(ii) $\mathrm{X} \subseteq \mathrm{cl}(\mathrm{Y}) \Rightarrow \mathrm{cl}(\mathrm{X}) \subseteq \mathrm{cl}(\mathrm{Y})$;
(iii) $x \in \operatorname{cl}(X u(y)) \backslash c l(X) \Rightarrow y \in c l(X u(x))$.

If A is allowed to be infinite then usually the following condition is added:
(iv) $\operatorname{cl}(X)=U\left(\operatorname{cl}\left(X^{\prime}\right): X^{\prime} \subseteq X, X^{\prime}\right.$ is finite $)$.

Here we consider only finite A.

An automorphism of a pregeometry is any bijection $\alpha: A \rightarrow A$ for which

$$
\operatorname{cl}(\alpha(X))=\alpha(\operatorname{cl}(X))
$$

holds for any $\mathbb{X} \subseteq A$. The group of all automorphisms fixing a set X pointwise is denoted $\operatorname{Aut}(A / X)$ and $\operatorname{Aut}(A / \varnothing)=\operatorname{Aut}(A)$.

A pregeometry is said to be homogeneous if $x, y \in A \backslash c l(X)$ implies the existence of an $\alpha \in \operatorname{Aut}(A / X)$ such that $\alpha(x)=y$.

A pregeometry is called a geometry if $\mathrm{cl}(\varnothing)=\varnothing$ and $\operatorname{cl}((x))=\{x\}$ for any $x \in A$.

For any pregeometry A one can construct the geometry \AA by putting

$$
\hat{\mathbb{X}}=\{\operatorname{cl}(\{\mathbf{x}\}): \mathbf{x} \in \mathbb{X} \backslash \operatorname{cl}(\varnothing)\}
$$

for any $X \subseteq A$ and defining the closure on \AA to be as follows: $\operatorname{cl}(\mathbb{X})=\operatorname{cl}(X){ }^{\wedge}$.

Another construction called localization gives a new pregeometry on the set A given a subset $C \subseteq A$. Define the new closure cl_{C} to be: $\mathrm{cl}_{C}(X)=\operatorname{cl}(X u C)$ for any $X \subseteq A$. The new pregeometry on A is denoted A_{C}. $\operatorname{dim} X$ denotes the cardinality of a maximal independent (in the sense of $c 1$) subset of X, called a base of X. The cardinality does not depend on the choice of the base.
$\operatorname{dim}_{C} X$ is the dimension of X in A_{C}.

Note that $\operatorname{dim} \mathbf{X}-1$ is what is called the projective dimension of \mathbf{X}.

1. Sets over a pregeometry

We shall call a subset $S \subseteq A^{n} X$-definable for an $X \subseteq A$ if S is invariant under all automorphisms from Aut(A / X). This definition defines also X-definable relations on S as subsets of $A^{n k}$.

An X-definable set over A is a'set of the form S/E, where S is an
X-definable subset of A^{n} and E is an X-definable equivalence relation on S.

It is easy to see that $\operatorname{Aut}(A / X)$ acts on any X-definable set $U=S / E$. Any Aut(A/X)-invariant subset of U can be in a natural way presented as an X-definable set, so we call it X-definable too.

If E is trivial then S / E can be identified as S, so the X-definable subsets of $A^{\mathbf{n}}$ are in this sense X-definable sets over A.

If $u \in U$ and U is an X-definable set then denote by $O(u / X)$ the orbit of u under the action of $\operatorname{Aut}(A / X)$. This is an X-definable set (cf. $\operatorname{tp}(u / X)$ in model theory).

We shall call an X-definable set $S / E\left(S \subseteq A^{n}\right)$ strictly coordinatizable over X if for any $\left\langle s_{1}, \ldots, s_{n}\right\rangle,\left\langle s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right\rangle \in S,\left\langle s_{1}, \ldots, s_{n}\right\rangle E\left\langle s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right\rangle$ implies $c_{X}\left(s_{1}, \ldots, s_{n}\right)=l_{X}\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right)$.

Throughout the paper all X-definable sets are considered to be strictly coordinatizable over X.

An example: The set L of all lines in a geometry A is a 0 -definable set over A. More precisely $L=S / E$, where $S=\left\{\langle x, y\rangle \in A^{2}: x \neq y\right\}$,

$$
\langle x, y\rangle E\left\langle x^{\prime}, y^{\prime}\right\rangle \text { iff } \operatorname{cl}(x, y)=\operatorname{cl}\left(x^{\prime}, y^{\prime}\right) .
$$

If $U=S / E$ is an X-definable set, $u_{1}, \ldots, u_{k} \in U, u_{i}=\bar{s}_{i} E, \bar{s}_{i}=\left\langle s_{i 1}, \ldots, s_{i n}\right\rangle \in S \subseteq A^{n}$ then we put

$$
\left(u_{1}, \ldots, u_{k}, X\right)=c l\left(\left(s_{11}, \ldots, s_{1 n}, \ldots, s_{k 1}, \ldots, s_{k n}\right\} \cup X\right)
$$

Note that for $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}} \in \mathrm{A}$

$$
\left(a_{1}, \ldots, a_{k}\right)=c l\left(a_{1}, \ldots, a_{k}\right)
$$

thus we can use the operator () instead of cl .

For $u \in U$ we define

```
rank(u/X)= dim}\mp@subsup{X}{}{(u,X).
```

It follows from the definition that

$$
\text { 1.1. } \begin{aligned}
& \operatorname{rank}\left(\left\langle u_{1}, u_{2}>/ X\right)=\right. \\
= & \operatorname{rank}\left(u_{1} /\left(u_{2}, X\right)\right)+\operatorname{rank}\left(u_{2} / X\right) \\
= & \operatorname{rank}\left(u_{2} /\left(u_{1}, X\right)\right)+\operatorname{rank}\left(u_{1} / X\right) .
\end{aligned}
$$

Define for sets

$$
\operatorname{rank}(U / X)=\max (\operatorname{rank}(u / X): u \in U) .
$$

1.2. From the homogeneity it follows that $\operatorname{rank}(U / X)=\operatorname{rank}(U / Y)$ provided U is X-definable, $X \subseteq Y \subseteq A, r a n k(U / X)=r, r<\operatorname{dim}_{X} A, r<\operatorname{dim}_{Y} A$.

For any $Y \subseteq A$, define $U[Y]=\{u \in U:(u, X) \subseteq(Y)\}$.
1.3. Polynomial Theorem. For any X-definable strictly coordinatizable set U over A there is a unique polynomial $p_{U}(v)$ of one variable over the rationals such that
(i) for any closed $Y \subseteq A$, if $|Y|=n, Y \supseteq X$, then
$|\mathrm{U}[\mathrm{Y}]|=\mathrm{p}_{\mathrm{U}}(\mathrm{n})$.
(ii) $\operatorname{deg} \mathrm{p}_{\mathrm{U}}=\operatorname{rank}(\mathrm{U} / \mathrm{X})$.
(iii) if U^{\prime} is an X^{\prime}-definable set over A such that for some $\alpha \in \operatorname{Aut}(A)$, $X^{\prime}=\alpha(X), U^{\prime}=\alpha(U)$, then $p_{U^{\prime}}=p_{U}$.

A proof of the theorem is in fact given in [Z1], Theorem 2.2.
1.4. Let U be an X-definable set, $\operatorname{rank}(U / X)=r$. Define for any $n a$ binary relation E_{n} on U :
$u_{1} E_{n} u_{2} \Leftrightarrow$ there are $y_{1}, \ldots, y_{n} \in A$ independent over $\left(u_{1}, u_{2}, X\right)$ and $\alpha \in \operatorname{Aut}\left(A /\left(y_{1}, \ldots, y_{n}, X\right)\right)$ such that $\alpha\left(u_{1}\right)=u_{2}$.

If $n+2 r \leqslant \operatorname{codim} X,(X) \neq \varnothing$ and planes in A are not projective, then E_{n} is an equivalence relation on U.

Proof. The only problem is transitivity. Let $u_{1} E_{n} u_{2}$ and $u_{2} E_{n} u_{3}$. By homogeneity to prove $u_{1} E_{n} u_{3}$ it is sufficient to find y_{1}, \ldots, y_{n} independent over $\left(u_{1}, u_{2}, X\right)$ as well as over $\left(u_{2}, u_{3}, X\right)$ and over $\left(u_{1}, u_{2}, X\right)$. If $y_{1}, \ldots, y_{i}(i<n)$ have been found already then

$$
y_{i+1} \in A \backslash\left(u_{1}, u_{2}, y_{1}, \ldots, y_{i}, X\right) \cup\left(u_{2}, u_{3}, y_{1}, \ldots, y_{i}, X\right) \cup\left(u_{1}, u_{3}, y_{1}, \ldots, y_{i}, X\right)
$$

The sum of the three subspaces is less than A since the number of points on a line in $\hat{\AA}\left(X, y_{1}, \ldots, y_{i}\right)$ is greater than 3.
1.5. Suppose $n+2 r \leqslant \operatorname{codim} X, E_{n}$ is an equivalence relation on U,
$n \geqslant r=\operatorname{rank}(U / X)$.
set rati
Under these conditions any class U_{0} of the equivalence E_{n} is (Z)-definable, provided $X \subseteq Z \subseteq A, \operatorname{dim}_{X} Z \geqslant r$.

Proof. It suffices to find $u_{0} \in U$ such that $\left(u_{0}, X\right) \subseteq(Z)$. Let $u_{1} \in U_{0}$. $\operatorname{rank}\left(U_{0} /\left(X, u_{1}\right)\right)=r_{0}$. By 1.2 we can find $u_{2} \in U$ with $\operatorname{rank}\left(u_{2} /(Z)\right)=r_{0}$ and $u_{3} \in U$ with $\operatorname{rank}\left(u_{3} /\left(Z, u_{2}\right)\right)=r_{0}$. Since

$$
\operatorname{dim}_{\left(X, u_{2}\right)}\left(X, u_{3}\right)=r_{0} \leqslant \operatorname{dim}_{\left(X, u_{2}\right)} Z
$$

Let U_{0} be an X^{\prime}-definable set $X \subseteq X^{\prime} \subseteq A, \operatorname{rank}\left(U_{0} / X^{\prime}\right)=r . \quad U_{0}$ is called almost X-definable if for any $Z \supseteq X$ with $\operatorname{dim}_{X} Z^{*} \geqslant r, U_{0}$ is (Z)-definable.

$$
\operatorname{rank}(u / X)=\operatorname{dim}_{X}(u, X)
$$

It follows from the definition that

$$
\text { 1.1. } \begin{aligned}
& \operatorname{rank}\left(<u_{1}, u_{2}>/ X\right)= \\
= & \operatorname{rank}\left(u_{1} /\left(u_{2}, X\right)\right)+\operatorname{rank}\left(u_{2} / X\right) \\
= & \operatorname{rank}\left(u_{2} /\left(u_{1}, X\right)\right)+\operatorname{rank}\left(u_{1} / X\right)
\end{aligned}
$$

Define for sets

$$
\operatorname{rank}(U / X)=\max (\operatorname{rank}(u / X): u \in U)
$$

1.2. From the homogeneity it follows that $\operatorname{rank}(U / X)=\operatorname{rank}(U / Y)$ provided U is X-definable, $X \subseteq Y \subseteq A, r a n k(U / X)=r, r<\operatorname{dim}_{X} A, r<\operatorname{dim}_{Y} A$.

For any $Y \subseteq A$, define $U[Y]=\{u \in U:(u, X) \subseteq(Y)\}$.
1.3. Polynomial Theorem. For any X-definable strictly coordinatizable set U over A there is a unique polynomial $p_{U}(v)$ of one variable over the rationals such that
(i) for any closed $\mathrm{Y} \subseteq \mathrm{A}$, if $|\mathrm{Y}|=\mathrm{n}, \mathrm{Y} \supseteq \mathrm{X}$, then
$|\mathrm{U}[\mathrm{Y}]|=\mathrm{p}_{\mathrm{U}}(\mathrm{n})$.
(ii) $\operatorname{deg} \mathrm{p}_{\mathrm{U}}=\operatorname{rank}(\mathrm{U} / \mathrm{X})$.
(iii) if U^{\prime} is an X^{\prime}-definable set over A such that for some $\alpha \in \operatorname{Aut}(\mathrm{A})$, $X^{\prime}=\alpha(X), U^{\prime}=\alpha(U)$, then $p_{U^{\prime}}=p_{U}$.

A proof of the theorem is in fact given in [Z1], Theorem 2.2.
1.4. Let U be an X-definable set, $\operatorname{rank}(U / X)=r$. Define for any $n a$ binary relation E_{n} on U :
$u_{1} E_{n} u_{2} \Leftrightarrow$ there are $y_{1}, \ldots, y_{n} \in A$ independent over ($\left.u_{1}, u_{2}, X\right)$ and $\alpha \in \operatorname{Aut}\left(A /\left(y_{1}, \ldots, y_{n}, X\right)\right)$ such that $\alpha\left(u_{1}\right)=u_{2}$.

If $n+2 r \leqslant \operatorname{codim} X,(X) \neq \varnothing$ and planes in A are not projective, then E_{n} is an equivalence relation on U.

Proof. The only problem is transitivity. Let $u_{1} E_{n} u_{2}$ and $u_{2} E_{n} u_{3}$. By homogeneity to prove $u_{1} E_{n} u_{3}$ it is sufficient to find y_{1}, \ldots, y_{n} independent over $\left(u_{1}, u_{2}, X\right)$ as well as over $\left(u_{2}, u_{3}, X\right)$ and over $\left(u_{1}, u_{2}, X\right)$. If $y_{1}, \ldots, y_{i}(i<n)$ have been found already then

$$
y_{i+1} \in A \backslash\left(u_{1}, u_{2}, y_{1}, \ldots, y_{i}, X\right) u\left(u_{2}, u_{3}, y_{1}, \ldots, y_{i}, X\right) u\left(u_{1}, u_{3}, y_{1}, \ldots, y_{i}, X\right)
$$

The sum of the three subspaces is less than A since the number of points on a line in $\hat{\mathbf{A}}_{\left(\mathrm{X}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{i}}\right)}$ is greater than 3.
1.5. Suppose $n+2 r \leqslant \operatorname{codim} X, E_{n}$ is an equivalence relation on U, $n \geqslant r=\operatorname{rank}(U / X)$.

Under these conditions any class U_{0} of the equivalence E_{n} is (Z)-definable, provided $X \subseteq Z \subseteq A, \operatorname{dim}_{X} Z \geqslant r$.

Proof. It suffices to find $u_{0} \in U$ such that $\left(u_{0}, X\right) \subseteq(Z)$. Let $u_{1} \in U_{0}$. $\operatorname{rank}\left(U_{0} /\left(X, u_{1}\right)\right)=r_{0}$. By 1.2 we can find $u_{2} \in U$ with $\operatorname{rank}\left(u_{2} /(Z)\right)=r_{0}$ and $u_{3} \in U$ with $\operatorname{rank}\left(u_{3} /\left(Z, u_{2}\right)\right)=r_{0}$. Since

$$
\operatorname{dim}_{\left(X, u_{2}\right)}\left(X, u_{3}\right)=r_{0} \leqslant \operatorname{dim}_{\left(X, u_{2}\right)} z
$$

there is $\alpha \in \operatorname{Aut}\left(\mathrm{A} /\left(\mathrm{X}, \mathrm{u}_{2}\right)\right)$ such that $\alpha\left(\left(\mathrm{u}_{3}\right)\right) \subseteq(\mathrm{Z}), \mathrm{U}_{0}$ is invariant under α. Put $u_{0}=\alpha\left(u_{2}\right)$.

Let U_{0} be an X^{\prime}-definable set $X \subseteq X^{\prime} \subseteq A, \operatorname{rank}\left(U_{0} / X^{\prime}\right)=r . U_{0}$ is called almost X-definable if for any $Z \supseteq X$ with $\operatorname{dim}_{X} Z \geqslant r, U_{0}$ is (Z)-definable.
1.6. Under the conditions of $1.5, U_{0}$ satisfies the following: for any Z with $\operatorname{dim}_{\mathrm{X}} \mathrm{Z} \leqslant \mathrm{n}$ and any (Z)-definable set V ,

$$
\operatorname{rank}\left(U_{0} n V /(Z)\right)<r_{0} \text { or } \operatorname{rank}\left(U_{0} \backslash V /(Z)\right)<r_{0} .
$$

This follows from the definition of E_{n}.
U_{0} as in 1.6 will be called n-irreducible.

2. Parallelism

In what follows in this section A is a finite homogeneous geometry, L the set of all lines in A.

Two lines ℓ_{1}, ℓ_{2} are called weakly parallel if $\ell_{1}=\ell_{2}$ or $\operatorname{dim}\left(\ell_{1}, \ell_{2}\right)=3$ and $\left(\ell_{1}\right) \cap\left(\ell_{2}\right)=\varnothing$. The fact is denoted $\ell_{1} \mid \ell_{2}$.

We say three lines $\ell_{1}, \ell_{2}, \ell_{3}$ satisfy the relation of triple parallelism if
$l_{1}\left|l_{3} \& l_{2}\right| l_{3} \& l_{1} \neq l_{2} \&\left(l_{3}\right) \nsubseteq\left(l_{1}, l_{2}\right)$.

This fact is denoted $\ell_{1} \uparrow \ell_{2} \uparrow l_{3}$.
2.1. Suppose $l_{1} \uparrow l_{2} \uparrow l_{3}$ holds. Then:
(i) $\operatorname{dim}\left(\ell_{1}, \ell_{2}, l_{3}\right)=4$;
(ii) $\left(\ell_{1}, \ell_{2}\right) \cap\left(\ell_{3}\right)=\varnothing$;
(iii) for any a $\in A \backslash\left(\ell_{1}, \ell_{2}\right)$ there is a unique $\ell \in L$ such that a $\in(\ell)$ and $l_{1} \uparrow l_{2} \uparrow l$;
(iv) $\ell_{1} \mid \ell_{2}$;
(v) $\left(\ell_{i_{1}} \uparrow \ell_{i_{2}} \uparrow i_{i_{3}}\right)$ for any permutation ($\left.i_{1}, i_{2}, i_{3}\right)$.

The proof is an exercise in elementary properties of homogeneous geometries.

Fix a pair of distinct points $a, b \in A$ and put

$$
R_{a b}=\left\{\left\langle l_{1}, l_{2}\right\rangle \in L^{2}: a \in\left(l_{1}\right) \& b \in\left(l_{2}\right) \&(\exists l \in L) l_{1} \uparrow l_{2} \uparrow \ell\right\} .
$$

For $\tau=\left\langle l_{1}, l_{2}\right\rangle \in R_{a b}$ denote
$\bar{\tau}=\left\{\ell \in L: \ell_{1} \uparrow \ell_{2} \uparrow\right\}$.
2.2. If $\tau_{1}, \tau_{2} \in R_{a b}, \tau_{1} \neq \tau_{2}$, then $\bar{\tau}_{1} n \bar{\tau}_{2}$ contains at most one line.

Proof. Let $\tau_{1}=\left\langle l_{11}, l_{12}\right\rangle, \tau_{2}=\left\langle l_{21}, l_{22}\right\rangle, m_{1}, m_{2} \in \bar{\tau}_{1} n \bar{\tau}_{2}, m_{1} \neq m_{2}$.

For some $i, j \in\{1,2\},\left(m_{i}\right) \nsubseteq\left(\ell_{1 j}, \ell_{2 j}\right)$. Otherwise $\left(m_{1}, m_{2}\right) \subseteq$ $\left(\ell_{11}, \ell_{21}\right) n\left(\ell_{12}, l_{22}\right)$, this implies $\left(\ell_{11}, \ell_{21}\right)=\left(\ell_{12}, l_{22}\right)$, since $\operatorname{dim}\left(m_{1}, m_{2}\right) \geqslant 3$. Moreover $\left(m_{1}, m_{2}\right)=\left(\ell_{11}, \ell_{12}\right)=\left(\ell_{21}, \ell_{22}\right)$. This contradicts with $\ell_{11} \uparrow \ell_{12}{ }^{\uparrow m_{1}}$.

So, let $\left(m_{1}\right) \nsubseteq\left(\ell_{11}, \ell_{21}\right)$. Together with $m_{1} \in \bar{\tau}_{1} n \bar{\tau}_{2}$ it implies $\ell_{11} \uparrow \ell_{21} \uparrow m_{1}$. provided $\ell_{11} \neq \ell_{21}$. By 2.1 (iv) it contradicts a $\in\left(\ell_{11}\right) n\left(\ell_{21}\right)$. Thus $\ell_{11}=\ell_{21}$. Now we have $\ell_{11} \uparrow \ell_{12}{ }^{\uparrow m_{1}}$ and $\ell_{11} \uparrow \ell_{22} \uparrow m_{1}$ and $\mathrm{b} \in\left(\ell_{12}\right) n\left(\ell_{22}\right)$. By 2.1(v) and (iii) we get $\ell_{12}=\ell_{22}$, thus $\tau_{1}=\tau_{2}$.
2.3. It is easy to see that $R_{a b}$ is an (a, b)-definable set with $\operatorname{rank}\left(R_{a b} /(a, b)\right)=1$. Let $R^{1}{ }_{a b}, \ldots, R^{m}{ }_{a b}$ be all the E_{1}-classes. $R^{i}{ }_{a b}$ are almost (a, b)-definable and 1 -irreducible by 1.6 , provided $\operatorname{dim} A \geqslant 6, R_{a b} \neq \varnothing$.

If $\tau_{1} \in R^{i}{ }_{a b}, \tau_{2} \in R_{a b}^{j}, i, j \in\{1, \ldots, m\}, \tau_{1} \neq \tau_{2}, \bar{\tau}_{1} n \bar{\tau}_{2} \neq \varnothing$ then for any distinct $\tau^{\prime}{ }_{1} \in \mathrm{R}^{\mathrm{i}}{ }_{\mathrm{ab}}, \tau^{\prime}{ }_{2} \in \mathrm{R}_{\mathrm{a}}{ }_{\mathrm{a}}$ it holds that $\bar{\tau}^{\prime}{ }_{1} \cap \bar{\tau}^{\prime} \neq \varnothing$ and $\left(\tau^{\prime}{ }_{1}\right) \neq\left(\tau^{\prime}{ }_{2}\right)$.

Proof. One can assume $\tau_{1}=\tau_{1}$. Note that $\left(\tau_{1}\right) \neq\left(\tau_{2}\right)$, since there is $\ell \in \bar{\tau}_{1} n \bar{\tau}_{2}$ and by $2.2,(\ell) \subseteq\left(\tau_{1}, \tau_{2}\right)$, but by the definition of $\bar{\tau}_{1}(\ell) \nsubseteq\left(\tau_{1}\right)$. We show that we may assume $\left(\tau_{1}\right) \nsubseteq\left(\tau_{1}, \tau_{2}^{\prime}\right)$ and this will finish the proof by using the definition of E_{1}.

So, suppose $\left(\tau_{1}\right) \subseteq\left(\tau_{2}, \tau_{2}^{\prime}\right)$, then either $\left(\tau_{2}\right)=\left(\tau_{2}^{\prime}\right)=\left(\tau_{1}\right)$ or $\operatorname{dim}_{\left(\tau_{1}\right)}\left(\tau_{2}, \tau_{2}^{\prime}\right)=1$. The first one is impossible. If the second holds there is $\alpha \in \operatorname{Aut}\left(A /\left(\tau_{1}\right)\right)$ such that $\left(\alpha\left(\tau_{2}^{\prime}\right)\right) \nsubseteq\left(\tau_{2}, \tau_{2}\right)$. Denote $\alpha\left(\tau_{2}{ }_{2}\right)=\tau^{\prime \prime}{ }_{2}$, then $\left(\tau_{1}\right) \nsubseteq\left(\tau_{2}, \tau_{2}\right)$. Take τ_{2} instead of τ_{2}.

2.4. Denote

$s^{i j}=\left\{\left\langle\tau_{1}, \tau_{2}, \ell\right\rangle: \tau_{1} \in R^{i}, \tau_{2} \in R^{j}, \ell \in \bar{\tau}_{1} n \bar{\tau}_{2}, \tau_{1} \neq \tau_{2}\right\}$,
fix $\ell_{0} \in L$, such that $\left(\ell_{0}\right) \cap(a, b)=\varnothing$, and a plane of the form (a,b,c), $c \in A \backslash(a, b)$. Denote

$$
\begin{aligned}
& \lambda=\left|\ell_{0}\right|, \quad \rho^{i}=\left|\left\{\tau \in R_{a b}^{i}: \ell_{0} \in \tilde{\tau}\right\}\right|, \quad \pi=|(a, b, c)|, \\
& \mu^{i}=\left|\left\{\tau \in R^{i}:(\tau)=(a, b, c)\right\}\right|, \\
& \delta^{i j}= \begin{cases}0 & \text { if } i \neq j . \\
1 & \text { if } i=j .\end{cases}
\end{aligned}
$$

If we put $z=|Z|$ for any closed set $Z \subseteq A$ containing c, a, b, then the following hold:
(i) $|L[z]|=\frac{z(z-1)}{\lambda(\lambda-1)}$;
(ii) $\left|R^{i}[z]\right|=\frac{z-\pi}{\lambda-1} \cdot \rho^{i}+\mu^{i}$;
if $S^{\text {ij }} \neq \emptyset$
(iii) $\left|\mathrm{S}^{\mathrm{ij}}[Z]\right|=\left|\mathrm{R}^{\mathrm{i}}[Z]\right| \cdot\left(\left|\mathrm{R}^{\mathrm{j}}[Z]\right|-\mu^{\mathrm{j}}\right)$;
and also
(iv) $\left|S^{i j}[z]\right|=\frac{(z-\lambda)(z-\pi)}{\lambda(\lambda-1)} \cdot \rho^{i} \cdot\left(\rho^{j}-\delta^{i j}\right)$.

Proof. (i) is well-known and easy. (ii) follows from computations of the number of elements in

$$
\mathrm{T}^{\mathrm{i}}[Z]=\left\{\langle\tau, \ell\rangle: c \in(\ell), \ell \in \mathrm{L}[Z], \ell \in \bar{\tau}, \bar{\tau} \in \mathrm{R}^{\mathrm{i}}[Z]\right\} .
$$

For $(\tau)=(a, b, c)$ there is no $\ell \in \bar{\tau}$ with $c \in \ell$ by 2.1 (ii). If $(\tau) \neq(a, b, c)$ then there is a unique ℓ such that $\langle z, \ell\rangle \in \mathrm{T}^{\mathrm{i}}$. It follows that

$$
\left|\mathrm{T}^{\mathrm{i}}[Z]\right|=\left|\mathrm{R}^{\mathrm{i}}[Z]\right|-\mu^{\mathrm{i}}
$$

From the other hand for any $\ell \in L$, provided $c \in(\ell)$ and $(\ell) \nsubseteq(a, b, c)$ there are exactly ρ^{i} elements $\tau \in \mathrm{R}_{\text {ab }}^{\mathrm{i}}$ such that $\langle\tau, \ell\rangle \in \mathrm{T}^{\mathrm{i}}$. Using 2.1 (iii) one gets

$$
\left|T^{i}[Z]\right|=\frac{z-\pi}{\lambda-1} \cdot \rho^{i}
$$

where $(z-\pi) /(\lambda-1)$ is counted as the number of $\ell \in L[Z]$ such that $c \in(\ell)$ $\ddagger(\mathrm{a}, \mathrm{b}, \mathrm{c})$.
(iii) follows from 2.3 and 2.2 if one counts $\left|S^{i j}[Z]\right|$ as the number of $\left\langle\tau_{1}, \tau_{2}\right\rangle \in R^{i}[Z] \times R^{j}[Z]$ such that $\bar{\tau}_{1} \cap \bar{\tau}_{2} \neq \emptyset$.
(iv) is the result of counting first the number of the lines in

$$
\begin{aligned}
& \left\{\ell \in L[Z]:\left(\exists \tau_{1} \in R_{a b}^{i}\right)\left(\exists \tau_{2} \in R_{a b}^{j}\right)\left\langle\tau_{1}, \tau_{2}, \ell\right\rangle \in S^{i j}\right\} \\
& =\{\ell \in L[Z]: \operatorname{dim}(a, b, \ell)=4\} .
\end{aligned}
$$

This number is equal to $(z-\lambda)(z-\pi) / \lambda(\lambda-1)$. Now for each ℓ from the set there are exactly $\rho^{i}:\left(\rho^{j}-\delta^{i j}\right)$ pairs of different τ_{1}, τ_{2} such that $\left\langle\tau_{1}, \tau_{2}, \ell\right\rangle \in S^{i j}[Z]$.
2.5. If $\operatorname{dim} A \geqslant 6$, then for any $\tau_{1}, \tau_{2} \in R_{a b}$

$$
\bar{\tau}_{1} \cap \bar{\tau}_{2} \not \neq \emptyset \quad \text { iff } \quad \tau_{1}=\tau_{2}
$$

Proof. It suffices to show that $S^{i j}=\varnothing$ for all $i, j \in\{1, \ldots, m\}$. For this use 2.4 and compare the leading coefficients of the polynomials given by (iii) and (iv)
if $S^{\mathrm{ij}} \neq \varnothing$. The coefficients are distinct though the polynomials must coincide by 1.3.
2.6. If $\operatorname{dim} \mathrm{A} \geqslant 6$ then one of the following hold:
(i) every plane in A is projective;
(ii) every plane in A is affine;
(iii) there are two distinct lines ℓ_{1}, l_{2} such that $l_{1} \mid \ell_{2} \& \neg(\exists \ell) \ell_{1} \uparrow \ell_{2} \uparrow \ell$.

Proof. Suppose (i) and (iii) do not hold. Then there are $\ell_{1}, \ell_{2} \in L$, $\ell_{1} \neq \ell_{2}$, and there is $\ell \in L$ such that $\ell_{1} \uparrow \ell_{2} \uparrow \ell$. Let a $\in(\ell)$, a $\notin\left(\ell_{1}, \ell_{2}\right), \ell^{\prime} \in L, a \in\left(\ell^{\prime}\right)$ and $\ell_{1} \mid \ell^{\prime}$. Then $\ell^{\prime} \uparrow \ell_{2} \uparrow l_{1}$ and by $2.1, l^{\prime}=\ell$. Thus we have proved that through any $a \notin\left(\ell_{1}, \ell_{2}\right)$ there is a unique ℓ such that $\ell \mid \ell_{1}$. By homogeneity we get the same for any l_{1} and any a $\notin\left(l_{1}\right)$. This is exactly (ii).
*
A geometry (A,cl) is called truncated projective (affine) if one can define a new closure $c 1^{*}$ on A such that $\left(A, c l^{*}\right)$ is isomorphic to a projective (affine) geometry over a field and there is $d \leqslant \operatorname{dim}^{*} A$ (dimension of A with respect to $\left.c l^{*}\right)$ such that $c l(X)=c l^{*}(X)$ if $\operatorname{dim}^{*} X \leqslant d$ and $c l(X)=A$ if $\operatorname{dim}^{*} X>d$.
2.7. If all planes in A are projective (affine), then A is a truncated projective (affine) geometry.

This is a consequence of the transitivity of Aut(A) on the set of all non-collinear triples of points from A and Theorem 1 of [CK].
2.8. If $\operatorname{dim} A \geqslant 6$ then one of the following hold:
(i) A is a truncated projective geometry;
(ii) A is a truncated affine geometry;
(iii) the binary relation I on the set of lines is not empty:

$$
\ell_{1} I \ell_{2} \Leftrightarrow \ell_{1} \mid l_{2} \& \neg(\exists l) \ell_{1} \uparrow \ell_{2} \uparrow \ell .
$$

This is a reformulation of 2.6 taking into account 2.7.

3. Quasi-design over A.

In this section we suppose $\operatorname{dim} \mathrm{A}$ is finite, homogeneous and the relation I defined in 2.8 is not empty. We denote for $\ell \in L$

$$
I \ell=\left\{\ell^{\prime} \in L: \ell I^{\prime}\right\} .
$$

The results of the section and their proofs are completely analogous to those of [21, section 3]. We only improved the proofs and modified them to the finite-dimensional case.
3.1: (i) $\operatorname{rank}(I \ell /(\ell))=1$ for all $\ell \in L$;
(ii) if $l_{1} \neq l_{2}$ for $\ell_{1}, \ell_{2} \in L$, then $\operatorname{rank}\left(\mathrm{Il}_{1} \cap I \ell_{2} /\left(\ell_{1}, \ell_{2}\right)\right)=0$ or $\mathrm{If}_{1} \cap \mathrm{I} \ell_{2}=\varnothing$.

The proof is immediate from the definitions.

Studying L with respect to I it is convenient to treat elements of L as points and subsets of the form Il as blocks. As in [Z1] we will call this incidence system a quasi-design.

To the end of the section we fix $X \subseteq A$ such that codim $X \geqslant 3$ and the partition of L

$$
\mathrm{L}=\mathrm{L}_{1} \cup \ldots \cup \mathrm{~L}_{\mathrm{n}}
$$

where L_{i} are orbits with respect to $\operatorname{Aut}(A / X)$. By homogeneity among L_{1}, \ldots, L_{n} there is exactly one set of rank 2. Let
3.2. $\operatorname{rank}\left(L_{1} / X\right)=2 ; \operatorname{rank}\left(L_{i} / X\right) \leqslant 1$ for $i>1$.
3.3. If $\operatorname{rank}\left(\mathrm{L}_{\mathrm{i}} / X\right)=1, \ell \in \mathrm{~L}, \operatorname{rank}\left(\mathrm{~L}_{\mathrm{i}} \cap \mathrm{Il} /(\mathrm{X}, \ell)\right)=1$ then $\ell \in \mathrm{L}[X]$.

Proof. Under the hypotheses there is $\ell^{\prime} \in L_{i} \cap I \ell$ such that $\left(\ell^{\prime}\right) \nsubseteq(\ell, X)$. Since $\operatorname{rank}\left(\ell^{\prime} / X\right)=1$ and $\operatorname{rank}\left(\ell /\left(\ell^{\prime}\right)\right)=1$, one has

$$
2 \approx \operatorname{dim}_{X}\left(\ell, \ell^{\prime}\right)>\operatorname{dim}_{X}(\ell)
$$

Since $\operatorname{codim}\left(\ell, \ell^{\prime}, X\right) \geqslant 1$, hence supposing $(\ell) \nsubseteq(X)$ we can find $\ell^{\prime \prime} \in L$ such that $\left(\ell^{\prime \prime}\right) \neq\left(\ell, \ell^{\prime}, \mathbb{X}\right)$ and there is $\alpha \in \operatorname{Aut}\left(A /\left(\ell^{\prime}, \mathbb{X}\right)\right)$ such that $\alpha(\ell)=\ell^{\prime \prime}$. Then $\ell^{\prime \prime} I \ell^{\prime}$, $\left(\ell^{\prime}\right)$ ($\left(\ell,\left\{^{\prime \prime}\right)\right.$, thus it holds that $\ell^{\prime \prime} \uparrow \ell \uparrow \ell$, which contradicts $\ell \ell^{\prime}$.
3.4. If $\operatorname{rank}\left(\mathrm{L}_{\mathrm{i}} / \mathrm{X}\right)=1$ and $\operatorname{rank}\left(\mathrm{L}_{\mathrm{i}} \mathrm{nIl} /(\mathrm{X}, \ell)\right)<1$ for all $\ell \in \mathrm{L}$ then for any $q \in L_{i} \backslash L_{i}[X]$ there is $\ell_{1} \in L_{i}$ such that $\operatorname{rank}\left(\ell_{1} /(X, q)\right)=1=\operatorname{rank}\left(\ell_{1} /(q)\right)$.

Proof. Fix L_{i}. Denote for an $\ell \in \mathrm{L}$
$S_{\ell}=\left\{\left\langle\ell_{1}, \ell_{2}\right\rangle \in I: \ell_{2} I \ell \& \ell_{1} \in L_{i} \& \ell_{1} \neq \ell\right\}$.

It is easy to compute $\operatorname{rank}\left(S_{\ell} /(X, \ell)\right)=1$.

Take an arbitrary closed $Y \subseteq A$ such that $(\ell, X) \subseteq Y$. By $1.3,\left|S_{\ell}[Y]\right|$ is the value of a polynomial of degree 1 depending on $|Y|$. Denote $o^{\ell}{ }_{j}, j=1, \ldots, m$, all orbits on L under $\operatorname{Aut}(A /(\ell))$, except $\{\ell\}$. Denote

$$
L_{i j}^{l}=L_{i} n O^{l}{ }_{j}
$$

and let $\mathrm{L}_{\mathrm{i}} \backslash\{\ell\}=\mathrm{L}_{\mathrm{i} 1}^{\ell} \cup \ldots \cup \mathrm{L}_{\mathrm{im}}^{\ell}$. Then

$$
\begin{equation*}
\left|S_{\ell}[\mathrm{Y}]\right|=\Sigma_{1 \leqslant j \leqslant m}\left|L_{\mathrm{ij}}^{\ell}[\mathrm{Y}]\right| \cdot v_{\mathrm{j}}^{\ell} \tag{1}
\end{equation*}
$$

where $v^{\ell}{ }_{j}$ is \mid IfnIl ${ }_{1} \mid$ when $\ell_{1} \in L^{\ell}{ }_{i j}$.

From the other hand

$$
\begin{equation*}
\left|S_{\ell}[Y]\right|=\Sigma_{1 \leqslant k \leqslant n}\left|\operatorname{lnnL}_{k}[Y]\right| \cdot \lambda_{k}^{\ell}, \tag{2}
\end{equation*}
$$

where $\lambda_{k}^{\ell}=\left|\mathrm{I}_{2} n \mathrm{~L}_{\mathrm{i}} \backslash(\ell\}\right|$ when $\ell_{2} \in \mathrm{~L}_{\mathrm{k}}$.

Count now the ranks of all the subsets involved and the degrees of all the polynomials and consider the leading coefficients of the polynomials (1cp).

Then from (2) we have
(3)

$$
\operatorname{Icp}\left|S_{\ell}[Y]\right|=\operatorname{Icp}\left|\operatorname{I\ell n} L_{1}[Y]\right| \cdot \lambda_{1}^{\ell}
$$

Now we assume $(\ell) \Phi(X)$. Then by 3.2 and 3.3

$$
\operatorname{lcp}\left|\mathrm{If} \cap \mathrm{~L}_{1}[\mathrm{Y}]\right|=\operatorname{lcp}|\mathrm{If}[\mathrm{Y}]|
$$

and thus
(4)

$$
\operatorname{lcp}\left|S_{\ell}[Y]\right|=\operatorname{Icp}|\operatorname{If}[Y]| \cdot \lambda_{1}^{l} .
$$

Now we consider two possibilities for $\ell: \ell=q \in L_{i}[Y]$ and $\ell=p \in L_{1}[Y]$. It is easy to see that $\lambda^{q}{ }_{1}=\lambda^{p}{ }_{1}-1$, therefore

$$
\begin{equation*}
\operatorname{lcp}\left|\mathrm{S}_{\mathrm{q}}[\mathrm{Y}]\right|<\operatorname{lcp}\left|\mathrm{S}_{\mathrm{p}}[\mathrm{Y}]\right| . \tag{5}
\end{equation*}
$$

Looking to (1) we get

$$
\begin{equation*}
\operatorname{lcp}\left|\mathrm{S}_{\mathrm{p}}[\mathrm{Y}]\right|=\operatorname{lcp}\left|\mathrm{L}_{\mathrm{i} 1}[\mathrm{Y}]\right| \cdot \nu^{\mathrm{p}}{ }_{1} \tag{6}
\end{equation*}
$$

since any two $\ell_{1}, \ell_{1} \in L_{i} \backslash L_{i}[p]$ are conjugated by $\operatorname{Aut}(A /(p))$. And also $\nu^{p}{ }_{1}=$
sem
$\left|I \ell_{1} \cap \mathrm{Ip}\right|$ when $\operatorname{rank}\left(\ell_{1} /(p)\right)=2$. (5), (6) and (1) imply that $\nu^{p}{ }_{1}>\nu_{j}$ for any j such that $\operatorname{rank}\left(\mathrm{L}_{\mathrm{ij}} /(\mathrm{X}, \mathrm{q})\right)=1$. It implies that $\left\langle\ell_{1}, \mathrm{p}\right\rangle$ and $\left\langle\ell_{1}, \mathrm{q}\right\rangle$ are not conjugated when $\ell_{1} \in L_{i j}$, i.e. $\operatorname{rank}\left(\ell_{1} / q\right) \neq 2$.
3.5. If $z \in(y, X)$ and $\operatorname{codim} X \geqslant 3$, then there are $x_{1}, x_{2} \in(X)$ such that $z \in\left(y, x_{1}, x_{2}\right)$.

Proof. If (i) or (ii) of 2.8 holds then it is evident. Otherwise we use 3.3 and 3.4.

Let $y \neq z, z \notin(X)$, let q be the line through y and z, L_{i} the orbit of q under $\operatorname{Aut}(A / X)$. Then $\operatorname{rank}\left(L_{i} / X\right)=1$.

If there is $\ell \in L$ such that $\operatorname{rank}\left(\mathrm{L}_{\mathrm{i}} \cap I \ell\right)=1$ then $(\ell) \subseteq(X)$ by 3.3 and let $\left(x_{1}, x_{2}\right)=(\ell)$.

If not then use 3.4. There are two possibilities for ℓ_{1} from 3.4: $\left(\ell_{1}\right) \cap(q) \neq \varnothing$ or there is $\ell \in \mathrm{L}$ such that $q \uparrow \ell_{1} \uparrow \ell$. In the first case $\left(x_{1}\right)=\left(x_{2}\right)=$ $\left(\ell_{1}\right) n(q) \subseteq(X)$. In the second case $\left(\ell_{1}\right) \subseteq(X)$ or it is possible to find ℓ such that $(l) \subseteq(X)$ and $q \uparrow \ell_{1} \uparrow \ell$. Then $\operatorname{rank}\left(q /\left(x_{1}, x_{2}\right)\right)=1$ for $\left(x_{1}, x_{2}\right)=\left(\ell_{1}\right)$ or $\left(x_{1}, x_{2}\right)=\ell$ respectively.

4. Definable transformations.

Under the assumption $\operatorname{dim} A \geqslant 7$ and A is neither a projective nor an affine geometry, we construct here a definable set V over A so that there are "sufficiently many" definable transformations on V .

We begin with a broader notion. An almost X-definable semitransformation on A is an almost X-definable set $f \subseteq A \times A$ of rank 1 which is 2-irreducible and does not contain $\langle v, u\rangle$ with $v \in(X)$ or $u \in(X)$.
4.1. If $\operatorname{codim} X \geqslant 5,\langle u, v\rangle \in A^{2}, \operatorname{rank}(\langle u, v\rangle / X)=1, v, u \notin(X)$, then there is an almost X-definable semitransformation f on A with $\langle u, v\rangle \in f$.

This follows from 1.6.
4.2. If f_{i} is an almost X_{i}-definable semitransformation on A for $\mathrm{i}=1,2$ and $\operatorname{dim} X_{1} \cup X_{2} \leqslant \operatorname{dim} X_{1}+2, \operatorname{rank}\left(f_{1} \cap f_{2} / X_{1} \cup X_{2}\right)>0$ then $\operatorname{rank}\left(f_{1} \backslash f_{2} / X_{1} \cup X_{2}\right)=0$.

This is a consequence of 2-irreducibility.
4.3. If $\operatorname{dim} A \geqslant 7, \operatorname{codim} X \geqslant 3,\langle u, v\rangle$ as in 4.1, then there are $x_{1}, x_{2} \in(X)$ and an almost (x_{1}, x_{2})-definable semintransformation f on A with $\langle u, v\rangle \in f$.

This follows from 3.5 and 4.1.

Denote F the set of all almost (x_{1}, x_{2})-definable semitransformations on A for all $x_{1}, x_{2} \in A$. It is easy to see that if $f \in F$, then $f^{-1} \in F$, where $f^{-1}=$ $\{\langle v, u\rangle:\langle u, v\rangle \in f\}$.

For almost X-definable sets g_{1}, g_{2} of rank 1 we denote by $g_{1} \subset g_{2}$ the fact that $\operatorname{rank}\left(g_{2} \backslash g_{1} / X\right)=0$, and $g_{1} \square g_{2}$ denotes $g_{1} \subset g_{2} \& g_{2} \subset g_{1}$.
4.4. It follows from 4.2 that $[$ coincides with \square on F and \square is an equivalence relation on F. It follows from 4.3 that for any $f_{1}, f_{2} \in F$ there are $g_{1}, \ldots, g_{k} \in F$ such that $g_{1} u \ldots g_{k} \square f_{1}$ of f_{2}, where

$$
\left.f_{1} \text { of } f_{2}=\{u, w\rangle:(\exists v)\langle u, v\rangle \in f_{1} \&\langle v, w\rangle \in f_{2}\right\}
$$

If f_{i} is almost $\left(x_{i 1}, x_{i 2}\right)$-definable for $i=1,2$ then g_{j} are almost $\left(y_{j 1}, y_{j 2}\right)$-definable for some $y_{j 1}, y_{j 2} \in\left(x_{11}, x_{12}, x_{21}, x_{22}\right)$. The set $\left\{g_{1}, \ldots, g_{k}\right\}$ is uniquely determined up to \square.

Define F_{I} to be the subset of F containing all almost (x_{1}, x_{2})-definable semitransformations f such that: if $\langle u, v\rangle \in f,(u, v)=(q), q \in L, u \notin\left(x_{1}, x_{2}\right)$, $\left(x_{1}, x_{2}\right)=(\ell), \ell \in L$, then $q I \ell$.
4.5. $\mathrm{F}_{\mathrm{I}} \neq \emptyset$ iff A is neither a projective nor an affine truncated geometry.

This is in fact 2.8.
4.6. If $f_{i} \in F_{I}, i=1,2, f_{1} \square f_{2}$ and f_{i} are almost ($x_{i 1}, x_{i 2}$)-definable, then $\left(x_{11}, x_{12}\right)=\left(x_{21}, x_{22}\right)$.

This follows from 3.1 (ii).

The observation above makes it possible to treat the quotient-set F_{I} / \square $=\hat{F}_{I}$ as \emptyset-definable. An element of \hat{F}_{I} corresponding to $f \in F_{I}$ will be denoted \hat{f},
$(\hat{f})=\left(x_{1}, x_{2}\right), \operatorname{rank}(\hat{f} / X)=\operatorname{dim} X\left(x_{1}, x_{2}\right)$ if f is almost $\left(x_{1}, x_{2}\right)$-definable.
4.7. (i) If $\hat{\mathrm{f}} \in \hat{\mathrm{F}}_{\mathrm{I}}$, then $\hat{\mathrm{f}}^{-1} \in \hat{\mathrm{~F}}_{\mathrm{I}}$;
(ii) if $f_{1} \in F, f_{2} \in F_{\mathrm{I}}, \operatorname{rank}\left(\hat{f}_{2} /\left(\hat{f}_{1}\right)\right)=2, f \in f_{1}$ of 2 , then $f \in F_{\mathrm{I}}$.
(i) is evident. (ii) is again a consequence of 2.1 and elementary geometric considerations.

It is natural to use the following notation for $y \in A, f \in F$:
$\mathrm{f}(\mathrm{v})=\{\mathrm{u}:\langle\mathrm{v}, \mathrm{u}\rangle \in \mathrm{f}\}$.
4.8. If $g, f \in F_{I}, \operatorname{rank}(\hat{g} /(\hat{f}))=2, v \in A \backslash(\hat{f}, \hat{g}), u_{1}, u_{2} \in f(v)$ and $u_{1} \neq u_{2}$. then $g\left(u_{1}\right) \cap g\left(u_{2}\right)=\varnothing$.

Proof. Assume the contrary, $w \in g\left(u_{1}\right) \cap g\left(u_{2}\right)$. Then $u_{1}, u_{2} \in$ $(\hat{\mathrm{f}}, \mathrm{v}) \cap(\hat{\mathrm{g}}, \mathrm{w})$, hence $\mathrm{u}_{2} \in\left(\hat{\mathrm{f}}, \mathrm{u}_{1}\right) \cap\left(\hat{\mathrm{g}}, \mathrm{u}_{1}\right)$. It follows that $\operatorname{rank}\left(\hat{\mathrm{g}} /\left(\mathrm{u}_{11}, \mathrm{u}_{2}\right)\right) \leqslant 1$, which contradicts
$\operatorname{rank}\left(\hat{\mathrm{g}} /\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)\right) \geqslant \operatorname{rank}\left(\hat{\mathrm{g}} /\left(\hat{\mathrm{f}}, \mathrm{u}_{1}, \mathrm{u}_{2}\right)\right)=\operatorname{rank}(\hat{\mathrm{g}} /(\hat{\mathrm{f}}, \mathrm{v}))=2$.
4.9. Let $f, h \in F_{I}, \operatorname{rank}(\hat{f} /(\hat{h}))=2$ and $k=|f(v)|=$
$\max \left\{|s(v)|: s \in F_{I}, v \in A \backslash(\hat{s})\right\}$. Taking $g \subset f^{-1}$ oh we get $h c$ fog, $g \in F_{I}$ (by 4.7) and $\operatorname{rank}(\hat{\mathrm{g}} /(\hat{\mathrm{f}}))=2$. Under these assumptions for any $\mathrm{v} \in \mathrm{A} \backslash(\hat{\mathrm{f}}, \hat{\mathrm{g}}), \mathrm{u} \in \mathrm{f}(\mathrm{v})$ there exists a unique $w \in g(u) \cap h(v)$.

Proof. Let $f(v)=\left\{u_{1}, \ldots, u_{k}\right\}, u_{i} \neq u_{j}$ if $i \neq j$. Denote $m_{i} \neq\left|g\left(u_{i}\right) \cap f(v)\right|$. let $\langle v, u\rangle \in f,\langle u, w\rangle \in g,\langle v, w\rangle \in h$,
$\mathbf{f}^{\prime}=\left\{\left\langle v^{\prime}, u^{\prime}\right\rangle:\left(\exists w^{\prime}\right)\left(w^{\prime} \in g\left(u^{\prime}\right) \cap h\left(v^{\prime}\right)\right\}\right.$.

Since $f^{\prime} \subseteq f$ and $\langle v, u\rangle \in f^{\prime}, \operatorname{rank}\left(f^{\prime} /(\hat{f}, \hat{i})\right)=1$, hence $f^{\prime} \square f$. It follows that $\left\langle v, u_{i}\right\rangle \in f$ iff $\left\langle\mathrm{v}, \mathrm{u}_{\mathrm{i}}\right\rangle \in \mathrm{f}^{\prime}$, therefore $\mathrm{g}\left(\mathrm{u}_{\mathrm{i}}\right) \cap \mathrm{h}(\mathrm{v}) \neq \varnothing$ and $\left.\mathrm{m}_{\mathrm{i}}\right\rangle 0$ for $\mathrm{i}=1, \ldots, \mathrm{k}$.

From the other hand $\Sigma_{i \leqslant k} m_{i} \leqslant k$, since $U_{i \leqslant k} g\left(u_{i}\right) \cap f(v)=h(v)$. Thus
$m_{i}=1$ for all $\mathrm{i}=1, \ldots, \mathrm{k}$.
4.10. Fix $f \in F_{I}$ as a set. For any $\langle v, u\rangle \in f,\langle t, w\rangle \in f$ such that $\operatorname{rank}(\langle v, w\rangle / \hat{f})=2$ there exist $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathrm{~A}$ and an ($\hat{f}, \mathbf{x}_{1}, \mathrm{x}_{2}$)-definable mapping $\gamma: f \rightarrow f$ such that $\operatorname{rank}\left(\langle\mathrm{v}, \mathrm{u}\rangle /\left(\hat{\mathrm{f}}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)\right)=1$ and $\gamma(\langle\mathrm{v}, \mathrm{u}\rangle)=\langle\mathrm{t}, \mathrm{w}\rangle$.

Proof. For given $\langle v, u\rangle \in f$ take $g, h \in F_{I}$ as in 4.9 so that $w \in g(u) n h(v)$. Such a choice is possible by homogeneity. Note that 4.9 gives an ($\hat{\mathrm{f}}, \mathrm{h}$)-definable mapping $\alpha: \mathrm{f} \rightarrow \mathrm{h}$ by the law $\alpha:\langle\mathrm{v}, \mathrm{u}\rangle \rightarrow\langle\mathrm{v}, \mathrm{w}\rangle$. Let i be the inversion $\mathrm{i}:\langle\mathrm{v}, \mathrm{w}\rangle \rightarrow\langle\mathrm{v}, \mathrm{w}\rangle$. Let β be again an ($\hat{\mathrm{f}}, \mathrm{h}$)-definable mapping $\mathrm{h}^{-1} \rightarrow \mathrm{f}^{-1}$ such that $\langle w, v\rangle \rightarrow\langle w, t\rangle$. Then $\gamma=\alpha 0 i 0 \beta o i$ is the required mapping, $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=(\hat{\mathrm{h}})$.
4.11. γ in 4.10 is a bijection of $f \backslash\left(\hat{\mathrm{f}}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)^{2}$ onto itself.

This is easily seen from the construction.

An $\left(\hat{f}, x_{1}, x_{2}\right)$-definable bijection of $f \backslash\left(\hat{f}, x_{1}, x_{2}\right)^{2}$ onto itself will be called a transformation of f . One constructed as in 4.10 will be called generic.
4.12. For any $v_{1}, v_{2}, t_{1}, t_{2} \in A$ such that $\operatorname{rank}\left(\left\langle v_{1}, v_{2}, t_{1}, t_{2}\right\rangle / \hat{f}\right)=4$, any $u_{1}, u_{2} \in A$ such that $\left\langle v_{1}, u_{1}\right\rangle \in f,\left\langle v_{2}, u_{2}\right\rangle \in f$, there exists a transformation γ^{\prime} and $w_{1}, w_{2} \in A$ with $\left\langle t_{1}, w_{1}\right\rangle \in f,\left\langle t_{2}, w_{2}\right\rangle \in f, \gamma^{\prime}\left(\left\langle v_{1}, u_{1}\right\rangle\right)=\left\langle t_{1}, w_{1}\right\rangle, \gamma^{\prime}\left(\left\langle v_{2}, u_{2}\right\rangle\right)=\left\langle t_{2}, w_{2}\right\rangle$.

Proof. Let γ, h be as in the proof of $4.10, \operatorname{rank}\left(\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right\rangle /(\hat{\mathrm{f}}, \hat{h})\right)=2$. Let $\gamma\left(\left\langle v_{1}, u_{1}\right\rangle\right)=\left\langle t^{\prime}{ }_{1}, w_{1}{ }_{1}\right\rangle, \gamma\left(\left\langle v_{2}, u_{2}\right\rangle\right)=\left\langle t_{2}, w_{2}^{\prime}\right\rangle$. It is easy to see that $\left(v_{1}, v_{2}, t_{1}, t^{\prime}, \hat{f}\right)=$ $\left(v_{1}, v_{2}, w_{1}, w_{2}, \hat{f}\right)=\left(v_{1}, v_{2}, \hat{i}, \hat{f}\right)$ and therefore $v_{1}, v_{2}, t_{1}, t_{2}$ are independent over (\hat{f}). Take $\alpha \in \operatorname{Aut}\left(\mathrm{A} /\left(\hat{\mathrm{f}}, \mathrm{v}_{1}, \mathrm{v}_{2}\right)\right)$ such that $\alpha\left(\mathrm{t}_{1}\right)=\mathrm{t}_{1}, \alpha\left(\mathrm{t}_{2}\right)=\mathrm{t}_{2}$, and put $\mathrm{w}_{1}=\alpha\left(\mathrm{w}_{1}\right)$. $w_{2}=\alpha\left(w_{2}^{\prime}\right) ; \gamma^{\prime}=\alpha(\gamma)$.
4.13. Let γ_{1} be a $\left(\hat{f}, x_{1}: x_{2}\right)$-definable transformation, γ_{2} a generic $\left(\hat{f}, \hat{H}_{2}\right)$-definable transformation and $\operatorname{rank}\left(\hat{h}_{2} /\left(\hat{f}, x_{1}, x_{2}\right)\right)=2$. Then there is a unique generic γ_{3} which is $(\hat{f}, \hat{\mathrm{~h}})$-definable for $(\hat{\mathrm{h}}) \subseteq\left(\hat{\mathrm{f}}, \hat{\mathrm{n}}_{2}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)$ such that for
any $\langle\mathrm{v}, \mathrm{u}\rangle \in \mathrm{f} \backslash\left(\hat{\mathrm{f}}, \hat{\mathrm{h}}_{2}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)^{2}$.

$$
\gamma_{3}(\langle v, u\rangle)=r_{2}\left(\gamma_{1}(\langle v, u\rangle)\right)
$$

Proof. Let $\langle\mathrm{v}, \mathrm{u}\rangle \in \mathrm{f} \backslash\left(\hat{\mathrm{f}}, \mathrm{h}_{2}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)^{2}, \Upsilon_{1}(\langle\mathrm{v}, \mathrm{u}\rangle)=\langle\mathrm{s}, \mathrm{r}\rangle, \Upsilon_{2}(\langle\mathrm{~s}, \mathrm{r}\rangle)=\langle\mathrm{t}, \mathrm{w}\rangle$. Then by 3.5, $r \in h_{1}(v)$ for $h_{1} \in F, h_{1}$ almost $\left(\hat{f}, \mathbf{x}_{1}, x_{2}\right)$-definable, $s \in f^{-1}(r)$ and $w \in h_{2}(s)$, i.e. $w \in h_{1}$ of ${ }^{-1} o h_{2}(v)$. By 4.7 there is $h \in F_{I}$ such that $(\hat{h}) \subseteq\left(\hat{h}_{1}, \hat{r}_{1}, \hat{h}_{2}\right)$ and $w \in h(v), \operatorname{rank}(\hat{h} /(\hat{\mathrm{f}}))=2$. This is sufficient to construct γ_{3} as in 4.10 with $\gamma_{3}(\langle\mathrm{v}, \mathrm{u}\rangle)=\langle\mathrm{t}, \mathrm{w}\rangle$. By 4.3, Υ_{3} is unique.
4.14. If β_{i} is a $\left(\hat{f}, \mathrm{x}_{\mathrm{i} 1}, \mathrm{x}_{\mathrm{i} 2}\right.$)-definable transformation, $\mathrm{i}=1,2$, and $\operatorname{dim}\left(\hat{f}, \mathrm{x}_{11}, \mathrm{x}_{12}, \mathrm{x}_{21}, \mathrm{x}_{22}\right) \leqslant 5$ then there is a unique ($\hat{\mathrm{f}}, \mathrm{y}_{1}, \mathrm{y}_{2}$)-definable transformation with $y_{1}, y_{2} \in\left(\hat{f}, x_{11}, x_{12}, x_{21}, x_{22}\right)$ such that $\beta_{3}(\langle v, u\rangle)=\beta_{2}\left(\beta_{1}(\langle v, u\rangle)\right)$ for any $\langle v, u\rangle \in f \backslash\left(\hat{f}, x_{11}, x_{12}, x_{21}, x_{22}\right)^{2}$.

Proof. As in the proof of 4.13 there are $h_{1}, h_{2} \in F$, such that $r \in h_{1}(v), w \in h_{2}(s), w \in h_{1}$ of ${ }^{-1} \mathrm{oh}_{2}(v)$ and h_{1}, h_{2} are almost $\left(\hat{f}, x_{11}, x_{12}, x_{21}, x_{22}\right)$-definable. Hence $w \in h(v), h \in F, h$ is almost $\left(y_{1}, y_{2}\right)$-definable, $\mathrm{y}_{1}, \mathrm{y}_{2} \in\left(\hat{\mathrm{f}}, \mathrm{x}_{11}, \mathrm{x}_{12}, \mathrm{x}_{21}, \mathrm{x}_{22}\right)$.

There are three possibilities for h :

1. $h \in F_{I}, \operatorname{rank}(\hat{h} /(\hat{f}))=2$. In this case β_{3} can be constructed as in 4.10.
2. $h \in F_{I}, \operatorname{rank}(\hat{f} /(\hat{\mathrm{f}})) \leqslant 1$. Then $\operatorname{dim}(\hat{\mathrm{f}}, \hat{\mathrm{h}})=\mathrm{k} \leqslant 3$ and let β_{3} be an almost ($\hat{\mathrm{h}}, \mathrm{h}$)-definable ($5-\mathrm{k}$)-irreducible subset of
$\left\{\left\langle v^{\prime}, u^{\prime}, t^{\prime}, w^{\prime}\right\rangle: w^{\prime} \in h\left(v^{\prime}\right) \& u^{\prime} \in f\left(v^{\prime}\right) \& w^{\prime} \in f\left(t^{\prime}\right)\right\}$
by 1.4. Then $\beta_{3} \square \beta_{1} \circ \beta_{2}$.
3. $h \notin F_{I}$. Then $w \in(v, \hat{f}, y)$ for some $y \in\left(\hat{f}, y_{1}, y_{2}\right)$ and we get β_{3}
repeating the previous point.
4.15. Any ($\hat{\mathrm{f}}, \mathrm{x}_{1}, \mathrm{x}_{2}$)-definable transformation β satisfies one of the following:
(i) β is generic;
(ii) there is $y \in\left(\hat{,}, x_{1}, x_{2}\right)$ and β^{\prime} such that β^{\prime} is almost ($\left.\hat{\mathrm{f}}, \mathrm{y}\right)$-definable and $\beta^{\prime} \square \beta$; if $\beta^{\prime \prime} \square \beta$ and $\beta^{\prime \prime}$ is almost (\hat{f}, y^{\prime})-definable then $(\hat{f}, y)=\left(f, y^{\prime}\right)$;
(iii) there is β^{\prime} which is almost ($\hat{\mathrm{f}}$)-definable and $\beta^{\prime} \square \beta$.

Proof. Let $\langle\mathrm{v}, \mathrm{u}\rangle \in \mathrm{f} \backslash\left(\hat{\mathrm{f}}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)^{2}, \beta(\langle\mathrm{v}, \mathrm{u}\rangle)=\langle\mathrm{t}, \mathrm{w}\rangle$. Since $\mathrm{w} \in\left(\mathrm{v}, \hat{\mathrm{f}}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)$, there is $h \in F$ which is $\left(y_{1}, y_{2}\right)$-definable, $y_{1}, y_{2} \in\left(\hat{,}, x_{1}, x_{2}\right)$. There are three possibilities:
(1) $h \in F_{\mathrm{I}}, \operatorname{rank}(\hat{\mathrm{h}} /(\hat{\mathrm{f}}))=2$. This case like case 1 of 4.14 gives (i).
(2) $h \in F_{I}, \operatorname{rank}(\hat{h} /(\hat{f})) \leqslant 1$. Again act like in 4.14 and get $\beta^{\prime} \square \beta$ which is almost (\hat{f}, \hat{h})-definable, $(\hat{\mathrm{f}}, \hat{\mathrm{h}})=(\hat{\mathrm{f}}, \mathrm{y})$ and we get (ii) if $\mathrm{y} \notin(\hat{\mathrm{f}})$ or (iii) if $y \in(\hat{f})$.
(3) $h \notin F_{I}$. The same as (2).

For any transformation β of 4.15 , ($\hat{f}, \hat{\beta})$ is defined as $\left(\hat{f}, x_{1}, x_{2}\right)$ in the case (i), (\hat{f}, y) in (ii) and ($\hat{\mathrm{f}}$) in (iii).
4.16. The set of all transformations forms a group Γ. The set Γ and multiplication in Γ are (\hat{f})-definable, as well as the partial action of Γ on f : if $\gamma \in \Gamma, \bar{v} \in f \backslash(\hat{f}, \hat{\gamma})$ then $\gamma(\overline{\mathrm{v}})$ is defined.

In general Γ is not strongly coordinatizable over (\hat{f}) but:
(i) the subset $\Gamma_{0}=\{\gamma \in \Gamma: \gamma$ is generic $\}$ is strongly coordinatizable over (f);
(ii) Γ is strongly coordinatizable over any $a_{1}, a_{2} \in A$ which are independent over ($\hat{\mathrm{f}}$);
(iii) $\operatorname{rank}\left(\Gamma /\left(a_{1}, a_{2}, \hat{f}\right)\right)=2, \operatorname{rank}\left(\Gamma_{0} /(\hat{f})\right)=2, \operatorname{rank}\left(\Gamma \backslash \Gamma_{0} /\left(a_{1}, a_{2}, \hat{f}\right)\right)<2$.

5. The structure of I.

If Γ has a proper (\hat{f})-definable subgroup of rank 2, take a minimal such one instead of Γ. So we may assume Γ has no proper ($\hat{\mathrm{f}}$)-definable subgroup of rank 2 .
5.1. The center C of Γ is an ($\hat{\mathrm{f}}$-definable subgroup of rank 0 .

Proof. For $\overline{\mathrm{v}} \in \mathrm{f} \backslash(\hat{\mathrm{f}})^{2}$ there is $\overline{\mathrm{w}} \in \mathrm{f} \backslash(\hat{\mathrm{f}}, \overline{\mathrm{v}})^{2}$ and a subset

$$
\Gamma_{\overline{\mathrm{v}} \bar{w}}=\left\{\gamma \in \Gamma_{0}: \gamma(\overline{\mathrm{v}})=\overline{\mathrm{w}}\right\}
$$

with $\operatorname{rank}\left(\Gamma_{\overline{\mathrm{Vw}}} /(\hat{f}, \overline{\mathrm{w}}, \overline{\mathrm{v}})\right)=1$. Suppose $\operatorname{rank}(\mathrm{C} /(\hat{\mathrm{f}}, \overline{\mathrm{v}}, \overline{\mathrm{w}}))>0$. Then for any $\gamma_{1}, \gamma_{2} \in \Gamma_{\overline{\mathrm{F}}}, \bar{u} \in \mathrm{f} \backslash\left(\hat{\mathrm{f}}, \overline{\mathrm{v}}, \overline{\mathrm{w}}, \Upsilon_{1}, \Upsilon_{2}\right)^{2}$ one can find $\alpha \in \mathrm{C}$ such that

$$
\alpha(\overline{\mathrm{v}})=\overline{\mathrm{u}}, \overline{\mathrm{v}} \notin\left(\hat{\mathrm{f}}, \gamma_{1}, \alpha\right) \cup\left(\hat{\mathrm{f}}, \gamma_{2}, \alpha\right) .
$$

Then $\gamma_{1}(\bar{u})=\gamma_{1}(\alpha(\bar{v}))=\alpha\left(\gamma_{1}(\bar{v})\right)=\alpha\left(\gamma_{2}(\bar{v})\right)=\gamma_{2}(\alpha(\bar{v}))=\gamma_{2}(\bar{u})$. It follows that $\gamma_{1}=\gamma_{2}$, contradiction.
5.2. Γ is 2-irreducible, provided $\operatorname{dim} A \geqslant 8$.

Proof. Let E_{2} be the equivalence relation on Γ_{0} defined in 1.4, U_{0} an E_{2}-class of rank 2. It is easy to see that if $\gamma \in \Gamma$ then $\gamma \cdot U_{0} \square U_{1}$ for some E_{2}-class U_{1}. It follows that the (f)-definable group

$$
\left\{\gamma \in \Gamma: \gamma U_{i} \square U_{i} \text { for any } E_{2} \text {-class } U_{i}\right. \text { of rank 2\} }
$$

is of rank 2, thus it coincides with Γ. Moreover, if $\gamma \in U_{0}$ then $U_{0} \cdot \gamma^{-1} \square \Gamma$, thus Γ is 2-irreducible.

5.3. $\bar{\Gamma}=\Gamma / C$ is a centerless ($\hat{\mathrm{f}}$)-definable group.

Proof. If $\bar{\gamma}$ is a central element of $\bar{\Gamma}$ and γ the corresponding element
of Γ, then $\gamma^{\Gamma}=\gamma . \mathrm{C}$ is finite, therefore $C_{\Gamma}(\gamma)$ is of rank 2. Thus it coincides with Γ, $\gamma \in C, \bar{\gamma}=\bar{e}$.
5.4. The same arguments show that $\bar{\gamma} \bar{\Gamma}$ can not be of rank 0 for $\bar{\gamma} \neq \overline{\mathrm{e}}$.
5.5. Suppose Δ is an X-definable group over $A, \operatorname{rank}(\Delta / X)=1$, $\operatorname{codim} X \geqslant 3$. Then there is a unique 1 -irreducible X-definable normal subgroup Δ^{0} of Δ with $\operatorname{rank}\left(\Delta^{0} / X\right)=1$.

The proof is analogous to 5.2.

The subgroup Δ^{0} will be called the connected component of Δ. If $\Delta=\Delta^{0}, \Delta$ is called connected.
5.6. If Δ is as in 5.5 and connected then Δ is abelian.

Proof. For $\delta \in \Delta \backslash C(\Delta)$ consider the conjugacy class $\delta^{\Delta}=\phi \subseteq \Delta$. ϕ or $\Delta \backslash \Phi$ is of rank 0 over (X, δ), only the second is possible, since $C_{\Delta}(\delta)$ is of rank 0 . Take now the polynomials p_{ϕ} and p_{Δ} given by 1.3. From ϕ a Δ it follows that the leading coefficients of the polynomials coincide. On the other hand $p_{\Delta}=$ $\left|C_{\Delta}(\delta)\right| \cdot p_{\phi}$, thus $\left|C_{\Delta}(\delta)\right|=1$, contradiction.

We assume now that Γ is a centerless 2 -irreducible \varnothing-definable group over a pregeometry $A^{\prime}, \operatorname{rank}(\Gamma / \varnothing)=2, \operatorname{dim} A^{\prime} \geqslant 6$.
5.7. There is no normal subgroup Δ of Γ which is (x_{1}, x_{2})-definable for some $x_{1}, x_{2} \in A^{\prime}$ and $\operatorname{rank}\left(\Delta /\left(x_{1}, x_{2}\right)\right)=1$.

Proof. Repeating the known construction [C] we can define a (x_{1}, x_{2}, x_{3})-definable field structure on Δ, provided Δ is connected, which we may assume by 5.5. But such a field can not exist since the mapping definable in the field $\mathrm{v} \mapsto \mathrm{v}^{2}-\mathrm{v}$ maps Δ on a subset $\phi \subseteq \Delta$ and contradicts 1.3 as in 5.6.
5.8. Let P be a maximal p -subgroup of Γ for some prime p, Y a closed subset of $A^{\prime}, \operatorname{dim} Y \geqslant 3, \mathrm{P}[\mathrm{Y}]$ a maximal p -subgroup of $\Gamma[\mathrm{Y}]$. Then one and only one of the following holds:
(i) $|\mathrm{P}[\mathrm{Y}]|$ does not depend on $|\mathrm{Y}|$;
(ii) P is an almost (γ)-definable subgroup for some $\gamma \in P$, $\operatorname{rank}(\mathrm{P} /(\gamma))=1,|\mathrm{P}[\mathrm{Y}]|$ is a polynomial of $|\mathrm{Y}|$ of degree 1 , its connected component p^{0} is (γ)-definable.

Proof. Choose $\gamma \in P[Y] \cap C_{\Gamma}(P) \backslash\{$ e $\}$, denote $\Delta=C_{\Gamma}(\gamma)$. Then $P \subseteq \Delta$, $\operatorname{rank}(\Delta /(\gamma)) \leqslant 1$. If $\operatorname{rank}(\Delta /(\gamma))=0$ then $\Delta[Y]$ does not depend on Y by 1.3 , the same is true for $\mathrm{P}[\mathrm{Y}]$.

If $\operatorname{rank}(\Delta /(\gamma))=1$ and $\Delta^{0} n P \neq\{$ e $\}$ then $\Delta^{0} \subseteq P$ and all Δ^{0}-cosets in P are almost (γ)-definable, so is P. This gives (ii). If $\Delta^{0} n P=\{e\}$ then P intersects with any Δ^{0}-coset at most in one point. The cosets are almost (γ)-definable, therefore the number of cosets in $\Delta[Y]$ which intersect with P does not depend on $|\mathrm{Y}|$.
5.9. There is at most one prime p for which 5.8 (ii) holds.

Proof. From 5.8(ii) and 5.7 it follows that the set of all p-elements is of rank 2. Now recall 5.2.
5.10. The polynomial $p_{\Gamma}(y)$ counting $\Gamma[Y]$ by 1.3 is of degree 2 . On the other hand the Sylow Theorem together with 5.8 and 5.9 gives

$$
|\Gamma[Y]|=p_{1} m_{1} \cdot \ldots \cdot p_{n} m_{n} \cdot p_{p}(y)
$$

where $p_{1} \ldots, p_{n}$ are all the prime divisors of $\Gamma[Y]$ for which $5.8(i)$ holds and $p_{p}(y)$ is the polynomial of degree 1 counting $\mathrm{P}[\mathrm{Y}]$ satisfying $5.8(\mathrm{ii})$. This is the final contradiction. Thus Γ does not exist.

References

[C] Cherlin, G. Groups of small Morley rank, Ann. Math. Logic 17 (1979), 1-28.
[CK] Cameron, P \& Kantor, W., 2-transitive and antiflag transitive collineation groups of finite projective spaces, J. Algebra 60 (1979), 384-422.
[Z1] Zil'ber, B, Strongly minimal countably categorical theories II (Russian), Sib.

Mat. Zh. 25 no. 3 (1984), 396-412.
[Z2] Zil'ber, B, Strongly minimal countably categorical theories III (Russian), Sib. Mat. Zh. 25 no. 4 (1984), 559-571.
[Z3] Zil'ber, B., Hereditarily transitive groups and quasi-Urbanik structures, in Model Theory, Proc. Inst. Math. Siber. Branch USSR Ac. Sc., Novosibirsk (Russian), 1988 (ed. Paljutin, E. A.).
Contents Page
Preface i
List of Participants ii
Conference Programme iii

- Appenzeller F. Unsuperstable Theories and Stationary Logic 1
Baudisch A. On Stable Solvable Groups of Bounded Exponent* 7
Belegradek O. Some model theory of locally free algebras 28
Dahn B. An Analog of the Least-Herbrand Model for non-Horn Theories* 33
Flum J. On n-to-one Images of Compact Ordinals ${ }^{*}$ 53
Hodges W. Extending Beth's Theorem* 57
Kaye R. Axiomatizations and Quantifier Complexity* 65
Krajicek J. A Theorem on Uniform Provability of Schemes* 85
Mundici D. $\quad \mathrm{K}_{0} \mathrm{AF} \mathrm{C}^{*} \boldsymbol{\ell} \Gamma \mathrm{MV}:$ a brief outline* 93
Newelski L. More on Locally Atomic Models* 109
Newelski L. A Proof of Saffe's Conjecture ${ }^{*}$ 123
Pacholski L. Counting and the Polynomial-Time Hierarchy* 141
Pillay A. \quad On Fields Definable in $\mathbf{Q}_{\mathbf{p}}{ }^{*}$ 151
Poizat B. Groups Definable in an Abelian Group: An Answer to a Query from Wilfrid Augustine Hodges* 164
Wolter H. Order Properties of Exponential Fields whose Elements are Term Defined Functions* 166
Ziegler M. Ein stabiles Modell mit der finite cover property aber ohne Vaughtsche Paare 179
Zil'ber B. Finite Homogeneous Geometries 186

[^1]
[^0]: * Paper is a preliminary version and should not be reviewed.

[^1]: * Paper is a preliminary version and should not be reviewed.

