
Zariski structures and noncommutative geometry

B. Zilber

University of Oxford

http://www.people.maths.ox.ac.uk/ ∼zilber:
Zariki Geometries (forthcoming book);
A class of quantum Zariski geometries;

Non-commutative Zariski geometries and their classical limit;
Quantum Harmonic Oscillator as a Zariski Geometry.



Zariski structures

Zariski structures (1993, E.Hrushovski and B.Zilber)
are on the very top of the (logical) stability hierar-
chy. The ones for which a fine classification theory
is possible.



Let M be a structure given with a family of basic
relations (subsets of Mn) called Zariski closed.

We postulate for a Zariski structure M:



Let M be a structure given with a family of basic
relations (subsets of Mn) called Zariski closed.

We postulate for a Zariski structure M:

(T) Zariski closed sets form a Noetherian Topology
on Mn, all n.

(P) Projection pr(S) ⊆ Mn of a closed set S ⊆
Mn+1 is constructible (= Boolean combination of
closed).

(D) Dimension dim S to any closed S ⊆ Mn is
assigned.



(AF) Addition formula:

dim S = dim pr(S) + min
a∈pr(S)

dim(pr−1(a) ∩ S)

for any closed irreducible S.

(FC) Fiber condition: for each k, the set

{a ∈Mn−1 : dim(S ∩ pr−1(a)) > k}
is constructible.

(PS) Pre-smoothness: For any closed irreducible
S1, S2 ⊆Mn,

dim S1 ∩ S2 ≥ dim S1 + dim S2 − dim Mn

in each component.
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Known classes of Zariski structures

1. Algebraic varieties over an algebraically closed
field with respect to the usual Zariski topology.

2. Compact complex spaces, Zariski closed subset
of Mn ≡ analytic subset.

3. Proper analytic varieties over complete alge-
braically closed non-Archimedean valued fields (rigid
analytic geometry).

4. A large class of non-commutative geometries
(2005)



About the term Geometry.
Geometric tradition explains ”spaces” as given lo-
cally by co-ordinate functions (into R or C). This
follows the physicist’s paradigm that the ultimate
data is given in numbers.



Classification Theorem (Hrushovski, Zilber 1993)
For any non-linear Zariski geometry M there is an
algebraically closed field F and a nonconstant mero-
morphic function

f : M→ F.

In particular, if dim M = 1 then there is a smooth
projective algebraic curve CM and a Zariski-continuous
finite covering map

p : M→ CM(F),

the image of any relation on M is just an algebraic
relation on CM.
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Regular coordinate functions from M
detect the classical part CM only



F[M] = {f : M→ F regular }

F[M] = F(CM), CM = M/E,

E an equivalence relation on M.

In general there may be Zariski-continuous “entan-
gling” arrows (action)

γ : M→ M, γ ∈ Γ

which make E non-splitting.



The initial example: 2-cover of the affine line.
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Classification theorem revisited.

How to recover the hidden relations in terms of “co-
ordinate functions”?
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How to recover the hidden relations in terms of “co-
ordinate functions”?

Extend the F-algebra of definable functions F[M] to
the F-space of semi-definable functions H[M].

Every Zariski bijection γ generates an F-linear trans-
formation of H[M] :

Uγ : f 7→ fγ

f ∈ H[M], fγ(x) = f (γx).

Also, any y ∈ F[M] gives rise to an F-linear

Y : f 7→ y · f



Classification theorem revisited.

How to recover the hidden relations in terms of “co-
ordinate functions”?

Extend the F-algebra of definable functions F[M] to
the F-space of semi-definable functions H[M].

Every Zariski bijection γ generates an F-linear trans-
formation of H[M] :

Uγ : f 7→ fγ

Also, any y ∈ F[M] gives rise to an F-linear

Y : f 7→ y · f



The operator algebra A[M] generated by all the
Uγ and Y ’s contains data sufficient to recover
M.
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well-defined.



M - F[M] ⊂ H[M] - A[M]

Remarks

1. Elements of H[M] are not uniquely definable
within M, so should be considered as auxiliary, not
well-defined.

2. A[M] and its elements are uniquely defined (up
to the choice of the language) so can be seen as
observables.



{
universe
of M

}
←→

{
class of 1-dim rep of
a commutative B ≤ A[M]

}

Auxiliary functions fromH[M] induce a formal C∗-
algebra structure on A[M], with a notion of adjoint-
ness and a meaning of a positive eigenvalue.

B is generated by self-adjoint operators and M con-
sists of positive eigenspaces (so elements of M may
be called states).

The operators Uγ ∈ A[M] become unitary and act
on B by conjugation. This corresponds to the ac-
tion of the γ on M.



A(M) for the `-cover of the affine line
(ε ∈ F, ε` = 1):

HY = YH; HZ = ZH;

YZ = ZY; Y` = I ; Z` = I ;
UH− HU = hU; VH− HV = ihV;
UY = εYU; YV = VY;
ZU = UZ; VZ = YZV;

E = U−1V−1UV; E` = I ;
UE = EU; VE = EV.

Y, Z, U, V and E unitary, H self-adjoint (slightly
simplified).



Inverse problem. Start with a noncommutative
algebra A and produce a Zariski M = M[A].



Quantum algebras at roots of unity

We assume for a “quantum algebra A at roots
of unity”:

1. A is an affine unital F-algebra, finite-dimensional
over its centre Z(A). F algebraically closed.

2. Isomorphism classes of generic irreducible A-
modules are in a bijective correspondence with an
open subset V 0 ⊆ Max Z(A) of the affine variety.

3. Generic irreducible modules allow a uniform
choice of canonical bases degenerating regularly out-
side V 0 preserving the dimension.



Examples (for q` = 1)

1. A = 〈U, V : UV = qV U〉 Manin’s quantum
plane

2. A = Uq(sl2) quantised Uq(sl2) as a Hopf alge-
bra (quantum group)

3. A = Oq(SL2) quantised co-ordinate Hopf al-
gebra of SL2 (quantum group)

...



We associate with every such A the bundle

mod
(`)
A = {ma : a ∈ Max Z(A)}

of `-dimensional A-modules ma (with or without
selected canonical bases) over the algebraic variety
VA = Max Z(A).

For each X ∈ A the action of X on ma is a part of
the structure and is given uniformly in a.
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in mod
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the structure mod
(`)
A is equivalent to modA, the

category of finite dimensional A-modules.



We associate with every such A the bundle

mod
(`)
A = {ma : a ∈ Max Z(A)}

of `-dimensional A-modules ma (with or without
selected canonical bases) over the algebraic variety
VA = Max Z(A).

For each X ∈ A the action of X on ma is a part of
the structure and is given uniformly in a.

One may also consider the infinite-dimensional A-
module

H :=
∑
a

ma

with or without a choice of canonical bases in each
ma.



Theorem The structure mod
(`)
A is a Zariski ge-

ometry, with respect to a Zariski topology.

The F-algebra A is determined by mod
(`)
A as the

algebra of definable linear transformations of H
(equivalently, of the vector bundle ma).

mod
(`)
A is not definable in commutative algebraic

geometry, in general.

For A commutative, mod
(`)
A is the trivial line

bundle over Max A, and so the geometry is equiv-
alent to that of the algebraic variety Max A, .



Remark mod
(`)
A is not the unique construction

satisfying the properties above. Other construc-
tions produce definably equivalent Zariski geome-
tries. In all the cases (known to us) these are equiv-
alent to modA, the category of finite dimensional
A-modules.



Not a root of unity case.
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The quantum harmonic oscillator



The quantum harmonic oscillator

A = 〈P, Q : PQ− QP = ih〉
as C∗-algebra.
In mathematical physics

H =
1

2
(P2 + Q2),

the Hamiltonian of the harmonic oscillator.

P, Q and H are self-adjoint.



The quantum harmonic oscillator

A = 〈P, Q : PQ− QP = ih〉
as C∗-algebra.
In mathematical physics

H =
1

2
(P2 + Q2),

the Hamiltonian of the harmonic oscillator.

C+ =
1

2
(P + iQ), C− =

1

2
(P− iQ)

the creation and annihilation operators;

C+C− = H+
h

2
, C−C+ = H−h

2
, C+C−−C−C+ = h.



The universe E = {±ex : x ∈ C}
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The universe E = {±ex : x ∈ C}

Think of line bundle
spanned by ex over C
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The universe E = {±ex : x ∈ C}

Think of line bundle
spanned by ex over C

C q

Vx

q q

s

s

Vz

q

s

s

q

C+ and C− define linear maps
C+ : Vx→ Vx+h
C− : Vx→ Vx−h



C+ and C− define linear maps
C+ : Vx→ Vx+h; λex 7→

√
xλex+h

C− : Vx→ Vx−h; λex 7→
√

x− hλex−h

¡
¡

¡
¡µ

C+

x x + h
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xex

C−
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t r
ex

√
xex+h
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Theorem The structure E(A) corresponding to
the quantum harmonic oscillator is a 1-dimensional
(complex) Zariski geometry.



Theorem The structure E(A) corresponding to
the quantum harmonic oscillator is a (complex) Zariski
geometry.

When one applies the full restrictions imposed by
the C∗-algebra structure one gets the real part
of E(A), which is discrete in this case.

q
2h

q
3h

q
4h

qq
h

q
0



Problem Explain model-theoretically transitions
between bases of H-eigenvectors, P-eigenvectors and
Q-eigenvectors.



Problem Explain model-theoretically transitions
between bases in H-eigenvectors, P-eigenvectors and
Q-eigenvectors.

Over the field of characteristic p the algebra A is a
“quantum algebra at roots of unity” and so M(A)
is a Zariski geometry again.



Problems and projects

1. Establish a right category of geometric objects
corresponding to non-commutative algebras A :

- as “algebro-geometric” coordinate algebras,

- as C∗-algebras,

- understand the interplay of the algebro-geometric
and real geometric structures.



2. Develop a deformation (approximation) theory
at the level of geometric objects

- e.g. as h→ 0

- as a root of unity converges to a generic q

- to explain how (and if) an elliptic curve deforms
into a quantum torus.



2. Develop a deformation (approximation) theory
at the level of geometric objects

- e.g. as h→ 0

- as a root of unity converges to a generic q

- to explain how (and if) an elliptic curve deforms
into a quantum torus.

3. Explain model-theoretically the meaning of var-
ious non-convergent sums of maths physics.



Example.

Theorem There is a well-defined Gromov-Hausdorff
limit of the `-cover of the affine line

lim
1
`=h→0

Mh =

{
real differentiable manifold =
U(1)-gauge field over a 2-dim real manifold

}

The limit of the unitary operators U and V corre-
spond to covariant differentiation on the gauge field.
For the `-cover of the torus C∗, the connection of
the gauge field is of non-constant curvature.


