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Zariski structures

Zariski structures (1993, E.Hrushovski and B.Zilber)
are on the very top of the (logical) stability hierar-
chy. The ones for which a fine classification theory
is possible.
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relations (subsets of M™) called Zariski closed.
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Let M be a structure given with a family of basic
relations (subsets of M™) called Zariski closed.

We postulate for a Zariski structure M:

(T) Zariski closed sets form a Noetherian Topology
on M", all n.

(P) Projection pr(S) € M" of a closed set S C
M™ 1 is constructible (= Boolean combination of

closed).

(D) Dimension dim .S to any closed S C M™ is
assigned.



(AF) Addition formula:

dim S = dimpr(S) + min dim(pr—(a) N S)
acpr(S)

for any closed irreducible S.

(FC) Fiber condition: for each k, the set
{fa e M1 dim(S Npr~Y(a)) > k}

1s constructible.

(PS) Pre-smoothness: For any closed irreducible

51,92 € M™,
dim 51 N Sy > dim Sy + dim Sy — dim M"

in each component.
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Known classes of Zariski structures

1. Algebraic varieties over an algebraically closed
field with respect to the usual Zariski topology:.

2. Compact complex spaces, Zariski closed subset
of M = analytic subset.

3. Proper analytic varieties over complete alge-
braically closed non-Archimedean valued fields (rigid
analytic geometry).

4. A large class of non-commutative geometries

(2005)



About the term Geometry.

Geometric tradition explains ”spaces” as given lo-
cally by co-ordinate functions (into R or C). This
follows the physicist’s paradigm that the ultimate
data is given in numbers.



Classification Theorem (Hrushovski, Zilber 1993)
For any non-linear Zariski geometry M there is an
algebraically closed field IF and a nonconstant mero-
morphic function

f:M—TF.

In particular, if dim M = 1 then there is a smooth
projective algebraic curve Cyj and a Zariski-continuou
finite covering map

p: M — C\(F),

the image of any relation on M is just an algebraic
relation on Cyy.
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Zariski structure and its algebraic projection

M Cuy

Regular coordinate functions from M
detect the classical part Cy; only

[F

Field of numbers



FM] ={f:M — F regular }

FIM} =F(Cyp), Cn=M/E,

E an equivalence relation on M.

In general there may be Zariski-continuous “entan-
gling” arrows (action)

v: M—=M, ~el
which make E non-splitting.
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How to recover the hidden relations in terms of “co-
ordinate functions”?

Extend the F-algebra of definable functions F|M] to
the F-space of semi-definable functions H|[M].

Every Zariski bijection v generates an [F-linear trans-
formation of H[M] :
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Also, any y € F|M| gives rise to an F-linear
Yif=y-f



The operator algebra AM| generated by all the

Uy and Y'’s contains data suffictent to recover
M.
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M — FM < HM — AM]

Remarks

1. Elements of H|M| are not uniquely definable
within M, so should be considered as auxiliary, not
well-defined.

2. A|M] and its elements are uniquely defined (up
to the choice of the language) so can be seen as
observables.



universe class of 1-dim rep of
of M a commutative B < A|M]|

Auxiliary functions from H|M] induce a formal C*-
algebra structure on A|M]|, with a notion of adjoint-
ness and a meaning of a positive eigenvalue.

B is generated by self-adjoint operators and M con-
sists of positive eigenspaces (so elements of M may
be called states).

The operators Uy € A|M] become unitary and act
on B by conjugation. This corresponds to the ac-
tion of the v on M.



A(M) for the ¢-cover of the affine line
(eeF, e =1)

HY = YH; HZ = 7ZH;

YZ=27Y: Yi=1 7'=T

UH — HU = hU; VH — HV = {hV;

UY =€eYU; YV =VY;

/U =UZ, VZ=Y7ZV;

E=U"lv-luv: Bt =T.

UE =EU; VE =EV.
Y,Z, U,V and E unitary, H self-adjoint (slightly
simplified).



Inverse problem. Start with a noncommutative

algebra A and produce a Zariski M = M| A|.



Quantum algebras at roots of unity

We assume for a “quantum algebra A at roots
of unity”:

1. Ais an affine unital F-algebra, finite-dimensional
over its centre Z(A). F algebraically closed.

2. Isomorphism classes of generic irreducible A-
modules are in a bijective correspondence with an
open subset VU C Max Z(A) of the affine variety.

3. Generic irreducible modules allow a uniform
choice of canonical bases degenerating regularly out-
side VY preserving the dimension.



Examples  (for ¢t = 1)

1. A=(U,V . UV =qVU) Manin’s quantum

plane

2. A="Uy(sly) quantised Ugy(sly) as a Hopf alge-
bra (quantum group)

3. A= 0ySLy) quantised co-ordinate Hopf al-
gebra of SLg (quantum group)



We associate with every such A the bundle
mod't) = {m, : a € Max Z(A)}

of /-dimensional A-modules m, (with or without

selected canonical bases) over the algebraic variety
V4= MaxZ(A).

For each X € A the action of X on m, is a part of
the structure and is given uniformly in a.
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Typically, other finite-dimensional A-modules as well
as morphism maps between modules are definable

(€)

in mod ", so we expect that up to interdefinability
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the structure mod " is equivalent to mod 4, the
category of finite dimensional A-modules.



We associate with every such A the bundle
mod't) = {m, : a € Max Z(A)}

of /-dimensional A-modules m, (with or without

selected canonical bases) over the algebraic variety
V4= MaxZ(A).

For each X € A the action of X on m, is a part of
the structure and is given uniformly in a.

One may also consider the infinite-dimensional A-

module
H = Zma
a

with or without a choice of canonical bases in each
my.



Theorem The structure mod%) 1S a Zariski ge-
ometry, with respect to a Zariski topology.

The F-algebra A is determined by modi? as the
algebra of definable linear transformations of 'H
(equivalently, of the vector bundle my).

mod(j> 1s not definable in commutative algebraic
geometry, in general.

For A commutative, mod%) 1S the trivial line
bundle over Max A, and so the geometry is equiv-

alent to that of the algebraic variety Max A, .



(€)

Remark mod)," is not the unique construction
satisfying the properties above. Other construc-
tions produce definably equivalent Zariski geome-
tries. In all the cases (known to us) these are equiv-
alent to mod 4, the category of finite dimensional
A-modules.
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The quantum harmonic oscillator

A=(P, Q: PQ— QP =1h)
as C™*-algebra.
In mathematical physics

H= %(PQ +Q?),

the Hamiltonian of the harmonic oscillator.

P, Q and H are self-adjoint.



The quantum harmonic oscillator

= (P, Q: PQ— QP = ih)

as C™*-algebra.
In mathematical physics

1

H = §<P2 + QQ)a
the Hamiltonian of the harmonic oscillator.
1 , 1 .
Cp =5(P+iQ), C-=(P—iQ

the creation and annihilation operators;

h

h
C+Co =Hig, C_Ci=H—7, CLC_—C_Cp =,



The universe £ = {t+e, : © € C}
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The universe £ = {t+e, : © € C}
Vi

Think of line bundle
spanned by e, over €

C

C. and C_ define linear maps
Cr Ve — Vi




Te,

ﬁ@v-‘rh

z z+h

&%}
T \/Eex—i-h

C. and C_ define linear maps
Co i Ve o Vi Aew > vEAe 4
Co: Ve —=V,._p: g r—vVxr—hle,_p



Theorem The structure E(A) corresponding to
the quantum harmonic oscillator is a 1-dimensional
(complex) Zariski geometry.



Theorem The structure E(A) corresponding to
the quantum harmonic oscillator is a (complex) Zarisk
geometry.

When one applies the full restrictions imposed by
the C™*-algebra structure one gets the real part
of E(A), which is discrete in this case.
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()-eigenvectors.



Problem Explain model-theoretically transitions
between bases in H-eigenvectors, P-eigenvectors and
()-eigenvectors.

Over the field of characteristic p the algebra A is a
“quantum algebra at roots of unity” and so M(A)
is a Zariski geometry again.



Problems and projects

1. Establish a right category of geometric objects
corresponding to non-commutative algebras A :

- as “algebro-geometric” coordinate algebras,
- as C'"-algebras,

- understand the interplay of the algebro-geometric
and real geometric structures.



2. Develop a deformation (approximation) theory
at the level of geometric objects

-eg ash —0
- as a root of unity converges to a generic g

- to explain how (and if) an elliptic curve deforms
Into a quantum torus.



2. Develop a deformation (approximation) theory
at the level of geometric objects

-eg ash —0
- as a root of unity converges to a generic g

- to explain how (and if) an elliptic curve deforms
Into a quantum torus.

3. Explain model-theoretically the meaning of var-
ious non-convergent sums of maths physics.



Example.

Theorem There is a well-defined Gromov-Hausdorft
limit of the /-cover of the affine line

{ real differentiable manifold =

lim My, = U(1)-gauge field over a 2-dim real m

%:h—>0

The limit of the unitary operators U and V corre-
spond to covariant differentiation on the gauge field.
For the f-cover of the torus C*, the connection of
the gauge field is of non-constant curvature.



