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In this paper we present an analysis of uses of infinity in ”applied mathemat-
ics”, by which we mean mathematics as a tool for understanding the real world
(whatever the latter means). This analysis is based on certain developments in
Model Theory, and lessons and question related to these developments.

Model theory occupies a special position in mathematics, with its aim from
the very outset being to study real mathematical structures from a logical point
of view and, more ambitiously, to use its unorthodox methods and approaches
in search of solutions to problems in core mathematics. Model-theorists made
an impact and gained experience and some deep insights in many areas of math-
ematics: number theory, various fields of algebra, algebraic geometry, real and
complex geometry, the theory of differential equations, real and complex anal-
ysis, measure theory. The present author believes that model theory is well-
equipped to launch an attack on some prolems of modern physics. This article,
in particular, discusses what sort of problems and challenges of physics can be
tackled model-theoretically. Another topic of the discussion, in our view in-
trinsically related to the first one, is the way mathematical infinities arise from
finite structures, the concept of limit and its variations.

1 Continuity and its alternatives

1.1 The mathematically best developed form of actual infinity is the notion
of a continuous line and a continuous space. As we all well know this concept
didn’t look indisputable to the ancient Greeks and has only become ”intuitively
obvious” perhaps since Newton made it a part of his Physics. In fact, the as-
sumption that Newtonian physics takes place in a Euclidean space (and in a
smooth form) is a powerful axiom from which most of the physics follows. Mod-
ern physics has moved away from the assumption that the space is Euclidean to
a space being a manifold, but it is still the same idea of continuity. This causes
a lot of trouble, e.g. showing up in non-convergent integral expressions that
are dealt with by various heuristic tricks having no justification in continuous
mathematics (see e.g. a very interesting example of such a calculation in [?]).
These days a considerable proportion of physicists believe that the assumption
of a continuous universe is false. But the formulation of an alternative paradigm
will have to wait at least till the solution of the problem of quantum gravity.

So, why continuity is so crucial? The answer lies in the practices of physics.
Continuity organises the structure of the physical world and gives it a certain
reqularity, as opposed to a potential chaos. Indeed, if we assume that the



trajectory of a particle is smooth we can predict its position in the (near) future
based on the knowledge of the past. The alternative seems to be destroying any
prospect of having a predictive theory at all.

1.2 A few words about spaces as manifolds: these are patched together from
standard canonical pieces of a Euclidean space, such as an interval of a real
line, a cube in 3-space and the higher-dimensional versions of these (or their
complex analogues). A defining feature of the construction is its high degree of
homogeneity: a manifold M looks the same in a small neighbourhood of any
of its points. This can be expressed in more rigorous terms by saying that there
s a local isomorphism between neighbourhoods of any two points of M.

1.3 In fact, an alternative to continuity does exist and is well-known in math-
ematics and increasingly being used in physics. This is based on a topology of
a different kind, the Zariski topology, which is coarse and in general does not
allow metrisation.

Zariski topology enters mathematics and physics in at least two possible
ways. One is by formally restricting one’s study to the context of algebraic va-
rieties and schemes (thus allowing only charts which are zero-sets of systems of
polynomial equations over an abstract field, and maps which are rational). This
seems to be unreasonably restrictive to physics although methods developed by
Grothendieck’s school allow mimicking many notions of analysis in this context
and calculate very delicate cohomological invariants that alternatively can be
visualised in complex geometry. The other appearance of algebraic geometry
comes via complex analysis and the study of complex manifolds. A crucial fea-
ture of complex functions is that differentiabily (even just once) implies a very
strong form of smoothness — the function becomes analytic. This eventually
entails that the behaviour of compact complex manifolds is very close to that of
general algebraic varieties. A manifestation of this is the theorem by Riemann
stating that any one-dimensional compact complex manifold can be realised as
a complex algebraic curve. As a matter of fact this is a corollary of a stronger
theorem by Riemann about compact real surfaces with a Riemannian metric
(Riemann surfaces): every such surface can be identified with a complex alge-
braic curve with a metric induced by the metric on the complex numbers. These
sort of connections with metric geometry led physicists to appreciate the rele-
vance of algebraic geometry. Recall that Calabi-Yau manifolds which, according
to string theory, underpin the structure of physics are objects of the same dual
nature. By some definition (slightly stronger than the usual one, see [2]) they
turn out to be algebraic.

1.4 The shift from continuous geometry based on the reals towards algebraic
geometry and an even more general algebraic and category-theoretic mathe-
matical setting in physics is characteristic of our time. Moreover, there is a
growing realisation of the need to reconsider the mathematical constructs at
the foundations of physics. In [3] we read: "Indeed, there has always been a
school of thought asserting that quantum theory itself needs to be radically
changed/developed before it can be used in a fully coherent quantum theory
of gravity. This iconoclastic stance has several roots, of which, for us, the
most important is the use in the standard quantum formalism of certain critical
mathematical ingredients that are taken for granted and yet which, we claim,



implicitly assume certain properties of space and time. Such an a priori impo-
sition of spatio-temporal concepts would be a major error if they turn out to
be fundamentally incompatible with what is needed for a theory of quantum
gravity. A prime example is the use of the continuum which, in this context,
means the real and/or complex numbers. ”

We suggest a way to approach this issue by aiming at identifying what
logically perfect mathematical structures should be. Once this is achieved, these
should be taken as background structures for physics. A successful definition
of logical perfection must entail a degree of regularity for structures enjoying
the property that makes them classifiable enough to have a good mathematical
theory and flexible enough to model physical systems.

The idea of having a perfect structure as a mathematical basis for physics is
not very original. Certainly, the Euclidean space in the background for Newto-
nian physics is perfect enough a structure. An even more characteritic example
is provided by the perfect spheres underlying Ptolemaic astronomy, which later
led to the introduction of more sophisticated structures, epicycles, approximat-
ing the motion of planets quite well. These may look totally inadequate today
but one must keep in mind that the approximation by epicycles is essentially
Fourier analysis, fully respectable in modern physics.

We use a model-theoretic approach built around the analysis of interaction
of a mathematical structure and its description in a formal language (C.Isham
and A.Déring in [3] start by discussing the type of language that can lie at the
foundations of physics).

2 In search of logically perfect structures

2.1 The main developments in model theory in recent decades have been cen-
tered around stability theory and the core of stability theory is the theory of
categoricity in uncountable cardinals.

It is well-known that the first-order description of a structure M can be
(absolutely) categorical if and only if M is finite, which is a quite trivial situation
(unless we put a restriction on the size of the first order axiomatisation), hence
the need for a more subtle definition.

A structure M is said to be categorical in cardinality X\ if there is exactly
one, up to isomorphism, structure M of cardinality \ satisfying the (first-order)
theory Th(M).

In other words, if we add to Th(M) the (non first-order) statement that
the cardinality of its universe is A the description becomes categorical. Of
special interest is the case of uncountable cardinality A. In his seminal work
[4] on categoricity M.Morley proved that the categoricity of a theory in one
uncountable A implies the categoricity in all uncountable cardinalities, so in fact
the actual value of A does not matter. What we have is a large structure (of an
uncountable cardinality) which has a concise (countable) categorical description.

There are purely mathematical arguments towards accepting the above for
a definition of perfection. First, we note that the theory of the field of complex
numbers (in fact any algebraically closed field) is uncountably categorical. So,
the field of complex numbers is a perfect structure, and so are all objects of
complex algebraic geometry by virtue of being definable in the field.

It is also remarkable that Morley’s theory of categoricity (and its extensions)



exhibits strong regularities in models of categorical theories generally. First, the
models have to be highly homogeneous, in the sense technically different from
one discussed for manifolds in 1.2 but similar in spirit (in fact, it follows from
results of complex geometry that any compact complex manifold is w-stable of
finite Morley rank; many such manifolds are categorical). Moreover, a notion
of dimension (the Morley rank) is applicable to definable subsets in categorical
structures, which gives one a strong sense of working with curves, surfaces and
so on in this very abstract setting. A theorem of the present author states more
precisely that an uncountably categorical structure M is either reducible to a
2-dimensional ”pseudo-plane” with at least a 2-dimensional family of curves
on it (so is non-linear), or is reducible to a linear structure like an (infinite-
dimensional) vector space, or to a simpler structure like a G-set for a discrete
group G. This led to a Trichotomy conjecture, [9], which specifies that the non-
linear case is reducible to algebraically closed fields, that effectively implies that
M in this case is an object of algebraic geometry over an algebraically closed
field.

There remains the question of whether the restriction to the first-order lan-
guage is natural. Although we would like to keep this open there are good
reasons that the ultimate logical perfection must be first-order. The use of first-
order languages was effectively suggested by Hilbert for reasons of its finitarity,
the ability (and the restriction) to use only expressions of finite length, which
agrees well with practicalities of physics.

Alternatively, we could extend the idea to dealing with very large finite
structures as if they are infinite with (uncountably) categorical theories. This
could be formalised provided a right notion of approximation is found. We
develop this approach in the second part of the paper.

2.2 The arguments above sugest that because of the high degree of logical
perfection exhibited by uncountably categorical structures they must already
be in the centre of mathematics. Certainly, abstract mathematics being based
on pure logic finds a special interest in objects having a concise and complete
description. Physics, supposedly based on objective reality, is different in this
regard but many recent discussions about the possible interaction between hu-
man intelligence and the structure of physical reality as we perceive it (anthropic
principle) may suggest a similar relevance of the notion of categoricity to physics.
In particular, the notion of algorithmic compressibility (the idea and the term
comes from [5]) seems to be in close relation to categoricity as expression for
”concise and complete”. In [6] we read that "the existence of regularities [in
the real world] may be expressed by saying that the world is algorithmically
compressible.” And further on, “The fundamental laws of physics seem to be
expressible as succinct mathematical statements. ... does this fact tell us some-
thing important about the structure of the brain, or the physical world, or
both?”.

2.3 Although we now know that the Trichotomy conjecture is technically false,
it is believed to be (in words of D.Marker) "morally true” . The significance
and the limits of the conjecture are now understood much better.

E.Hrushovski showed that the Trichotomy conjecture in its full generality
is false, producing a series of counter-examples, beginning in [8]. Since then



other variations of counter-examples appeared exhibiting various possibilities of
how the Trichotomy conjecture may fail. Remarkably, after more than 20 years
since [8] Hrushovski’s construction is the only source of counterexamples. So,
what does this construction demonstrate — the failure of the philosophy behind
the conjecture and existence of chaotic, pathological structures consistent with
categoricity, or incompleteness of the conjecture itself?

In [10] this author showed that Hrushovski’s construction when applied in
the right mathematical context produces in fact quite perfect structures. The
structure in [10] is an analogue of the field of complex numbers with exponenti-
ation, (C, 4+, -, exp). It turns out that the Ly, ., (Q)-theory of this structure (call
it a perfect exponentiation) is categorical in uncountable cardinalities, so there is
exactly one, up to isomorphism, such structure of cardinality continuum. On the
other hand, all comparisons between the structure with perfect exponentiation
and the actual complex numbers with exponentiations suggest that the one with
perfect exponentiation may be isomorphic to the genuine one. This suggestion
taken as a hypothesis has a number of important consequences, including the
remarkable Schanuel conjecture that, extended appropriately, covers practically
all which is known or conjectured in the transcendental number theory.

Today this pattern of linking Hrushovski’s counter-examples to classical an-
alytic structures (based on classical transcendental functions) is supported by
more case studies including the study of the Weierstrass -function and the
modular function j (the j-invariant for elliptic curves). So, one may suggest
that although the Trichotomy version of the conjecture is false, there is another,
more credible mathematical interpretation of the general principle of “logically
perfect structures” with algebraic geometry replaced by its appropriate analytic
extension.

In any case there is a feeling that something serious is going on around the
principle of logical perfection. The above mentioned categoricity theorem for
perfect exponentiation is not trivial. Its proof requires a considerable input
from model theory (mainly Shelah’s theory of ezcellence for abstract elementary
classes, [11]), but also a serious amount of results from transcendental and
Diophantine number theory. A sense of magic is present when in order to prove
the categoricity you identify the need of a number-theoretic fact not known to
you prior to this work and you learn from experts that the fact indeed holds,
but has been proven just a few years ago. In [12] we proved the equivalence of
categoricity for some type of structures (universal covers of abelian varieites) to
a conjunction of number-theoretic statements (among these the so called ”hard
theorem of Serre”). Most of the statements are known, either as facts or as
conjectures. Some have been proved just recently.

To sum up this line of developments around categoricity we would like to
stress a remarkable phenomenon. The assumption of categoricity led one to
a construction (of perfect exponentiation) that is not based on continuity but
nevertheless turned out to possess all the features observed for a classical an-
alytic transcendental function and, moreover, predicted other properties that
have been independently conjectured.

2.4 Topological structures. The crucial, in this author’s view, improvement
to the notion of logical perfection has been introduced in [13] by Hrushovski and
this author (a similar but weaker notion was already present in the paper [14]
by Pillay and Srour). The idea is to account for a topological ingredient in logic,



essentially by giving special significance to positive formulas, assuming that in
the given structure positively definable sets give rise to a (coarse) topology. In
[15] and in the second part of this paper such structures are called topological
structures.

Of course, the syntax of an axiomatisation has always been of importance
in logic and must have been part of any notion of logical perfection, but in
model theory of the 1960 it was found convenient to abstract away from the
syntax of formulas to the framework of Boolean algebras of definable sets. This
now needs a correction, especially if one approaches the subject with a view of
applications in physics. Clearly, a formulation of a physical low is expected to
have the form of an equation rather than its negation. To even start thinking
about the idea of approximation one needs to assume the possibility that certain
type of statement, e.g. equations, can happen to fail in reality but be considered
true in approximation.

Now looking back at our examples one can rephrase that model theory of
algebraically closed fields becomes algebraic geometry if we pay special atten-
tion to positively definable sets, i.e. the sets closed in Zariski topology. This
motivated the terminology in [13] where we called a 1-dimensional categori-
cal topological structure a Zariski structure provided the topological dimension
agrees with Morley rank and the topology satisfies certain ”dimension theorem”
which holds in algebaic geometry on smooth varieties: in an n-dimensional space
M every irreducible component of the intersection of two closed irreducible sets
S7 and S5 is of dimension at least dim Sy +dim Sy —n (we call the latter property
presmoothness now).

In [15] this definition has been lifted to aribitrary dimensions. Note also that
the Zariski topology in [13] and generally in first-order categorical structures
where it can be defined is Noetherian. The field with perfect exponentiation of
subsection 2.3 can also be treated as a topological structure with a Zariski-type
topology which is not Noetherian, and some of key questions about the topology
on this field remain unanswered.

2.5 The arguments above suggest a choice for the notion we have been looking
for. From now on logically perfect structures will be identified as (Noetherian)
Zariski structures.

This agrees with the hierarchy of classes of structures (theories) developed
by Shelah’s classification theory. Zariski structures rightly can be placed in the
centre of the classification picture surrounded by ”less perfect” classes, such
as classes of w-stable, superstable, stable theories and so on. The theory of
formally real fields has its place in the classification outside the class of stable
theories but not very far from it.

Does this classification indicate an order of “importance” of mathematical
structures? Certainly not. Real analysis on complex algebraic varieties provides
an invaluable insight in the mathematics of purely algebraically defined object.
Yet, as far as physics is concerned, there may be good reasons to see certain
structures (or certain choice of languages) as basic, and other structures as aux-
iliary. This would agree with now broadly accepted Heisenberg’s programme of
basing the theory of quantum physics on “the relationships between magnitudes
that are in principle observable”.

2.6 By reducing our analysis of logical perfection to Zariski geometries we
achieve at least one meaningful gain. Firstly, this class is rich in mathematically



significant examples, e.g. compact complex manifolds in their natural language
are Zariski geometries. And secondly, this class allows a fine classification theory
and, in particular, essentially satisfies the Trichotomy principle (that is the
Trichotomy conjecture within the class is proven to be true).

The following is the main classification result by Hrushovski and this author
[13]

Theorem. For a non-linear Zariski geometry M there is an algebraically
closed field F and a nonconstant Zariski-continuous “meromorphic” function
Y: M —F.

In particular, if dim M = 1 then there is a smooth algebraic curve Cps and
a Zariski-continuous finite covering map

p: M — CM(F),

the image of any relation on M is just an algebraic relation on C)y.

The remarkable message of this theorem is that the purely logical crite-
ria that lead to the definition of Zariski geometries materialise in an, in fact,
uniquely defined by M algebraically closed field F. The proof effectively recon-
structs main ingredients of algebraic geometry starting from the most abstract
ones and leading consequently to the reconstruction of the field itself. Note that
the linear case which is not covered by the theorem, is reasonably classifiable,
although the full account of this case has not been given yet.

The word ”essentially” in the reference to the Trichotomy principle above is
to indicate that the reduction to algebraic geometry is not as straightforward
as one imagined when Zariski geometries were first introduced. Indeed, there is
an example of non-classical Zariski geometries M of dimension 1 which is not
reducible to an algebraic curve, but is only ”finite over” the algebraic curve C;.
In other words, M can be obtained by ”inserting” a finite structure over each
point of C'y; in some uniform way, but so that the construction is not reducible
to a direct product in any sensible form.

Note that one-dimensional Zariski geometries that originate from compact
complex manifolds are classical also in the sense above due to the classification
of compact Riemann surfaces; they all can be identified as complex algebraic
curves, that is F = C and the covering map p : M — Cy/(F) is the identity.

2.7 The defect of non-classicality seemed insignificant in the beginning, partly
because it didn’t affect a number of applications that followed and partly because
”finite” sounds almost as ”trivial” in model theory.

But the situation is much more interesting if one tries to understand the
non-classical examples from the geometer’s and even the physicst’s point of
view.

The most comprehensive modern notion of a geometry is based on the consid-
eration of a co-ordinate algebra of the geometric object. The classical meaning
of a coordinate algebra comes from the algebra of co-ordinate functions on the
object, that is functions ¢ : M — F as in 2.6, of a certain class. The most nat-
ural algebra of functions for Zariski geometries seems to be the algebra F[M)] of
Zariski-continuous functions. But in a non-classical case by virtue of construc-
tion F[M] is naturally isomorphic to F[C)], the algebra of Zariski-continuous
(definable) functions on the algebraic curve Cjs. That is the only geometry
which we see by looking into F[M] is the geometry of the algebraic curve Cy.



In [16], in order to see the rest of the structure we extended F[M] by intro-
ducing auxiliary semi-definable functions, which satisfy certain equations but are
not uniquely defined by these equations. The F-algebra H(M) of semi-definable
functions contains the necessary information about M but is not canonically
defined. On the other hand it is possible to define an F-algebra A(M) of linear
operators on the linear space (M) in a canonical way, depending on M only.
Moreover, using a specific auxiliary function one can define a natural involu-
tive mapping X — X* on generators of A(M) thus defining a weak version
of adjoints. We wrote down explicit lists of generators and defining relations
for algebras A(M) for some examples and demonstrated that A(M) as an ab-
stract algebra with involution contains all the information needed to recover the
"hidden” part of structure M.

Later studies in [17], [18] and yet unpublished theses of V.Solanki and
D.Sustretov confirm that this is a typical situation. There are lessons that
one learns from it:

e The class of Zariski geometries extends algebraic geometry over alge-
braically closed fields into the domain of non-commutative, quantum ge-
ometry.

e For large classes of quantum algebras Zariski geometries serve as counter-
parts in the duality ”co-ordinate algebra — geometric object” extending
the canonical duality of commutative geometry.

e The non-commutative co-ordinate algebras for Zariski geometries emerge
essentially for the same reasons as they did in quantum physics.

2.8 In [16] one more important observation was made. The examples of non-
classical Zariski geometries come in uniform families with variations within a
family given by the size of the fibre of the covering map p. It is natural to ask
what can be seen when the size of the fibre tends to infinity. Is there a well-
defined limit structure? For examples studied in [16] it is possible to introduce
a discrete metric on the Zariski structures so that there is a well-defined limit
structure that was identified as a real differential manifold with a non-trivial
gauge field on it.

This example demonstrates that one can study non-classical Zariski objects
seeing them ”from afar” in quite a classical way, as real metric, even differ-
entiable manifolds. This agrees with the general principle of physics of how
quantised theories must behave: when quantum mechanics is applied to big
structures, it must give the results of classical mechanics.

Along with this the question arises, what is the appropriate version of ap-
proxzimation (limit)? The one used in [16] is the Hausdorff limit for sequences
of metric space. But to apply the Hausdorff (or Gromov-Hausdorff) limit one
needs that the quantum structures already have a natural metric on them. Is
it possible that a sequence of non-metrisable structures have a limit structure
with a nice metric?

The questions above have also practical significance. As a matter of fact
the structures in finite fibres hold key information, in essense they are finite-
dimensional representations of the operator algebras involved, see [17]. The
problem of limit to a large degree amounts to a choice of discrete (even finite)



models of physical processes in question. Providing a solution to this problem
one possibly will be solving problems with non-convergent calculations men-
tioned in 1.1.

In the second part of this paper we introduce a notion of a structural ap-
prozimation that we believe has a potential to give a mathematically rigorous
formalisation to often heuristic approximation procedures used by physicists.
(A beautiful and honest account by a mathematician attemting to translate the
physicist’s vision of ”matrix algebras converging to the sphere” into a mathe-
matical concept provides the introductory section of [20].)

The notion of structural approximation is closely linked to the idea of treat-
ing structures as topological, in topology induced by the choice of the language,
see 2.4. The example in [16] mentioned above demonstrate that there exists a
possibility that beautiful and mathematically rich differential-geometric struc-
tures of physics could be just limits of discrete logically perfect ones. We prove
in 5.1 that algebraically closed fields, that shape the ”classical part” of a logi-
cally perfect structure (see 2.6), are approximable by finite fields. So one can
even make a suggestion that structures central to physics have ”perfect” finite
approximations, or even that they are finite. In this regard it is worth mention-
ing an attempt to build a physical theory based on a large finite field instead of
the reals (P. Kustaanheimo and others). A non-trivial argument in 5.1 proves
that this wouldn’t be possible. The complex numbers is the only locally compact
field that can be approximated by finite fields preserving structural properties.
One can say that if the physical world is indeed parametrised by a huge finite
field, then it would look from afar as an object of complex algebraic geometry.
Which agrees well with trends in modern mathematical physics.

In the last subsection of the second part we discuss an open problem regard-
ing structural approximation of compact Lie groups, such as SO(3), by finite
groups. We provide some references in literature that links this problem to key
issues in quantum field theory.

3 Structural approximation

3.1 Topological structures

Following [15] we consider structures M endowed with a topology in a lan-
guage C. We say that the language is topological meaning that it is a relational
language which will be interpreted so that any n-ary P € C (basic C-predicate)
defines a closed subset P(M) of M™ in the sense of a topology on M", alln € N.
Not every closed subset of the topology in question is necessarily assumed to
have the form P(M), so those which are will be called C-closed.

We assume that the equality is closed and all structures in question satisfy
the C-theory which ascertains that

° lfSZ GC,iZI,Q, then Sl&SQEpl, Sl\/SQEPQ,fOI‘ Pl,PQ EC;
e if S €C, then VxS = P, for some P € C;

We say that a C-structure M is complete if, for each S(z,y) € C there is
P(y) € C such that M F 3z5 = P.

Note that we can always make M = (M,C) complete by extending C with
relations Pg corresponding to JxS for all S in the original C. We will call such
an extension of the topology the formal completion of M.



We say M is quasi-compact (often just compact) if M is complete, every
point in M is closed and for any filter of closed subsets of M™ the intersection
is nonempty.

Remark The family of C-closed sets forms a basis of a topology, the closed sets
of which are just the infinite interestions of filters of C-closed sets (the topology
generated by C).

If the topology generated by C is Noetherian then its closed sets are exactly
the ones which are C-closed.

3.2 Structural approximation
Definition. Given a structure M in a topological language C and structures
M, in the same language we say that M is approximated by a family {M, : i €
I} along an ultrafilter D on I if, for some elementary extension M =[], M,
there is a surjective homomorphism

lim : MP — M.

3.3 Proposition. Suppose every point of M is closed and M is approximated
by the sequence {M; =M : i € I} for some I along an ultrafilter D on I, such
that MP is saturated. Then the formal completion of M is quasi-compact.

Proof Consider the M; and M formally completed, that is in the extended
toplogy. Note that the given lim : M” — M is still a homomorphism in this
language, since a homomorphism preserves positive formulas.

Closedness of points means that for every a € M there is a positive one-
variable C-formula P, with the only realisation a in M. Under the assumptions
for *M > M, setting for a € M, i(a) to be the unique realisation ¢ € *M of P,
we get an elementary embedding ¢ : M < *M. Now lim becomes a specialisation
onto M. This implies by [22] (see also a proof in [15]) that M is quasi-compact.
O

In agreement with the proposition we will consider only approximations to
quasi-compact structures.

3.4 Proposition Suppose M is a quasi-compact topological C-structure and N
is an |M|-saturated C-structure such that N is complete and for every positive
C-sentence o

NFEo=MFo.

Then there is a surjective homomorphism lim : N — M.

Proof Given A C N, a partial strong homomorphism limy : A — M is a
map defined on A such that for every a € A*, 4@ = lim4 a and S(z,y) € C such
that N E JyS(a,y), we have M E Jy S(a,y).

When A = ) the map is assumed empty but the condition still holds, for
any sentence of the form 3y .S(y). So it follows from our assumptions that limg
does exist.

Claim 1. Suppose for some A C N there is a partial strong homomorphism
limyg : A — M, and b € N. Then limy can be extended to a partial strong
homomorphism lim 4 : Ab — M.

Proof of Claim. Let N F 3z S(a, b, 2), for S(x,y, z) a positive formula and a
a tuple in N. Then N F Jyz S(a,y, z)) and hence M E JyzS5(a, y, 2)).
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It follows that the family of closed sets in M defined by {325(a,y,2) : N E
3285(a,b,2)} is a filter. By quasi-compactness of M there is a point, say b in
the intersection. Clearly, letting lim 45 : b — b, we preserve formulas of the form
3z S(x,y, z). Claim proved.

Claim 2. For A C N, |A| < | M|, assume lim 4 exists and let b € M\ A. Then
there is a b € N and an extension limyp : b — b.

Proof. Consider the type over A,

p:{—SzS(a,y,z):M)=—|HzS(&7ZA)7z):&:lijgncuaCA?SEC}.

This is consistent in N since otherwise

k
N vy \/ 3z Si(a,y, )

i=1

for some finite subset of the type. The formula on the right is equivalent to

P(a), some P € C, so
k

i=1
k
M E \/ 3z Si(a, b, z),
i=1
the contradiction. Claim proved.
To finish the proof of the proposition consider a maximal partial strong ho-
momorphism lim = limy : A — M. By Claim 1, A = N, so lim is a total map
on N. By Claim 2, lim is surjective.[]

3.5 Theorem. Let M;, i € I, be a family of formally completed topological
C-structures. Let M be a formally complete quasi-compact C-structure. Then
the following two conditions are equivalent,

(i) there is an unltrafilter D on I such that limp M; = M,
(i1) for every sentence P € C such that M |= —P there is ani € I, M; = —P.

Proof. (i) implies (ii) since positive formulas are preserved by homomor-
phisms.
We now prove (ii)=-(i). For a given sentence P € C let

Ip={iel:M; =-P}
Let
Dy ={Ip:M [ —-P}.

Dy is a filter. Indeed, every element of Dy is nonempty by (ii). Also, the
intersection of two elements of Dy is an element of Dyg, since PLV P, = P € C,
for any P1, P» € C, by definition.

Take D to be any ultrafilter on I extending Dyg. The statement follows from
Proposition 3.4.
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4 Examples

In this section we assume for simplicity that M? = []M,/D.

4.1 Metric spaces

Let M and M; be metric spaces in the language of binary predicates d=(z,y)
and dZ(z,y), all » € Q, r > 0, with the interpretation dist(z,y) < r and
dist(z,y) > r correspondingly. The sets given by positive existential formulas
in this language form our class C.

Proposition. Assume M is compact and
M = GH-limpM,,

the Gromov-Hausdorff limit of metric spaces along a non-principal ultrafilter D
on I. Then
M= lilgn M,

Proof By definition, for any n there is an X,, € D such that dist(M;, M) < %,
in a space containing both all the M; for i € X,, and M. For any o € [[, M;
define & to be an element of M7 such that &(i) is an element of M at a minimal
distance from «(z) (choose one if there is more than one at the minimal distance).
Let a, be the limit point of the sequence {&(7) : i € I} along D in M. We define

lim o := ag,.
D «

It follows from the construction that, for a, 8 € [], M;,
{iel: M;Fd.(a(i),B(i))}eD=ME dr(ligna,lig)nﬂ).

4.2 Cyclic groups in profinite topology

Consider the coset-topology on Z and Z/nZ. The compactification of Z is
then Z, the profinite completion. Choose a non-principal ultrafilter D on N so
that mN € D for every positive integer m (a profinite ultrafilter).

Claim.

H Z/nZ = 74+Q"+T, some cardinal x and the torsion subgroup 7' (1)
D

Proof Follows from the Eklof-Fisher classification of saturated models of Abelian
groups [23].00

Proposition. The group 7 is approzimated by Z/nZ in the profinite topology.
That is there is a surjective homomorphism

lim : HZ/nZ ~ 7.
D

Proof. Define lim : Z+Q*+T — Z to be the projection (with kernel
Q*+7).0

As an example, consider the element (sequence) y(n) such that vy(n) =
% modn, all n € 2N. Then 2y = 0 in [[, Z/nZ, a torsion element, so limy = 0.

12



4.3 The ring of p-adic integers
Consider the sequence of finite rings Z/p"Z and its ultraproduct

R, = HZ/p”Z
D

over a non-principal ultrafilter. Let J, C R, be the ideal of divisible elements,
that is the maximal ideal with the property kJ, = J, for every integer k.

Claim. R,/J, is an integral domain.

Indeed, a - b € J, if and only if a - b is p>-divisible, if and only if a or b is
p>°-divisible, if and only if a € J, or b € J,. Claim proved.

Introduce a metric on R, = R,/J, setting the distance d(a,b) < p=F if
a—b € p*R,. Then

d(a,b) < p~* for all k iff a — b is p>®-divisible iff a = b.

Clearly, the diameter of the metric space is 1 and it follows (using the satu-
ratedness of R,) that Rp is compact in the corresponding topology.
It follows that
Ry/Jp = Ly,

the quotient is isomorphic to the ring of p-adic integers.
We thus have proved

Proposition. The ring Z, of p-adic integers is approzimated by the finite rings
Z/p™Z. That is there is a surejective homomorphism of rings

lim : HZ/p"Z — Zp.
D

4.4 Compactified groups
Call a compact topological structure M a compactified group if there is a
closed subset P C M? and an open dense subset G C M such that the restriction
of P to G is a graph of a group operation on G, P(g1, g2,93) = ¢1 - g2 = g3, and
PN G x M? defines an action of G on M.

We usually write such an M as G.

Examples.

(1) The structure Z = Z U {—o0, +oo} with the ternary relation S(z,y, z),
defined as the closure of the graph of addition in the metric of the real line
(the two-point compactification of Z). By this definition = Vz S(—o00, +00, 2),
= Vz S(z, +00,4+00) and = Vz S(z, —00, —00).

(2) The projective space P’ (F), for F an algebraically closed field, is a com-
pactified group GL,(F) in the Zariski topology of the projective space.

(3) The projective space P™(F), for F an algebraically closed field, is a com-
pactified additive group F", in the Zariski topology of the projective space,
and in the metric topology if F = C.

In particular, for n = 1, example (2) is a 2-point compactification of the
multiplicative group of the fields, and (3) is a 1-point compactification of the
additive group.

13



4.5 Cyclic groups in metric topology and their compactifications

The compactification of Z in the metric topology corresponding to the usual
embedding of integers into the Riemann sphere P1(C) is obviously Z = ZU{c},
with the addition relation S(z,y,2) (see 4.4(1)) extended to the extra element:
E VrS(x,00,00) and = Yz S(00,00,2). We still write © + y = z instead of
S(z,y,2).

For a finite cyclic group Z/nZ define a metric as the metric of the regular
n-gon with side 1 on the plane, induced by the metric of the plane.

We identify elements of [],, Z/nZ with sequences a = {a(n) € Z/nZ : n €
N} modulo D, any given non-principal ultrafilter.

Define

oo, otherwise

lima:{ m, if {ne€N:a(n)=m+nZ} €D

In other words, all bounded elements of [], Z/nZ, which have to be even-
tually constant, specialise to their eventual value, and the rest go into co.

This is a surjective homomorphism onto Z in the language {S} and so lim
also preserves (the topology of) the positively definable subsets. But lim is not
a homomorphism in the language for metric, since for an unbounded element
a € [IpZ/nZ we have lima = oo = lim(a + 1) but = di(a,a + 1) while
= ~dZ (o0, ). )

The downside of the 1-point compactification is that Z ”believes” that every
its element is divisible, that is

ZENrIyr=y+...+y
—_—

as one can always take oo for y.

4.6 2-ends compactification of Z.

Consider the additive group Z with its natural embedding into the reals. A
natural compactification of the real line adds two points, +00 and —oo with the
obvious interpretation. It induces a compactification Z of Z,

7 = 7.U {+o0, —c0},
with the graph S(z,y, z) of addition compactified so that
e = S(z,—00,—00), for all z # +oo;
o = S(z,+00,+00), for all z # —o0;
e | S(+00,—00,x), for any x.
The basic relations of language C are the relations defined from S by positive
J-formulas.
Note that among the latter relations there are unary predicates, for alln > 0,
Px)=Fyax=y+...+y.
—_——

Note that, for n > 1, =P, (¢q) holds.
Now we investigate for what ultrafilter D on N the family of finite cyclic
groups Z/nZ, n € N, approximates Z along D. That is when

lim Z,/n = 7. (2)
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4.7 Proposition. (2) holds if and only if for any natural number m,
{neN:m|n} €D (3)

Proof Suppose the negation of (3) for some m, that is m does not divide
n along the ultrafilter. Let m = mymg such that mq|n and (mg,n) = 1 for all
n € X, some X € D, my # 1. We may assume m = mo. For all n € X let u;,v;
be the integers such that w,m + v,n = 1. Correspondingly,

u,m =1 modn.

It follows

H Z/nZ = Vx Py (x)
D

holds, in contrast with Z = —P,,(1). So there is no homomorphism from the
ultraproduct onto Z.

Conversely, suppose (3) holds. Consider the ultrapower *Z := Z~ /D as an
ordered additive group, Z < *Z, Z is convex subgroup of *Z. Define, for n € *Z,

+o0, if n >Z
limn=< —oo, ifn<Z
m, ifn=meZ

This clearly is a homomorphism onto Z with respect to S and so all the relations
in C.

Note that D is a profinite ultrafilter by (3). By 4.2, factoring by the torsion
subgroup we get a surjective group homomorphism

¢:[[2/nz — .
D

Now we use the surjective homomorphism
lim: *Z — Z

constructed above and finally the composition lim o¢ is a requred limit map. [J

5 Approximation by some finite structures

5.1 Approximation by finite fields. According to 3.1 we discuss the ap-
proximation of a compactification K = K U {00} = P1(K), when speaking of
an approximation of a field K. The standard topology that we will assume for
K is the topology generated by the Zariski topology on K, that is the smallest
quasi-compact topology T extending the Zariski topology. Equivalently, by [22],
these are the fields K such that for any elementary extension *K > K there is
a specialisation (place) 7 : *K — K.

Remark One may also consider the two-point compactification RU {—00, 400}

of the field of reals. But if this is approximable, then so is R, since there exists
an obvious surjective homomorphism R U {—o0, +o0} — R taking 00 to co.
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Conjecture. For an infinite field, K is quasi-compact iff K is algebraically
closed or K is isomorphic to one of the known non algebraically closed locally
compact fields: R or finite extension of Q, or F,{t}.

5.2 Proposition. (i) Any algebraically closed field K with respect to the
Zariski language is approximable by finite fields.
(ii) No locally compact field, other than algebraically closed, is approximable
by finite fields.

Proof (i) [[, M, = F, for M, finite fields, is a pseudofinite field. Choose
M,, and D so that charF = char K. Let *F = F be a large enough elementary
extension.

We will construct a total surjective specialisation 7 : *F — K = K U {oo}.
Obviously there is a partial specialisation, in fact embedding, of the prime
field Fy of charF into K. So we have constructed partial 7 : *F — K. It is
easy to extend 7 to the transcendence basis B of *F so that m(B) = K, since
algebraically independent elements satisfy no nontrivial Zariski closed relation.

Now note that any partial 7 into K, for K algebraically closed, can be
extended to a total one. This is the case when 7 is a partial specialisation from
K’ to K for K’ algrbraically closed, since K s quasi-compact (see e.g. [15],
Prop. 2.2.7) But *F C K’ for some algebraically closed field, so the statement
follows.

(ii) It is known ([24]) that F is a pseudo-algebraically closed field, that is any
absolutely irreducible variety C' over F has an F-point.

First we are going to prove (ii) for the case K = R, the field of reals.

Claim. The affine curve C given by the equations

1
P4y +1=0 5 +22+2=0
X

is irreducible over C and so is absolutely irreducible.

Proof. It is well known that x2 +y? +a = 0, for a # 0, with any of the point
removed is biregularly isomorphic to C, and so irreducible. For the same reason
the subvariety of C? given by ?12 + 22 + 2 = 0 is also irreducible. We also note
that the natural embeddings of both varieties into P? are smooth.

The curve C projects into (z,y)-plane as the curve Cy,, given by z2+y?+1 =
0 and into the (,z)-plane as the curve C,. given by 5 + 22 +2 = 0.

Suppose towards a contradiction that C' = C7 U Cy with Cy an irreducible
curve, C; # C, and Co Zariski closed. We denote C, C; and Cy the correspond-
ing closures in the projective space P3.

Consider the projection pr,,, Ci — szr This is surjective and the order of
the projection is either 1 or 2. In the second case pr;yl(a) NCy = pr;yl(a) nce
for all a € C’ww so C' = C; and we are left with the first case only. In this case
pr,, is an isomorphism between Cy and C_’my. It is also clear in this case that Cy
must be a curve, and pr,, also an isomorphism from Cs to C_’,;y. The points of
intersection of Cy and Cs are the points over a € Cyy where [pry(a) NC| =1.

One immediately sees that this can only be the points where z = 0, 22 = —%,

2 _ 1
Yy =—3.

We can apply the same arguments to the projection pr,, onto C,. and find
that the points of intersection of C; and Cy must satisfy y = 0, 22 = 1 and

22 = —2. The contradiction. Claim proved.
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Now we prove that the existence of a total specialisation 7 : *F — R U {oo}
leads to a contradiction.

By above there exist a point (z,y, z) in C(*F). Then either 7 (z) or (1) €
R (are finite). Let us assume 7(x) € R. Then necessarily mw(y) # oo, since
m(z)? + m(y)? + 1 = 0, but the latter contradicts that 2% + y? > 0 in R. So (ii)
for the reals is proved.

Now we prove (ii) for the remaining cases, that is locally compact nonar-
chimedean valued fields K. If L is a residue field for a valued field K, then the
residue map K — L is a place. So assuming there is a sujective place *F — K
we get a surjective place *F — L. This is not possible for a PAC-field, by [24],
Corollary 11.5.5. O

5.3 Approximation by finite groups. In physics interesting gauge field
theories are based on compact Lie groups such as the orthogonal group SO(3)
or SU(N). On the other hand, since calculations in this theory and the an-
alytic justification of the theory encounters enormous difficulties, there have
been numerous attempts to develop a gauge field theory with finite group, see
[25], or earlier [26] where an approximation of SU(3) by its finite subgroups was
discussed.

The following, we believe, is crucial.
Problem

1. Is the group SO(3) approximable by finite groups in the group language?

2. More generally, let G be a compact simple Lie group. Is G approximable
by finite groups in the group language? Equivalently (assuming for simplicity
the continuum hypothesis), is there a sequence of finite groups G,, n € N, an
ultrafilter D on N and a surjective group homomorphism from the ultraproduct

onto G,
HG” — G.
D

Remark 1. This problem has an easy solution (in fact, well-known to physi-
cists) if we are content with G,, to be quasi-groups, that is omit the requirement
of associativity of the group operation:

For each n, choose an %—dense finite subset G(n) C G of points. For a,b €
G(n) set a*b to be a point in G(n) which is at a distance less than 2 from the
actual product a - b in G. Now set, for v € [[,, G,

1
limy =g iff {n € N: dist(y(n), g) < —} € D,
n
which is in fact the standard part map. Then clearly

lim(y; * v2) = lim vy - lim 7o,
that is the map is a homomorphism.
Remark 2. By Theorem 3.5 for a given compact Lie group G the problem

reduces to proving that for any positive sentence ¢ in the group language, such
that G |= —o, there is a finite group G,, such that G,, = —o.

17



Note that any compact simple Lie group G is definable in the field of reals in
an explicit way, and hence the first order theory of G is decidable. This implies
that the list of positive sentences o such that G |= —o, is recursive.

Finally, T would like to mention that in the last 2 years the problem was dis-
cussed with many people including M.Sapir, J.Wilson, C.Drutu and A.Muranov
who made some valuable remarks, but no solution found as yet.
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