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Bad fields

Definition A bad field is a structure (K,+, ·, G)
with MR(K) = N > 1 and G < K×, a multiplica-
tive subgroup, MR(G) = 1.

Problem (197?) Do bad field exist?

Theorem (Baldwin and Holland, 2002) Yes, for
each N > 1, if we drop the requirement that G is
a group.

Theorem ( B.Poizat, 2000) There exist an almost
bad fields (K,+, ·, G) with MR(K) = ω ×N and
G < K×, a multiplicative subgroup, MR(G) = ω.
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Proof. Based on Hrushovski’s construction.

Easy case: G = P is just a subset (of black points).

Predimension: δ(X) = N ·tr.deg(X)−size(X∩P ).

Axioms:
GSCH: For distinct x1, . . . , xk ∈ P,

N · tr.deg(x1, . . . , xk)− k ≥ 0.

EC: Let V ⊆ Ck be an irreducible algebraic vari-
ety defined over a finitely generated subfield Q(C)
which has a point
〈a1, . . . , ak〉 ∈ V satisfying:

ai 6= aj and ai /∈ acl(C), i 6= j, i ≤ k (P -free)

and

tr.deg(ai1, . . . , aim) ≥ m

N
, for any i1 < · · · < im ≤ k

(P -normal).
Then there is 〈a1, . . . , ak〉 ∈ V ∩ P k.
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Claim. GSCH and EC for (K,+, ·, P ) are first or-
der.
Proof. Easy �
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Difficult case: G is a subgroup of the multiplicative
group (green points):
Predimension

δ(X) = N · tr.deg(X)−mult.rk(X ∩G).

Axioms:

GSCH: For multiplicatively independent x1, . . . , xk ∈
G,

N · tr.deg(x1, . . . , xk)− k ≥ 0.

EC: Let V ⊆Ck be an irreducible algebraic variety
defined over a finitely generated subfield Q(C) and
which is G-free and G-normal.
Then there is 〈a1, . . . , ak〉 ∈ V ∩Gk.

Claim. GSCH and EC for (K,+, ·, G) are first or-
der.
Proof. Uses Ax’s Theorem on Schanuel’s conjecture
for function fields. �
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Problem. Explain these examples analytically.

Solutions, for N = 2.

K = C.

Case: P is a “generic” subset of C.

Let ε, α be algebraic numbers, ε /∈ R ∪ iR, α /∈ Q,
αR 6= εR.
Let f be a Liouville function (A.Wilkie) and

P = {f (εt + αq) : t ∈ R, q ∈ Q}

Theorem (C,+, ·, P ) is a model of Poizat’s “black
points” theory.
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Case: G is a multiplicative subgroup of C.

Let

G = {exp(εt + αq) : t ∈ R, q ∈ Q}

Theorem. Assume Schanuel’s conjecture. Then
(C,+, ·, G) is a model of Poizat’s “green points”
theory.
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Problem 1. Do the general case N.

Remark Necessarily, the real dimension of the bad

subset (P or G) must be
2

N
.

Thus, the theory of fractional dimensions needs to
be involved in the construction.
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Let h ∈ RrQ, ε ∈ (C r R ∪ iR),

G = {exp(εt + 2πihm) : t ∈ R, m ∈ Z}
Γ = {exp(2πihm) : m ∈ Z}

Theorem Assume Schanuel’s conjecture. Then

1.Th(C,+, ·, G, Γ) is superstable,
U(C) = ω · 2, U(G) = ω, U(Γ) = 1.

2. The Miller-Speissegger spiral G0 = exp(εR)
is type-definable in (C,+, ·, G) as the connected
component of G.

3. The field of reals isLω1,ω-definable in (C,+, ·, G).
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Problems
2.Describe canonical models in the elementary class
Th(C,+, ·, G, Γ).

3.Put (C,+, ·, G, Γ) in the context of analytic Zariski
structures.
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The quantum torus

Theorem Given an algebraically closed field F and
its cyclic multiplicative subgroup Γ = 〈q〉,
the two-sorted structure

(F,+, ·) θ−→ (T, ·)
(Dom θ = F∗, θ a homomorphism, ker θ = Γ)

has an analytic Zariski structure on both sorts F
and T.

Consider the F-vector space H = H(T ) of local
functions on infinitesimal neighborhood V of 1 ∈
T :

H(T ) = {ψ : V⊆∗T → ∗F}.
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Example The inverse x = θ−1 to the map
θ : ∗F→ ∗T is well-defined on V .
Consequently, for every k ∈ Z

xk : ∗T → ∗F
is well-defined. So, xk ∈ H(T ), k ∈ Z.

There is an algebra A(T ) of definable linear oper-
ators acting on H(T ) :

U : xk → xk+1,

V : xk → qkxk.

A(T ) := 〈V, U : V U = qUV 〉.
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Theorem Assuming Schanuel’s conjecture the 3-
sorted structure below is superstable and is known
to have some analytic Zariski properties

(C,+, h·) exp v−−−→ (C,+, ·)yexph−1v

y θ

(C,+, ·) −→ T = C∗/Γ

Γ = 〈q〉, q = exp(2πih).

In this languageH(T ) contains also the well-defined
local functions

xkh : ∗T → ∗F
with the action of the operators

U : xkh→ qkxkh,

V : xkh→ x(k+1)h.
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Using the obvious symmetry between U and V we
obtain the formal correspondence between the eigen-
vectors of the operators U and V :

xkh ∼
∑

m∈Z
q−kmxm.

Problem 4. Give a meaning to this formula.

Problem 5. Add the bad subgroup

G = exp(εR + 2πihZ)

to the language and include the reals into the pic-
ture.
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The quantum SLq(2,C)

Consider the action of the group

Z× Z ∼= Γ× Γ = {(qm, qn) : m,n ∈ Z}
on SL(2,C) :

(
X Y
Z V

)
(m,n)−→

(
Xqn Y

Zqm
XV+Y Z(1−qm)

Xqn

)

This gives rise to the space of orbits

SLq(2,C) = Γ× Γ\SL(2,C).

Theorem The two-sorted structure

SL(2,C)
θ−→ SLq(2,C)

is superstable and analytic Zariski in both sorts.
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The above mentioned method of constructing an
algebra A of linear operators acting on the space H
of local functions

∗SLq(2,C)→∗ SL(2,C)

produces theC-algebra with generators a, b, c, d and
defining relations

ab = qba
bd = qdb
ac = qca
cd = qdc
bc = cb

ad− da = (q − q−1)bc

ad− qbc = da− q−1bc = 1.

This can be naturally made a Hopf algebra (with a
comultiplication and a counit). This Hopf algebra

Oq(SL2(C))

is by definition the (algebraic) quantum SL(2,C).
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Problem 6. Consider SLq(2,C) in an expanded
language involving the reals (as in Problem 5).

Problem 7. Study the model theory of the quan-
tum unitary group Uq(2,C) and the quantum or-
thogonal group Oq(3).
Look for ’bad’ stable groups related to these struc-
tures.

17


