Poizat's bad fields and quantum groups

Boris Zilber

University of Oxford

27 September 2004

http://www.maths.ox.ac.uk/~zilber

Bad fields

Definition A bad field is a structure $(K, +, \cdot, G)$ with MR(K) = N > 1 and $G < K^{\times}$, a multiplicative subgroup, MR(G) = 1.

Problem (197?) Do bad field exist?

Theorem (Baldwin and Holland, 2002) Yes, for each N > 1, if we drop the requirement that G is a group.

Theorem (B.Poizat, 2000) There exist an almost bad fields $(K, +, \cdot, G)$ with $MR(K) = \omega \times N$ and $G < K^{\times}$, a multiplicative subgroup, $MR(G) = \omega$. **Proof.** Based on Hrushovski's construction.

Easy case: G = P is just a subset (of black points).

Predimension: $\delta(X) = N \cdot \operatorname{tr.deg}(X) - \operatorname{size}(X \cap P)$.

Axioms: GSCH: For distinct $x_1, \ldots, x_k \in P$,

$$N \cdot \operatorname{tr.deg}(x_1, \dots, x_k) - k \ge 0.$$

EC: Let $V \subseteq \mathbb{C}^k$ be an irreducible algebraic variety defined over a finitely generated subfield $\mathbb{Q}(C)$ which has a point

 $\langle a_1, \ldots, a_k \rangle \in V$ satisfying: $a_i \neq a_j$ and $a_i \notin \operatorname{acl}(C), i \neq j, i \leq k$ (*P*-free) and

tr.deg
$$(a_{i_1}, \ldots, a_{i_m}) \ge \frac{m}{N}$$
, for any $i_1 < \cdots < i_m \le k$
(*P*-normal).
Then there is $\langle a_1, \ldots, a_k \rangle \in V \cap P^k$.

Claim. GSCH and EC for $(K, +, \cdot, P)$ are first order. Proof. Easy \Box Difficult case: G is a subgroup of the multiplicative group (green points): Predimension

 $\delta(X) = N \cdot \operatorname{tr.deg}(X) - \operatorname{mult.rk}(X \cap G).$ Axioms:

GSCH: For multiplicatively independent $x_1, \ldots, x_k \in G$,

 $N \cdot \operatorname{tr.deg}(x_1, \dots, x_k) - k \ge 0.$

EC: Let $V \subseteq \mathbb{C}^k$ be an irreducible algebraic variety defined over a finitely generated subfield $\mathbb{Q}(C)$ and which is *G*-free and *G*-normal.

Then there is $\langle a_1, \ldots, a_k \rangle \in V \cap G^k$.

Claim. GSCH and EC for $(K, +, \cdot, G)$ are first order.

Proof. Uses Ax's Theorem on Schanuel's conjecture for function fields. \Box

Problem. Explain these examples analytically.

Solutions, for N = 2.

 $K = \mathbb{C}.$

Case: P is a "generic" subset of \mathbb{C} .

Let ϵ, α be algebraic numbers, $\epsilon \notin \mathbb{R} \cup i\mathbb{R}, \alpha \notin \mathbb{Q}$, $\alpha \mathbb{R} \neq \epsilon \mathbb{R}$. Let f be a Liouville function (A.Wilkie) and

$$P = \{ f(\epsilon t + \alpha q) : t \in \mathbb{R}, \ q \in \mathbb{Q} \}$$

Theorem $(\mathbb{C}, +, \cdot, P)$ is a model of Poizat's "black points" theory.

Case: G is a multiplicative subgroup of \mathbb{C} .

Let

$$G = \{ \exp(\epsilon t + \alpha q) : t \in \mathbb{R}, \ q \in \mathbb{Q} \}$$

Theorem. Assume Schanuel's conjecture. Then $(\mathbb{C}, +, \cdot, G)$ is a model of Poizat's "green points" theory.

Problem 1. Do the general case N.

Remark Necessarily, the real dimension of the bad subset (P or G) must be $\frac{2}{N}$. Thus, the theory of fractional dimensions needs to be involved in the construction.

Let
$$h \in \mathbb{R} \setminus \mathbb{Q}, \ \epsilon \in (\mathbb{C} \setminus \mathbb{R} \cup i\mathbb{R}),$$

 $G = \{\exp(\epsilon t + 2\pi i h m) : t \in \mathbb{R}, \ m \in \mathbb{Z}\}$
 $\Gamma = \{\exp(2\pi i h m) : \ m \in \mathbb{Z}\}$

Theorem Assume Schanuel's conjecture. Then

1.Th(\mathbb{C} , +, \cdot , G, Γ) is superstable, U(\mathbb{C}) = $\omega \cdot 2$, U(G) = ω , U(Γ) = 1.

2. The Miller-Speissegger spiral $G^0 = \exp(\epsilon \mathbb{R})$ is type-definable in $(\mathbb{C}, +, \cdot, G)$ as the *connected component* of G.

3. The field of reals is $L_{\omega_1,\omega}$ -definable in $(\mathbb{C}, +, \cdot, G)$.

Problems

2.Describe *canonical* models in the elementary class $\operatorname{Th}(\mathbb{C}, +, \cdot, G, \Gamma)$.

3.Put $(\mathbb{C}, +, \cdot, G, \Gamma)$ in the context of *analytic Zariski* structures.

The quantum torus

Theorem Given an algebraically closed field F and its cyclic multiplicative subgroup $\Gamma = \langle q \rangle$, the two-sorted structure

$$(\mathbf{F},+,\cdot) \xrightarrow{\theta} (T,\cdot)$$

(Dom $\theta = F^*$, θ a homomorphism, ker $\theta = \Gamma$) has an analytic Zariski structure on both sorts F and T.

Consider the F-vector space $\mathcal{H} = \mathcal{H}(T)$ of local functions on infinitesimal neighborhood \mathcal{V} of $1 \in T$:

$$\mathcal{H}(T) = \{ \psi : \mathcal{V} \subseteq {}^*T \to {}^*F \}.$$

Example The inverse $x = \theta^{-1}$ to the map $\theta : {}^{*}F \to {}^{*}T$ is well-defined on \mathcal{V} . Consequently, for every $k \in \mathbb{Z}$

$$x^k: \ ^*T \to ^*F$$

is well-defined. So, $x^k \in \mathcal{H}(T), k \in \mathbb{Z}$.

There is an algebra A(T) of *definable* linear operators acting on $\mathcal{H}(T)$:

$$U: x^k \to x^{k+1}, V: x^k \to q^k x^k.$$

$$A(T) := \langle V, U : VU = qUV \rangle.$$

Theorem Assuming Schanuel's conjecture the 3sorted structure below is superstable and is known to have some analytic Zariski properties

$$\begin{array}{ccc} (\mathbb{C},+,h\cdot) & \xrightarrow{\exp v} & (\mathbb{C},+,\cdot) \\ & & \downarrow \exp h^{-1}v & & \downarrow & \theta \\ (\mathbb{C},+,\cdot) & \longrightarrow & T = \mathbb{C}^*/\Gamma \\ & & \Gamma = \langle q \rangle, \quad q = \exp(2\pi ih). \end{array}$$

In this language $\mathcal{H}(T)$ contains also the well-defined local functions

$$x^{kh}: *T \to *F$$

with the action of the operators

$$U: x^{kh} \to q^k x^{kh},$$
$$V: x^{kh} \to x^{(k+1)h}.$$

Using the obvious symmetry between U and V we obtain the formal correspondence between the eigenvectors of the operators U and V:

$$x^{kh} \sim \sum_{m \in \mathbb{Z}} q^{-km} x^m.$$

Problem 4. Give a meaning to this formula.

Problem 5. Add the bad subgroup

$$G = \exp(\epsilon \mathbb{R} + 2\pi i h \mathbb{Z})$$

to the language and include the reals into the picture.

The quantum $SL_q(2, \mathbb{C})$

Consider the action of the group

 $\mathbb{Z} \times \mathbb{Z} \cong \Gamma \times \Gamma = \{ (q^m, q^n) : m, n \in \mathbb{Z} \}$ on SL(2, \mathbb{C}) :

$$\begin{pmatrix} X & Y \\ Z & V \end{pmatrix} \stackrel{(m,n)}{\longrightarrow} \begin{pmatrix} Xq^n & Y \\ Zq^m & \frac{XV+YZ(1-q^m)}{Xq^n} \end{pmatrix}$$

This gives rise to the space of orbits

$$\operatorname{SL}_q(2,\mathbb{C}) = \Gamma \times \Gamma \backslash \operatorname{SL}(2,\mathbb{C}).$$

Theorem The two-sorted structure

$$\operatorname{SL}(2,\mathbb{C}) \xrightarrow{\theta} \operatorname{SL}_q(2,\mathbb{C})$$

is superstable and analytic Zariski in both sorts.

The above mentioned method of constructing an algebra A of linear operators acting on the space \mathcal{H} of local functions

$$^*\mathrm{SL}_q(2,\mathbb{C}) \to ^*\mathrm{SL}(2,\mathbb{C})$$

produces the \mathbb{C} -algebra with generators a, b, c, d and defining relations

$$ab = qba$$

$$bd = qdb$$

$$ac = qca$$

$$cd = qdc$$

$$bc = cb$$

$$ad - da = (q - q^{-1})bc$$

$$ad - qbc = da - q^{-1}bc = 1.$$

This can be naturally made a *Hopf algebra* (with a comultiplication and a counit). This Hopf algebra $\mathcal{O}(\Omega \setminus (\Omega))$

$$\mathcal{O}_q(\mathrm{SL}_2(\mathbb{C}))$$

is by definition the (algebraic) quantum $SL(2, \mathbb{C})$.

Problem 6. Consider $SL_q(2, \mathbb{C})$ in an expanded language involving the reals (as in Problem 5).

Problem 7. Study the model theory of the quantum unitary group $U_q(2, \mathbb{C})$ and the quantum orthogonal group $O_q(3)$.

Look for 'bad' stable groups related to these structures.