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Abstract

Given a cover U of a family of smooth complex algebraic varieties,
we associate with it a class U, containing U, of structures locally de-
finable in an o-minimal expansion of the reals. We prove that the
class is ℵ0-homogenous over submodels and stable. It follows that U
is categorical in cardinality ℵ1. In the case when the algebraic vari-
eties are curves we prove that a slight modification of U is an abstract
elementary class categorical in all uncountable cardinals.

1 Introduction

1.1 Let k0 ⊆ C, a countable subfield, {Xi ∶ i ∈ I} a collection of non-
singular irreducible complex algebraic varieties (of dim > 0) defined
over k0 and I ∶= (I,≥) a lattice with the minimal element 0 determined
by unramified k0-rational epimorphisms pri′,i ∶ Xi′ → Xi, for i′ ≥ i. Let
U(C) be a connected complex manifold and {fi ∶ i ∈ I} a collection of
holomorphic covering maps (local bi-holomorphismss)

fi ∶ U(C)↠ Xi(C), pri′,i ○ fi′ = fi.

as illustrated by the picture:
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1.2 In a number of publications, abstract elementary classes U con-
taining structures (U, fi,Xi), with an abstract algebraically closed field
K instead of C (pseudo-analytic structures) have been considered, see
[1] for a survey. A typical result is a formulation of a ”natural” Lω1,ω-
axiom system Σ which holds for (U(C), fi,Xi(C)) and defines a class U
categorical in all uncountable cardinals. The proofs, in each case, rely
on deep results in arithmetic geometry, moreover one often is able to
show that the fact of categoricity of Σ implies the arithmetic results.

The above raised the question of whether an uncountably categor-
ical AEC U containing (U(C), fi,Xi(C)) exists under general enough
assumptions on the data, leaving aside the question of axiomatisability
and related arithmetic theory.

The current paper answers this question in positive at least in the
case when the Xi are curves. We construct U as the class of structures
U(K) (K = R + iR) locally definable (in the sense of M.Edmundo and
others) in models R of an o-minimal expansion of the reals projected
(restricted) to the language Lglob (global) the primitives of which are
given by analytic subsets of Um locally defined in the o-minimal struc-
ture. The main theorem states that, for the case when the complex
dimension of U(C) is equal to 1, U can be extended to a class of
Lglob-structures which is an abstract elementary class categorical in
all uncountable cardinals. For the general case we only where able to
prove categoricity in ℵ1.

1.3 Our main technical tool is a slightly generalised theory of K-
analytic sets in o-minimal expansions of the reals developed by Y.Peterzil
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and S.Starchenko in [4]. We also make an essential use of the the-
ory of quasi-minimal excellence, especially the important paper [8] by
M.Bays, B.Hart, T.Hyttinen, M.Kesala and J.Kirby.

Note that our main technical results effectively prove that the
structures in U are analytic Zarsiki in a sense slightly weaker than
in the paper [9], where we proved results similar to the current ones
for an analytic Zariski class.

1.4 Most of our examples, see 2.3 below, have become objects of in-
terest in the theory of o-minimality due to Pila-Wilkie-Zannier method
of counting special points of Shimura varieties and more generally, see
survey [2]. Effectively, one counts points of U(L) ∩ D ∩ S where D
is an open subset of U(C) definable in the o-minimal structure, S an
Lglob-definable analytic subsets of U(C) and L a number field relevant
to the case at hand.

At the same time one should note that in representing an Lglob-
structure as U(K), K = R+ iR, there is a remarkable degree of freedom
in the choice of a model R of the underlying o-minimal theory.

This raises a lot of question on the interaction between the theory
of AEC and o-minimality, the model theory - arithmetic geometry per-
spective of categorical classes and the o-minimal Pila-Wilkie-Zannier
method.

1.5 I would like to thank Martin Bays and Andres Villaveces for
some useful remarks and commentaries.

2 Preliminaries

2.1 Let RAn be an o-minimal expansion of the reals, C = R + iR in
the language of rings and

ModAn = {R ∶ R ≡ RAn}

the class of models of the complete o-minimal theory Th(RAn) in the
language LAn. To avoid unnessary complications we assume that LAn

is a countable fragment of the full language of RAn.
We write K for the algebraically closed field K(R) ∶= R + iR.

2.2 (RAn,{fi})-admissible open cover of U(C).
In addition to the data and notation spelled out in 1.1, we assume

that:
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(i) There is a system of connected open subsets Dn(C) ⊂ U(C),
n ∈ N, definable in RAn (possibly with parameters), such that

For any n ∈ N, Dn ⊆Dn+1, and ⋃
n
Dn(C) = U(C);

(ii) The restriction fi,n of fi on Dn is definable in RAn, for each i ∈ I
and n ∈ N, and for each i there is n such that fi(Dn) = Xi.

(iii) For all i ∈ I, there is a group Γi of biholomorphic transformations
on U(C), so that the restrictions of the transformations to the
Dn(C) are LAn-definable and fibres of fi are Γi-orbits, that is

fi ∶ U(C)→ Xi(C) ≅ U(C)/Γi.

Moreover, for i > j, Γi is a finite index subgroup of Γj , that is
the cover pri,j ∶ Xi → Xj is finite.

(iv) The system of maps fi, i ∈ I is U-complete: there is a chain
I0 ⊆ I such that

⋂
l∈I0

Γl = {1}.

2.3 Examples of admissible RAn.
In all our examples RAn is a LAn-reduct of Rexp,an, the reals with

exponentiation and restricted analytic functions. What varies is U,
k0 and the choice of the family {fi,Dn ∶ i ∈ I, n ∈ N} the members of
which assumed to be LAn-definable.

1. U(C) = C, I = N, Xi = Gm, all i ∈ I, the algebraic torus,
Dn = {z ∈ C ∶ −2πn < Imz < 2πn}, fk(z) = exp( zk), and k0 = Q.

2. U(C) = C, I = N, Xi = Eτ , all i ∈ I, an elliptic curve

fk = expτ,k ∶ C→ Eτ ⊂ P2, z ↦ expτ(
z

k
),

the covering map for Eτ (expτ is constructed from the Weierstrass
P-function and its derivative P′, with period kΛτ = kZ + τkZ).

D1 is the interior of the square in C with vertices (0,1, τ, τ + 1),
and Dn = n ⋅D1. k0 is the field of definition of Eτ .

3. U(C) = H, the upper half-plane.

Dn = {z ∈ H ∶ −n/2 ≤ Re(z) < n/2 &Im(z) > 1/(n + 1)}.
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For n = 1 this is the interior of the fundamental domain of the
j-function

F = {z ∈ H ∶ −1/2 ≤ Re(z) < 1/2 & Im(z) > 1

2
}

and the results of [5] state that the restriction of j to F is defined
in Rexp,an. Note that, for each n, Dn can be covered by finitely many
shifts of D1 by Moebius transformations from Γ ∶= PSL2(Z). This
allows one to define j on Dn in Rexp,an.

Moreover, we can similarly consider more general functions

jN ∶ H→ Y(N) ≅ H/Γ(N)

onto level N Shimura curves. A fundamental domain for jN is a finite
union of finitely many shifts of F and the analysis of [5] shows that
the restriction of jN on its fundamental domain is definable in Rexp,an.
Thus we can take the family {jN} to be our {fi} (i = N) and Y(N)
to be the Xi. It is well-known that the Y(N) and jN are defined over
k0 = Qab, the extension of Q by roots of 1.

4. U(C) = H. Let Γ is a Fuchsian subgroup of PGL2(R) and
{Γi ∶ i ∈ I} the system of all finite index subgroups of Γ (see [3]). Then
the H/Γi are bi-holomorphic to compact projective curves Xi(C) with
bounded fundamental domains. Thus one can define respective Dn

and fi as in 2.2. k0 is the union of the fields of definition of the Xi.
5. [5] supplies us with a plethora of other examples, in particular

U(C) = Hg, the Siegel half-space, and Xi moduli spaces of polarised
algebraic varieties.

3 The K-analytic setting

3.1 Abstract structures definable in R.
Now we extend notations of 2.2 and, assuming R ∈ ModAn be given,

let U, Xi, (i ∈ I), Dn, Γi and fi be defined as in 2.2 in the language
LAn. In particular, we read U ∶= U(K), Xi ∶= Xi(K), for K = K(R),
when the choice of the model R does not matter.

More precisely, we define

U(K) =⋃
n
Dn(K),

which is an Lω1,ω interpretation of U in R for each i ∈ I. Now fi ∶
U(K) → Xi(K) is defined to be the map such that it coincides with
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the map fi,n ∶ Dn(K) → Xi(K) for each n ∈ N. Note that the latter is
K-holomorphic in the sense of [4]. We will often say K-holomorphic
(analytic) in an extended sense: the restriction fi,n of fi to Dn(K) is
K-holomorphic.

We write Dn̄ ⊂ Um meaning that n̄ = ⟨n1, . . . , nm⟩ ∈ Nm and

Dn̄ =Dn1 × . . . ×Dnm .

Define fi on Dn̄ as ⟨u1, . . . , um⟩↦ ⟨fi(u1), . . . , fi(um)⟩. This obviously
extends to the map fi with the domain Um.

We will often restrict our analysis of K-analytic sets to open neigh-
bourhoods, where open always means definable open.

Let k0 be a subfield of K such that k0 ⊆ dcl(∅), that is any point
of k0 is definable in R without parameters. Note that k0 contains any
point of the form fi(a) for i ∈ I and a definable point a ∈Dn.

More generally, we will work with an arbitrary k such that k0 ⊆
k ⊂ K.

3.2 Definition. Given S ⊂ Um we say that S is Lglob(k)-primitive
if there are IS ⊆ I and Zariski closed Zi ⊆ Xmi , i ∈ IS , defined over k,
such that

S = ⋂
i∈IS

f−1
i (Zi).

3.3 Remark. In the definition 3.2 we may assume without loss of
generality that IS is a chain and, for i′ ≥ i in IS ,

pri′i(Zi′) = Zi. (1)

Proof. First, we may assume that IS = I by setting for i ∈ I ∖ IS ,
Zi ∶= Xmi .

For a finite J ⊆ I, take a iJ ∈ I such that iJ ≥ J. Set, for each k ∈ J,

ZiJ ,k ∶= pr−1
iJ ,k
(Zk) ⊆ XmiJ and Z∗

iJ
= ⋂
k∈J

ZiJ ,k.

Then, since fk = priJ ,k ○ fiJ ,

f−1
iJ
(ZiJ ,k) = f−1

k (Zi) and ⋂
k∈J

f−1
k (Zi) = f−1

iJ
(Z∗

iJ
). (2)

Since I is a countable lattice we can represent

I = ⋃
n∈N

Jn

6



where Jn ⊆ IS are finite and Jn+1 ⊇ Jn for each n.
Consider (2) with J = Jn and write iJn as in. Clearly, in+1 ≥ in and

S = ⋂
n∈N

f−1
in (Z

∗
in). (3)

Finally, note that in (3) prin,il(Z
∗
in
) ⊆ Z∗

il
for n ≥ l, and prin,il(Z

∗
in
)

is a Zariski closed subset of Xmil since prin,il is unramified (and étale).
Hence, we may replace Z∗

il
by ⋂n≥l prin,il(Z

∗
in
) while keeping (3). Do-

ing this consequetively for l = 1,2, ... delivers us (1). �

Remark. The equality relation is Lglob(k0)-primitive.

3.4 K-holomorphic maps and K-analytic subsets. We use [4]
for definitions and basic facts on K-analyticity in open definable sub-
sets Dn̄. By slight abuse of the terminology we call a subset S ⊆ Um
K-analytic if S ∩Dn̄ is K-analytic for each Dn̄ ⊂ Um.

Since the complex covering maps fi are holomorphic, the maps
fi,n ∶Dn(K)→ Xi(K) are K-holomorphic and locally K-bi-holomorphic.
It follows the sets f−1

i (Zi) in 3.2 are K-analytic and are locally K-bi-
holomorphically isomorphic to the Zi.

The dimension dim is always the K-dimension of a K-analytic set.
In case Z is an algebraic variety, dimZ ∶= dimZ(K), the dimension of
the respective K-analytic set, and this coincides with the dimension
in the sense of algebraic geometry.

3.5 Lemma. Given an Lglob(k)-primitive S, S ∩Dn̄ is K-analytic
in Dn̄. S is K-analytic in Um.

Proof. Let S be as in 3.2 with the assumption (1) and let Si ∶=
f−1
i (Zi). It follows by definition that the Si ∩Dn̄ are K-analytic. We

need to prove that ⋂i∈IS Si ∩Dn̄ is analtic.
Let s ∈ S ∩Dn̄. For each i ∈ IS there is an open neighborhood Os,i

of s such that Si∩Os,i is irreducible. We may assume that Si′ ∩Os,i′ ⊆
Si ∩Os,i for i′ ≥ i. Then there exists i0 ∈ IS such that for i′ ≥ i ≥ i0,
dimSi′ ∩Os,i′ = dimSi ∩Os,i.

Since Si ∩Os,i is irreducible, Si′ ∩Os,i = Si ∩Os,i for all i′ ≥ i ≥ i0.
Thus S ∩ Os,i = Si ∩ Os,i, which proves that S is K-analytic in the
neighbourhood, and hence in Dn̄. �

3.6 Remark. Ssing, the set of singular points of Lglob(k)-primitive
S, is also an Lglob(k)-primitive since

Ssing = ⋂
i∈IS

f−1
i (Z

sing
i ).
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3.7 Proposition. Let S ⊆ Um be Lglob(k)-primitive and let, for
some n, Sj,n̄ ⊆ S∩Dn̄ be a K-analytic irreducible component of S∩Dn̄.
Then:

(i) For any Dn̄′ ⊇ Dn̄ there is unique Sj,n̄′ ⊇ Sj,n̄ a K-analytic
irreducible component of S ∩Dn̄′ . The set

Sj ∶= ⋃
Dn̄′⊇Dn̄

Sj,n̄′

is well-defined. (Call it an irreducible component of S.)
(ii) The number of K-analytic components Sj of S is at most count-

able.
(iii) The irreducible components Sj are Lglob(k′)-primitive for some

algebraic extension k′ of k.
(iv) For any i, fi(Sj) is a Zariski closed k′-definable geometrically

irreducible subset of Xmi .
Proof. By [4], 4.12, Sj,n̄′ is irreducible if and only if Sj,n̄′ ∖Ssing

j,n̄′ is
definably connected. The union of any two irreducible extensions of
Sj,n̄∖Ssing

j,n̄ will be connected, since any two points in the union can be

connected by a definable path passing through Sj,n̄ ∖Ssing
j,n̄ . Hence the

extensions coinside, which gives us the first statement of Proposition.
The number of such irreducible components is at most countable

since the number of components in each Dn̄′ is finite. This proves (i)
and (ii).

Define dimSj to be dimSj,n̄, which does not depend on Dn̄ as long
as Sj ∩Dn̄ ≠ ∅, since irreducible sets are of pure dimension (the proof
is the same as in the complex case, see also [4]). Define

dimS ∶= max
j

dimSj . (4)

We may assume that

S = ⋂
i∈I0

f−1
i (Zi)

for some chain I0 ⊆ I, some Zariski closed Zi ⊆ Xmi such that dimZi =
dimS and pri,l(Zi) = Zl for i > l in I0.

Let Si ∶= f−1
i (Zi) and let Si = ⋃j∈Ji Sij be the decomposition into

irreducible analytic components with maximum dimension equal to
dimS. It follows that the components of Si are also components of Sl,
for i > l and thus Sj is a component of f−1

l (Zl).
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Fix l for the time being. We can represent Zl = ⋃p∈P Zl,p, a finite
union of geometrically irreducible algebraic subvarieties Zl,p defined
over some algebraic extension k′ of k. Respectively, S can be represnted
as a finite union of Lglob(k′)-primitives,

S = ⋃
p∈P

Tl,p where Tl,p = S ∩ f−1
l (Zl,p)

and the irreducible component Sj of S is an irreducible component of
one of Tl,p.

We assume without loss of generality that Zl is geometrically ir-
reducible, P is a singleton and, since we are only interested in Sj ,
assume

S = f−1
l (Zl).

We omit the subscript l in the Claim below.

Claim. f(Sj) = Z and for any other component Sk of S there is
γ ∈ Γ such that γ ⋅ Sj = Sk.

Proof. By 1.1 there is n̄ such that f(Dn̄) = Xm.
By our assumption then

Z = f(⋃
k∈J

Sk) = ⋃
k∈J

f(Sk ∩Dn̄) = ⋃
k∈J0

f(Sk ∩Dn̄)

where J lists all the components of S and J0 lists the components Sk
such that Sk ∩Dn̄ ≠ ∅, so J0 is finite.

Hence for the finite J1, J0 ⊆ J1 ⊆ J,

Z = ⋃
k∈J1

f(Sk).

Let Zsing the singular points of Z and Ssing the singular points of
S, which by the fact that f is a local bi-holomorphisms are related as

f−1(Zsing) = Ssing. (5)

Note that if s ∈ Sj∩Sk, a common point of two distinct components
of S then s ∈ Ssing. That is S∖Ssing, the analytic subset of the open set
Um∖Ssing, splits into non-intersecting analytic components Sk ∖Ssing.
We get from (5)

Z ∖Zsing = ⋃
k∈J1

f(Sk ∖ Ssing). (6)
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The union on the right can not be disjoint, that is either J1 is a
singleton, or there are distinct k0, k1 ∈ J1 such that f(Sk0 ∖ Ssing) ∩
f(Sk1 ∖Ssing) ≠ ∅. Indeed, suppose towards a contradiction it is. Note
that for a respective Dn̄, f ∶Dn̄↠ Xm is a (definably) closed covering
map since it is locally bi-holomorphisms. Hence f(Dn̄ ∩ Sk ∖ Ssing),
k ∈ J1, are disjoint definably closed subsets the union of which is the
definably connected algebraic set Z ∖Zsing, the contradiction.

Now we claim that

f(Sk0 ∖ Ssing) = Z ∖Zsing, for a k0 ∈ J1. (7)

Indeed, otherwise there are k0, k1 ∈ J1 such that f(Sk0∖Ssing) ≠ f(Sk1∖
Ssing) but f(Sk0 ∖ Ssing) ∩ f(Sk1 ∖ Ssing) ≠ ∅. The latter means that
there are s0 ∈ Sk0 ∖ Ssing and s1 ∈ Sk1 ∖ Ssing such that f(s1) = f(s0),
and hence s1 = γ ⋅ s0 for some γ ∈ Γ. It follows that the K-analytic sets
Sk1 and γ ⋅ Sk0 intersect in a non-singular point of S ∩Dn̄ and thus
Sk1 ∩Dn̄ = γ ⋅ Sk0 ∩Dn̄, and so

Sk1 = γ ⋅ Sk0 and f(Sk1) = f(Sk0).
(7) follows. This finishes the proof of the Claim and of the statement
(iv).

Now, for any i ∈ I consider

Zij ∶= fi(Sj)
which we proved to be Zariski closed irreducible and

f−1
i (Zij) = ⋃

γ∈Γi

γ ⋅ Sj .

Since by assumption ⋂l∈I Γl is trivial, for some chain I1 ⊆ I extending
I0 we have

Sj = ⋂
l∈I1

f−1
l (Zlj),

(iii) proved.
�

3.8 Definitions. For an m-tuple u in U and a subfield k ⊂ K the
locus of u over k, written loc(u/k), is the minimum Lglob(k)-primitive
containing u.

We say an Lglob(k)-primitive S is k-irreducible if S can not be
represented as S1 ∪ S2 with Lglob(k)-primitives S1 and S2 , both dis-
tinct from S.

Remark. Note that loc(u/k) is k-irreducible.
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4 Lglob-structures

4.1 Recall, see [6], that an o-minimal structure R is a pre-geometry,
i.e. has a well-behaved dependence relation, and one can define a no-
tion of a (combinatorial) dimension cdimA of a subset A ⊆ R (not to
confuse with K-dimension) as the cardinality of a maximal indepen-
dent subset of A.

In particular, cdimR0 = 0 for the prime model R0 of the theory
Th(RAn). And, if cardR = κ > ℵ0, then cdimR = κ.

This has the following relationship with dimR S (the “real” dimen-
sion in the sense of [4]) for an R-manifold S ⊆ Rm defined over a set
C ∶ assuming cdimR/C ≥m, for any d ∈ N,

dimR S ≥ d iff exists ⟨s1, . . . , sm⟩ ∈ S ∶ cdim({s1, . . . , sm}/C) ≥ d (8)

Recall that if S is K-analytic, then

dimS = 1

2
dimR S. (9)

4.2 Definition. Given R ∈ ModAn, define U(R) to be the structure
with universe U(K) (K the field R + iR) in the language of Lglob(k0)-
primitives.

Define U to be the class of all structures of the form U(R).

Recall the followng.

4.3 Fact. For K an algebraically closed field, consider the structure
X(K)Zar,k0 on an infinite algebraic variety X(K) over k0 equipped with
relations Z ⊆ Xm, all Zariski closed Z over k0.

The field structure K together with its k0-points is ∅-interpretable
in X(K)Zar,k0 .

This is well-known. A detailed proof is given in [7], Appendix A.

4.4 Proposition. U(R) interprets in the first order way over ∅ the
field K, points of the subfield k0 and all the maps fi ∶ U→ Xi(K).

Proof. First note that the equivalence relations on U

Ei(u1, u2) ∶≡ fi(u1) = fi(u2)

are Lglob(k)-primitives. Thus the sets Xi(K) are ∅-interpretable as
U/Ei together with the maps fi ∶ U→ U/Ei.
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Given a Zariski closed Zi ⊂ Xmi we have ZU
i ∶= f−1

i (Zi), a definable
subset of Um. Thus Zi = fi(ZU

i ) are ∅-interpretable.
Now the structure X0(K)Zar,k0 equipped with relations Z ⊆ Xm0 ,

for all Zariski closed Z over k0, is ∅-interpretable.
It follows from 4.3, one can interpret K and k0-points in U(R). �

4.5 Corollary. Any Lglob(K)-primitive is type-definable in U(R)
using parameters.

Below U is always the universe U(K) for some U(R) in U.

4.6 Lemma. If k is algebraically closed then loc(u/k), the locus of
u over k, is K-analytically irreducible.

If S ⊆ Um is an Lglob(k)-primitive and K-analytically irreducible,
then S = loc(u/k), for some u ∈ S.

Proof. The first statement is just a corollary to 3.7(iv).
Let dimS = d. By (8) and (9) there is an u ∈ S such that u =

⟨s1, . . . , sm⟩, cdim(s1, . . . , sm/k) = 2d. Then loc(u/k) ⊆ S and again by
(8), and (9), dim loc(u/k) ≥ d. Since S is K-analytically irreducible,
loc(u/k) = S. �

4.7 Lemma. Let S ⊂ Um be an Lglob(k)-primitive, dimS = d. As-
sume also cdim(R/k) ≥ ℵ0. Then, for any family Lj∈J of Lglob(k)-
primitives such that dimLj < d, all j ∈ J,

S ∖ ⋃
j∈J

Lj ≠ ∅. (10)

Proof. S contains a point u = ⟨s1, . . . , sm⟩ with cdim(s1, . . . , sm/k) =
2d, which is not a point of any Lj . �

4.8 Proposition (The projection of an irreducible analytic set) Let k
be algebraically closed, cdim(R/k) ≥ ℵ0. Let T ⊆ Um+1 be an Lglob(k)-
primitive K-analytically irreducible, and let p ∶ Um+1 → Um be the
projection onto the first m coordinates. Then there are an Lglob(k)-
primitive S ⊆ Um, an i0 ∈ I and a Zariski closed subset R ⊆ Xmi0 defined
over k such that dimR < dimS and

S ∖ f−1
i0 (R) ⊆ p(T ) ⊆ S (11)

Moreover, for any d ≤ dimT −dimS, there is a Zariski closed Rd ⊂
Xmi0 defined over k such that R ⊆ Rd, dimRd < dimS and

p(T ) ∖ f−1
i0 (Rd) = pd(T ) (12)
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where
pd(T ) ∶= {s ∈ p(T ) ∶ dim(p−1(s) ∩ T ) ≤ d}.

Proof. By 4.6
T = loc(ūv/k)

for some ūv ∈ Um+1, (ū ∈ Um, v ∈ U).
Let

S = loc(ū/k).
By definition

S = ⋂
i∈I0

f−1
i (Zi), T = ⋂

i∈I0
f−1
i (Wi)

for some Zariski closed Zi ⊆ Xmi , Wi ⊆ Xm+1
i over k and we apply the

same notation to the projection map p ∶ Xm+1
i → Xmi . By 3.7(iv) we

may assume that all the Zi and Wi are irreducible and of dimension
equal to that of S and T respectively,

fi(S) = Zi and fi(T ) =Wi,all i ∈ I0,

and fi(ū) is a generic point of Zi, fi(ū)⌢fi(v) a generic point of Wi.
By basic algebraic geometry, p(Wi) is a constructible irreducible

set and fi(ū) its generic point, and thus the Zariski closure of p(Wi)
is equal to Zi. That is there are Zariski closed Ri ⊂ Zi over k such that

Zi = p(Wi)∪Ri and dimRi < dimZi. (13)

Since

p(⋂
i∈I
f−1
i (Wi)) ⊆ ⋂

i∈I0
p(f−1

i (Wi)) = ⋂
i∈I0

f−1
i (p(Wi)),

we have
p(T ) ⊆ S.

Let i0 be an element of I0 and, for simplicity of notations, f ∶= fi0 ,
so f(T ) =W, f(S) = Z and Z = p(W ) ∪R as in (13).

By the basic assumptions, given arbitrary t ∈ T, s = p(t), for some
R-definable open neighbourhood U ⊂ Um of s and open neighborhood
U × V ⊂ Um+1 of t, with V ⊂ U, the restriction fU ∶ U → Xm and
fU×V ∶ U × V → Xm+1 are injective.

Thus we obtain the commuting diagram with injective horizontal
arrows defined by fU×V in the top line and fU in the bottom line,

T ∩ (U × V )→W
↓ p ↓ p

S ∩U → p(W ) ⊇ Z ∖R.
(14)
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By comparing images of down-arrows we conclude

S ∩U ⊇ p(T ∩ (U × V )) ⊇ f−1
U (Z ∖R)

Note that
f−1
U (Z ∖R) = S ∩U ∖ f−1(R)

and the choice of R is independent on the choice of U. Hence p(T ) ⊇
S ∖ f−1(R) and (11) is proved.

To prove the second statement recall another basic fact of algebraic
geometry: there is a Zariski closed Rd ⊂ Xm such that

p(W ) ∖Rd = pd(W ) ∶= {z ∈ p(W ) ∶ dimp−1(z) ∩W ≤ d}.

Now repeat the argument with the diagram (14) with pd(W ) in place
of p(W ). This proves (12). �

Recall the notion of an analytic Zariski structure, see [9] or [10].

4.9 Corollary. Under assumptions that k is algebraically closed and
cdim(R/k) ≥ ℵ0, the structure U(R) in the language Lglob(k) is an
analytic Zariski structure.

Proof. The statement of Proposition 4.8 asserts that the structure
on U determined by Lglob(k)-primitives satisfies the key axioms (WP)
and (FC) of the definition of an analytic Zariski structure. The rest of
the axioms follow easily from definitions and basic algebraic geometry.
�

The next statements and its proofs are similar to one of the main
statements of [9] for analytic Zariski structures. More early work of
M.Gavrilovich also proves this for complex analytic Zariski structures.

4.10 Proposition. U is ℵ0-homogeneous over algebraically closed
subfields:

Suppose U(R1),U(R2) ∈ U, R0,R1,R2 ∈ ModAn, R0 ⊆ R1, R0 ⊆ R1.
Let k ⊆ K0 = K(R0) be an algebraically closed subfield such that

cdim(R1/k) ≥ ℵ0 and cdim(R2/k) ≥ ℵ0.
Then for any ū1 ∈ Um(K1), ū2 ∈ Um(K2), and w1 ∈ U(K1) such

that
loc(ū1/k) = loc(ū2/k)

there is w2 ∈ U(K2) such that

loc(ū1w1/k) = loc(ū2w2/k).
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Proof. Let S = loc(ū1/k) and T = loc(ū1w1/k). Note that ū1 and
ū2 are non-singular points of S and ū1w1 a non-singular point of T,
by 3.6.

Let d ∶= dimp−1(ū1) ∩ T, be the dimension of the fibre over ū1,
and the subset pd(T ) as defined in 4.8. Note that by the dimension
theorem of algebraic geometry dimpd(T ) = dimS, since dimpd(W ) =
dimS (in the notation of 4.8). Note also that

dimT = dimS + d

since respective equality holds for the dimensions of W and Z.
It follows that pd(T ) contains all generic over k points of S, ū2 ∈

pd(T ) and thus
dimp−1(ū2) ∩ T = d.

Thus there exists w2 such that ū2w2 ∈ p−1(ū2) ∩ T and
dim(w2/ū2k) = d. Since T is k-irreducible,

T = loc(ū2w2/k).

�

4.11 Lemma. Let S ⊆ Um+n be an Lglob(k)-primitive and ū ∈ Um.
Let

Sū = {v̄ ∈ Un ∶ ūv̄ ∈ S}.

Then Sū is an Lglob(k′)-primitive, for k′, extension of k by co-ordinates
of fi(ū), i ∈ I.

Proof. By definition S = ⋂i∈I f−1
i (Zi) for Zi ⊆ Xm+ni .

Let, for zi ∈ Xmi (K),

Zi,zi = {xi ∈ Xni (K) ∶ zixi ∈ Zi}.

Thus
Sū = {v̄ ∈ Un ∶⋀

i∈I
fi(ū)fi(v̄) ∈ Zi} =

=⋂
i∈I
f−1
i (Zi,fi(ū)).

�
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4.12 Corollary. Assuming k0 is algebraically closed, U is ℵ0-homogenous
over ∅ and over small submodels:

In notations of 4.10, let V = ∅ or V = U(K0) and assume cdim(Ri/K0) ≥
ℵ0 for i = 1,2.

Then, for any ū1 ∈ Um(K1), ū2 ∈ Um(K2), w1 ∈ Um(K1) such that

tp(ū1/V ) = tp(ū2/V )

there is w2 ∈ Um(K2) such that

tp(ū1w1/V ) = tp(ū2w2/V ),

where tp is the quantifier-free type of the form (10).
Proof. For the language without parameters use 4.10 with k = k0.

Over submodel use the statement of 4.10 with k = K0. �

4.13 Lemma. The structure U(R0), for R0 the prime model of the
o-minimal theory Th(RAn), is a prime model of U, that is there is an
Lglob-embedding U(R0) ⊆ U(R) for any R ∈ ModAn.

Proof. An embedding R0 ≼ R induces an embedding U(R0) ⊆
U(R). �

4.14 Theorem. Suppose k0 is algebraically closed.
Let R1,R2 ∈ ModAn

ℵ0 ≤ cdimR1 = cdimR2 ≤ ℵ1.

Then
U(R1) ≅ U(R2).

In particular, U is categorical in cardinality ℵ1.
Proof. First consider the case when cdimR1 = cdimR2 = ℵ0.

Then U(R1) and U(R2) are countable and so we can construct an
isomorphism via a countable back-and-forth process using 4.12, where
K0 = K(R0), R0 is the prime model of Th(RAn).

In case cdimR1 = cdimR2 = ℵ1 we represent

R1 = ⋃
α<ℵ1

R1,α and R2 = ⋃
α<ℵ1

R2,α

the ascending chains of elementary extensions, cdim(Ri,α+1/Ri,α) = ℵ0,
for i = 1,2, and R1,0 = R2,0 are prime models. Then the required
isomorphism is constructed by induction on α ∶
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Assume that R1,α ≅ R2,α, and even that both are equal to a Rα. Now
apply 4.12 with K0 = K(Rα), K1 = K(R1,α+1), and K2 = K(R2,α+1).
This again produces an isomorphism R1,α+1 ≅ R2,α+1 by the back-and-
forth procedure.

For limit indices the extension of isomorphism is obvious. �

5 The one-dimensional case

5.1 Let P (U) stand for the power-set of U. Define a closure operator
cl ∶ P (U)→ P (U) by the condition

u ∈ cl(w̄) iff dim loc(uw̄/k) = dim loc(w̄/k)

for w̄ ⊂ U finite. And

cl(W ) =⋃{cl(w̄) ∶ w ⊆fin W}

for W infinite.

5.2 Lemma. Suppose W ∈ P (U) and cl(W ) = W. Then, for any
i ∈ I, the subset fi(W ) ⊂ Xi(K) is closed under acl, the algebraic
closure in the sense of fields.

There is an algebraically closed subfield L = LW ⊆ K.

fi(W ) = Xi(L), for all i ∈ I.

Proof. Let w̄ ∈ Wn and fi(w̄) = x̄ ∈ Xni (K). Let y ∈ Xi(K) such
that y ∈ acl(x̄), where acl is over the base field k. Thus, for

X = loc(x̄/k), Y = loc(x̄y/k)

we have dimX = dimY. Hence, since fi is a local bi-holomorphisms,
for any v ∈ f−1

i (y)

dim loc(w̄/k) = dim loc(w̄v/k)

which implies v ∈ cl(w̄) ⊂W. This proves that fi(W ) is closed under acl
and hence fi(W ) = Xi(L) for some algebraically closed field L = LW,i.

We claim that LW,i = LW,j for any i, j ∈ I. Indeed, consider the
direct product U ×U instead of U and

fi × fj ∶ U ×U↠Xi ×Xj
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instead of fi and fj , which still are local bi-holomorphisms onto smooth
algebraic varieties. Clearly, cl(W ×W ) =W ×W for cl in the product
structure and

Xi(LW,ij) ×Xj(LW,ij) = (fi × fj)(W ×W ) = Xi(LW,i) ×Xj(LW,j)

that is LW,ij = LW,i = LW,j = L. �

5.3 Recall (see [8]) that one calls (U, cl) a quasiminimal prege-
ometry structure if the following holds:

QM1. The pregeometry is determined by the language. That is, if
tp(vw̄) = tp(v′w̄′) then v ∈ cl(w̄) if and only if v′ ∈ cl(w̄′).

QM2. U is infinite-dimensional with respect to cl.
QM3. (Countable closure property) If W ⊂ U is finite then cl(W )

is countable.
QM4. (Uniqueness of the generic type) Suppose that W,W ′ ⊆ U

are countable subsets, cl(W ) =W, cl(W ′) =W ′ andW,W ′ enumerated
so that tp(W ) = tp(W ′).

If v ∈ U∖W and v′ ∈ U∖W ′ then tp(Wv) = tp(W ′v′) (with respect
to the same enumerations for W and W ′).

QM5. (ℵ0-homogeneity over closed sets and the empty set) Let
W,W ′ ⊆ U be countable closed subsets or empty, enumerated such
that tp(W ) = tp(W ′), and let w̄, w̄′ be finite tuples from U such that
tp(Ww̄) = tp(W ′w̄′), and let v ∈ cl(Ww̄). Then there is v′ ∈ U that
tp(w̄vW ) = tp(w̄′v′W ′).

5.4 Proposition. Assume that k0 is algebraically closed, dimU = 1
and cdimR ≥ ℵ0. Then (U(R), cl) is a quasi-minimal pregeometry.

Proof. QM1 is by definition.
QM2 is by the assumtion on R.
QM3 follows from the fact that in the language of o-minimal struc-

ture acl(W ) is countable and that cl(W ) ⊆ acl(W ), by (8) and (9).
QM4 follows from the fact that U is one-dimensional irreducible

and v ∉ cl(W ), v′ ∉ cl(W ′).
QM5. If W and W ′ are empty then the required follows from 4.10.

when k = k0. In the non-empty case we may assume by ℵ0-homogeneity
over ∅ that W =W ′. Now 5.2 allows to replace tp(w̄W ) and tp(w̄′W ′)
by loc(w̄/LW ) and loc(w̄′/LW ) and tp(w̄vW ) and tp(w̄′v′W ′) by
loc(w̄v/LW ) and loc(w̄′v′/LW ) respectively.

The existence of v′ follows from 4.10 when k = LW . �
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Now we recall that given a quasiminimal pregeometry structure (U, cl)
one can associated with it an abstract elementary class containing the
structure, see [8], 2.2 - 2.3, or more general [9], 2.17 - 2.18. Call this
class Uglob.

By definiton, one starts with a structure U = U(R) for a R of
cardinality ℵ1. Define U−glob to be the class of all cl-closed substructures
of U with embedding ≺ of structures defined as closed embeding, that
is

U1 ≺ U2 if and only if U1 ⊂ U2 and, for finite W ⊂ U1,

clU1(W ) = clU2(W ).

Now define Uglob to be the smallest class which contains U−glob and
is closed under unions of ≺-chains.

5.5 Lemma.
U ⊆ Uglob.

Proof. We need to show that U(R) ∈ Uglob, for any R ∈ ModAn.
We prove by induction on κ = cardR ≥ ℵ1 that there is a κ-chain

{Uλ ∈ Uglob ∶ λ ∈ κ} such that ⋃
λ∈κ

Uλ = U(R).

Indeed, R can be represented as

R = ⋃
λ<κ

Rλ

for an elementary chain

{Rλ ∈∶ λ ∈ κ}, cardRλ = cardλ + ℵ0, Rλ ≺ Rµ for λ < µ.

Hence
Uλ ∶= U(Rλ) ∈ Uglob

which proves the inductive step and the lemma. �

5.6 Theorem. Assuming dimK U = 1, the class Uglob is an abstract
elementary class extending U. Uglob is categorical in uncountable car-
dinals and can be axiomatised by an Lω1,ω(Q)-sentence.

Proof. The first part is by 5.4 - 5.5 above. The second part is the
main result, Theorem 2.3, of [8]. �
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