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First question: in what sense the (mathematical)
physics we study reflects the ”real universe”? What
is ”real universe” for the mathematician?
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First question: in what sense the (mathematical)
physics we study reflects the ”real universe”? What
is ”real universe” for the mathematician?

A plausible answer to the second part of the ques-
tion: the real universe is a structure, say M, that
is a domain (set of points, ”events”, ”particles”,...)
with some relations R(x1, ..., xn) between its ele-
ments. The relations have some topological mean-
ing:

R(x̄) ⇔ r(x̄) = 0

or
R(x̄) ⇔ r(x̄) ≤ a

some nice function r. Sets defined by such relations
are called closed.
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Second question: what property of the ”real” M
allows laws of physics? why do we hope that a few
laws of physics can describe M?

Philosophers call this property ”algorithmic com-
pressibility”.

In model theory we have a corresponding notion
categoricity in uncountable powers: very
large structure M describable uniquely by its (count-
able) first order theory.
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Categoricity of M has strong structural
consequences.

In combination with the topological assumption on
M we come to the definition of Zariski Geometry:
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Zariski structures
Let M be a structure given with a family of basic
relations (subsets of Mn) called closed.

We postulate for a Noetherian Zariski structure M :
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Closed subsets form a Noetherian Topology

Dimension is assigned to any closed S ⊆ Mn

Completeness: Projections of closed are closed

Addition formula:

dim S = dim pr(S) + min
a∈pr(S)

dim(pr−1(a) ∩ S)

for any closed irreducible S.

Pre-smoothness: For any closed irreducible
S1, S2 ⊆ Mn,

dim S1 ∩ S2 ≥ dim S1 + dim S2 − dim Mn

in each component.
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Known Noetherian Zariski structures

1. Smooth complete algebraic varieties over an alge-
braically closed field, in the natural language (1990).

2. Compact complex manifolds, in the natural lan-
guage (1993).

3. Solution spaces of well-defined systems of (par-
tial) differential equations. (2001)

4. Many non-commutative geometries (2003-...).
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Classification Theorem (Hrushovski, Z. 1993)
and its later (Z. 2003-...) extensions.

A typical Zariski geometry is a “space of states”
corresponding to a non-commutative C∗-algebra.

In particular, given a quantum algebraA at roots of
unity there is a canonical construction of a Noethe-
rian Zariski geometry M = M(A)

A ↔ M.
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Classification Theorem (Hrushovski, Z. 1993)
and its later (Z. 2003-...) extensions.

A typical Zariski geometry is a “space of states”
corresponding to a non-commutative C∗-algebra.

In particular, given a quantum algebraA at roots of
unity there is a canonical construction of a Noethe-
rian Zariski geometry M = M(A)

A ↔ M.

In general root of unity, is not a necessary condi-
tion but some condition (compactifiability?) must
be satisfied.
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Example. The Heisenberg algebra (P, Q) with
defining relation

QP− PQ = ih

is not compactifiable in this sense.
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Example. The algebra (P, Q) with defining rela-
tion

QP− PQ = ih

is not compactifiable in this sense.

Let U = eiQ, V = eiP, q = eih. Then

UV = qV U

and Aq(C) = (U, V ) satisfies the compactness con-
dition. Correspondingly,
there exists a 2-dimensional Zariski structure T 2

q (C)

T 2
q (C) ↔ Aq(C).
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T 2
q (C) is a structure over C∗×C∗ of two line bun-

dles with connections:

U -bundle |u, v〉 with connection given by V,

U : |u, v〉 7→ u · |u, v〉 V : |u, v〉 7→ v · |uq, v〉
(|u, v〉 is the trivialisation)

V -bundle with connection given by U,

V : |v, u〉 7→ v · |v, u〉 U : |v, u〉 7→ u · |vq−1, u〉
(|v, u〉 is the trivialisation)

Think of |u, v〉 as |x〉 and |v, u〉 as |p〉,
u = eix, v = eip.
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T 2
q (C) is a structure over C∗×C∗ of two line bun-

dles with connections:

U -bundle |u, v〉 with connection given by V,

U : |u, v〉 7→ u · |u, v〉 V : |u, v〉 7→ v · |uq, v〉
(|u, v〉 is the trivialisation)

V -bundle with connection given by U,

V : |v, u〉 7→ v · |v, u〉 U : |v, u〉 7→ u · |vq−1, u〉
(|v, u〉 is the trivialisation)

Think of |u, v〉 as |x〉 and |v, u〉 as |p〉,
u = eix, v = eip.
Crucially, there is a formal pairing

〈v, u|v′, u′〉
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The pairing can be properly explained only
by approximating T 2

q (C) with T 2
ε (C), ε –

root of unity.
This corresponds to choosing

h =
2π

N
, positive integer N.
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The pairing can be properly explained only
by approximating T 2

q (C) with T 2
ε (C), ε –

root of unity.
This corresponds to choosing

h =
2π

N
, positive integer N.

Structural approximation. Let MN , N ∈ I,
be a sequence of topological (Zariski) structures a
compact structure M and an ultrafilter D on I such
that there is a surjective homomorphism (preserves
all “equations”)

∏

N

MN/D → M.

We say in this case that the sequence of structures
MN approximates M along the ultrafilter D.
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Structural approximation generalises algebro-geometric
deformation and metric approximation, e.g. Gromov-
Hausdorff limit of metric spaces
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Theorem (tentative). For a sequence T 2
ε (C)

to approximate T 2
q (C) it is sufficient and necessary

that,
(a)

lim
N

2π

N
= h

and
(b) given m ∈ N, for almost all N (with respect to
the ultrafilter) m|N.
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Theorem (tentative). For a sequence T 2
ε (C)

to approximate T 2
q (C) it is sufficient and necessary

that,
(a)

lim
N

2π

N
= h

and
(b) given m ∈ N, for almost all N (with respect to
the ultrafilter) m|N.

Corollary. We may replace h by 2π
N such that

m|N for all m << N.
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Now we work in an irreducible (U, V )-module gen-
erated by |u, v〉.

{|uqk, v〉 : k = 0, 1 . . . N − 1}
forms an orthonormal basis of U -eigenvectors.

{|vqm, v〉 : m = 0, 1 . . . N − 1}
a dual basis.
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Now we work in an irreducible (U, V )-module gen-
erated by |u, v〉.

{|uqk, v〉 : k = 0, 1 . . . N − 1}
forms an orthonormal basis of U -eigenvectors.

{|vqm, v〉 : m = 0, 1 . . . N − 1}
a dual basis of V -eigenvectors.

|vqm, u〉 =
1√
N

∑

0≤k<N

q−mk|uqk, v〉

|uqk, v〉 =
1√
N

∑

0≤m<N

qkm|vqm, u〉

N = dim =
2π

h
.
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What changes if we replace U, V by Ua, V b,
a, b ∈ Q?
Then

UaV b = qabV bUa

and the dimension N of the irreducible module changes.
From the condition on structural approx-
imation the new

dim =
N

ab
.

Correspondingly

|vqabm, u〉 =

√
ab

N

∑

k

q−abmk|uqabk, v〉

|uqabk, v〉 =

√
ab

N

∑
m

qabkm|vqabm, u〉
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Time evolution for the free particle

Choose t = m
n and add one more operator

Kt = eiP
2

2ht.

Then

KtV K−t = V and KtUK−t = q
t
2V tU.

We take these identities for an axiomatic definition
of Kt.
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Time evolution for the free particle

Choose t = m
n and add one more operator

Kt = eiP
2

2ht.

Then

KtV K−t = V and KtUK−t = q
t
2V tU := S.

We take these identities for an axiomatic definition
of Kt.

Lemma Kt maps the (orthonormal) system |u, v〉
of U -eigenvectors to an orthonormal system of S-
eigenvectors |u, v〉S.
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Time evolution for the free particle

Choose t = m
n and add one more operator

Kt = eiP
2

2ht.

Then

KtV K−t = V and KtUK−t = q
t
2V tU := S.

We take these identities for an axiomatic definition
of Kt.

Lemma Kt maps the (orthonormal) system |u, v〉
of U -eigenvectors to an orthonormal system of S-
eigenvectors |u, v〉S.

|u, 1〉S = c0

√
t

N

∑

0≤k<N
t

qtk
2

2 |uq−tk, 1〉

|c0| = 1.
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|u, 1〉S = c0

√
t

N

∑

0≤k<N
t

qtk
2

2 |uq−tk, 1〉

|c0| = 1.

Corollary.

〈x1|Kt|x2〉 = c0

√
ht

2π
ei

(x1−x2)2

2ht .
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|u, 1〉S = c0

√
t

N

∑

0≤k<N
t

qtk
2

2 |uq−tk, 1〉

|c0| = 1.

Corollary.

〈x1|Kt|x2〉 = c0

√
ht

2π
ei

(x1−x2)2

2ht .

Alternatively we can express

|u, 1〉S
in terms of |vqm, u〉 and then use

|vqm, u〉 =
1√
N

∑

0≤k<N

q−mk|uqk, v〉.

Thus we get another expression

|u, 1〉S =
t

N

∑

k<N
t

∑

p<N
t

q−t(p
2

2 −pk)|uqkt, 1〉.
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Comparing the two expressions for 〈x1|Kt|x2〉, we
get Gauss’ sum

∑

0≤p<N
t

q−t(p
2

2 −pk) = c0

√
N

t
qtk

2

2 = c0

√
2π

ht
ei

(x1−x2)2

2ht

known to hold for even integers (!) N
t .

c0 =
1 + i√

2

This corresponds to the usual (non-convergent) in-
tegral calculation

1√
2π

∫
e−ax2/2e−ipxdx =

1√
a
e−p2/2a.
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Time evolution for Harmonic oscillator

Kt = eitHh .

Similar strategy can be applied.
First we calculate in the usual way that

Kt
HUK−t

H = q
sin t cos t

2 V sin tU cos t

Kt
HV K−t

H = q−
sin t cos t

2 V cos tU− sin t
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Time evolution for Harmonic oscillator

Kt = eitHh .

Similar strategy can be applied.
First we calculate in the usual way that

Kt
HUK−t

H = q
sin t cos t

2 V sin tU cos t

Kt
HV K−t

H = q−
sin t cos t

2 V cos tU− sin t

Pick up t such that

e = sin t, f = cos t g = ef−1, e, f, g ∈ Q
We work in a (Uf , V g)-system, that is the identity

UfV g = qeV gUf (use e = fg)
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Time evolution for Harmonic oscillator

Kt = eitHh .

Similar strategy can be applied.
First we calculate in the usual way that

Kt
HUK−t

H = q
sin t cos t

2 V sin tU cos t

Kt
HV K−t

H = q−
sin t cos t

2 V cos tU− sin t

Pick up t such that

e = sin t, f = cos t g = ef−1, e, f, g ∈ Q
We work in a (Uf , V g)-system, that is the identity

UfV g = qeV gUf (use e = fg)
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Direct calculation as above yield

〈x1|Kt|x2〉 =

= c0

√
h · | sin t|

2π
exp i

(x2
1 + x2

2) cos t− 2x1x2

2h sin t
|c0| = 1.

Or, in a different normalisation (if we replace sums
by integrals)

c0
1√

2πh · | sin t| exp i
(x2

1 + x2
2) cos t− 2x1x2

2h sin t
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