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First question: in what sense the (mathematical)
physics we study reflects the "real universe””? What
is "real universe” for the mathematician?”



First question: in what sense the (mathematical)
physics we study reflects the "real universe””? What
is "real universe” for the mathematician?”

A plausible answer to the second part of the ques-
tion: the real universe is a structure, say M, that
is a domain (set of points, "events”, "particles”,...)
with some relations R(xq,...,Zn) between its ele-
ments. The relations have some topological mean-

ng:

R(z) < r(z)=0
or

Rz)<er(z)<a
some nice function r. Sets defined by such relations
are called closed.



Second question: what property of the "real” M
allows laws of physics? why do we hope that a few
laws of physics can describe M7

Philosophers call this property ” algorithmic com-
pressibility”.

In model theory we have a corresponding notion
categoricity in uncountable powers: very
large structure M describable uniquely by its (count-
able) first order theory.



Categoricity of M has strong structural
consequences.

In combination with the topological assumption on
M we come to the definition of Zariski Geometry:



Zariski structures
Let M be a structure given with a family of basic
relations (subsets of M™) called closed.

We postulate for a Noetherian Zariski structure M:



Closed subsets form a Noetherian Topology
Dimension is assigned to any closed S C M"

Completeness: Projections of closed are closed

Addition formula:

dim S = dimpr(S) + min dim(pr—(a) N S)
acpr(.S)

for any closed irreducible S.

Pre-smoothness: For any closed irreducible
51,52 € M™,

dim S1 N Sy > dim Sy + dim Sy — dim M™

in each component.



Known Noetherian Zariski structures

1. Smooth complete algebraic varieties over an alge-
braically closed field, in the natural language (1990).

2. Compact complex manifolds, in the natural lan-
guage (1993).

3. Solution spaces of well-defined systems of (par-
tial) differential equations. (2001)

4. Many non-commutative geometries (2003-...).



Classification Theorem (Hrushovski, Z. 199:
and its later (Z. 2003-...) extensions.

A typical Zariski geometry is a “space of states”
corresponding to a non-commutative C*-algebra.

In particular, given a quantum algebra A at roots of
unity there is a canonical construction of a Noethe-

rian Zariski geometry M = M(A)
A < M.

10



Classification Theorem (Hrushovski, Z. 199:
and its later (Z. 2003-...) extensions.

A typical Zariski geometry is a “space of states”
corresponding to a non-commutative C*-algebra.

In particular, given a quantum algebra A at roots of
unity there is a canonical construction of a Noethe-

rian Zariski geometry M = M(A)
A < M.

In general root of unity, is not a necessary condi-
tion but some condition (compactifiability?) must
be satisfied.
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Example. The Heisenberg algebra (P, Q) with
defining relation

QP — PQ = ih

is not compactifiable in this sense.
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Example. The algebra (P, Q) with defining rela-
tion

QP — PQ = ih

is not compactifiable in this sense.

Let U = eiQ, V = 67}), qg= e Then
UV =qVU

and A, (C) = (U, V) satisfies the compactness con-
dition. Correspondingly,
there exists a 2-dimensional Zariski structure TqZ((C

THC) —  AC).
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TQQ(CC) is a structure over C* x C* of two line bun-
dles with connections:

U-bundle |u, v) with connection given by V,
U:lu,v) = w-lu,v)  Vifu,v)—wv-|ugv)

(|u, v) is the trivialisation)

V-bundle with connection given by U,

Vilv,u)—o-lo,u) U:lo,u) —u-jog )

(v, u) is the trivialisation)

Think of |u,v) as |x) and |v,u) as |p),
u=e" v=e?
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TQQ(CC) is a structure over C* x C* of two line bun-
dles with connections:

U-bundle |u, v) with connection given by V,
U:lu,v) = w-lu,v)  Vifu,v)—wv-|ugv)

(|u, v) is the trivialisation)

V-bundle with connection given by U,

1

Vilvu) —v-lv,u)y U:lvu) —u-|vg ,u)

(v, u) is the trivialisation)
Think of |u,v) as |x) and |v,u) as |p),
uw=e? p=el

Crucially, there is a formal pairing

(v, ulv’, )
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The pairing can be properly explained only
by approximating TqQ((C) with T2(C), e —
root of unity.

This corresponds to choosing

2T
h = N positive integer /V.
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The pairing can be properly explained only
by approximating TqQ((C) with T2(C), e —
root of unity.

This corresponds to choosing

2T
h = N positive integer /V.

Structural approximation. Let My, N € I,
be a sequence of topological (Zariski) structures a
compact structure M and an ultrafilter D on I such
that there is a surjective homomorphism (preserves
all “equations”)

HMN/D — M.
N

We say in this case that the sequence of structures
My approximates M along the ultrafilter D.
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Structural approximation generalises algebro-geometr
deformation and metric approximation, e.g. Gromot
Hausdorff limit of metric spaces
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Theorem (tentative). For a sequence T2(C)

to approximate qu (C) it is sufficient and necessary
that,
(2) ,
-

lim— = h

N N
and
(b) given m € N, for almost all N (with respect to

the ultrafilter) m|N.
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Theorem (tentative). For a sequence T2(C)

to approximate qu (C) it is sufficient and necessary
that,
@) 27
hj{fn v h
and
(b) given m € N, for almost all N (with respect to

the ultrafilter) m|N.

Corollary. We may replace h by QWW such that
m|N for all m << N.
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Now we work in an irreducible (U, V')-module gen-
erated by |u, v).

{lug®,v) :k=0,1...N—1}

forms an orthonormal basis of U-eigenvectors.

{log v) m=0,1...N —1}

a dual basis.
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Now we work in an irreducible (U, V')-module gen-
erated by |u, v).

{lug®,v) :k=0,1...N—1}

forms an orthonormal basis of U-eigenvectors.

{log v) m=0,1...N —1}
a dual basis of V-eigenvectors.

—mk k
|Uq Y —— Z " |uq 7U>
\/_ 0<k<
k 1 km| ..m
|Uq 7U> Y q |Uq ,U>
\/NOgm<N
2
N = dim = alll

T



What changes if we replace U,V by U®, V?
a,be Q?
Then
Uavb — qabvaa
and the dimension IV of the irreducible module change

From the condition on structural approx-
imation the new

N
dim = —

ab
Correspondingly

abm Z —abmk abk
= 1 |25 lug™™, v)
abk / Z qabkm ’ " qa,bm >
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Time evolution for the free particle

Choose t = = and add one more operator

P2
Kt = "2t

Then
KWK =V and KIUK ™t = 2VU.

We take these identities for an axiomatic definition
of K1,
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Time evolution for the free particle

Choose t = = and add one more operator

P2
Kt = "2t

Then
¢ —t trr-—t Lt
K'VK "=V and KUK "= q@V'U .= 5.
We take these identities for an axiomatic definition

of Kt.

Lemma K maps the (orthonormal) system |u, v)
of U-eigenvectors to an orthonormal system of S-
eigenvectors |u, v)g.
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Time evolution for the free particle

Choose t = = and add one more operator

P2
Kt = "2t

Then
K'VEK™ =V and KIUK™ = 2V = S,

We take these identities for an axiomatic definition
of Kt.

Lemma K maps the (orthonormal) system |u, v)
of U-eigenvectors to an orthonormal system of S-
eigenvectors |u, v)g.



2
u, 1) g —00\/ > ¢ Tlug 1)

O§k<t
lcol = 1.
Corollary.

hit (:1: x )2
(01| K g) = coy[5=€’ B
2T
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2
u, 1) g —00\/ > ¢ Tlug 1)

O§k<t
lcp| = 1.
Corollary.
ht .(r1—w9)
(21| K'|w9) = co\[ =€ AT
2T
Alternatively we can express
u,1)g

in terms of |vg", > and then use

vg™, Z ¢ " ug", v).

O<k<N
Thus we get another expression

u,1)s S‘ S‘ P g, 1)

k< p<t
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Comparing the two expressions for (x1|K?|xs), we
get Gauss’ sum

D k) _ \/ \/2—77@ ok

known to hold for even integers (!) %

1+

C:
N

This corresponds to the usual (non-convergent) in-
tegral calculation

2 - 1 2
T /2€—zpzzzahj _ D /2a.

] Ja
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Time evolution for Harmonic oscillator

Kt it
Similar strategy can be applied.

First we calculate in the usual way that

sintcost

K}_[ UK[jlt — q 5 VSiH tUCOS t

__sintcost

K;[VK;[?S — q TVCOStU_ sint
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Time evolution for Harmonic oscillator

Kt it
Similar strategy can be applied.

First we calculate in the usual way that

sintcost

K}_[ UK[jlt — q 5 VSiH tUCOS t

__sintcost

KLV = =ty costy—sint
Pick up t such that
e =sint, f =cost g= ef_l, e, f,g€Q
We work in a (U7, VY9)-system, that is the identity
UIVI = ¢VIUS  (use e = fg)
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Direct calculation as above yield

(w1 K'|zg) =
\/h- | sint| (.f%—l—l'%) cost — 2x1x9
= exp i
! 2T P 2hsint
col = 1.

Or, in a different normalisation (if we replace sums
by integrals)

1 (29 + 23) cost — 2x179
C exp i ,
O\/Qﬂ'h- | sin | 2hsin t
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