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Abstract

We study structures on the fields of characteristic zero obtained
by introducing (multivalued) operations of raising to power. Using
Hrushovski-Fraisse construction we single out among the structures
exponentially-algebraically closed once and prove, under certain Dio-
phantine conjecture, that the first order theory of such structures is
model complete and every its completion is superstable.
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1 Introduction

This paper deals with some of the issues discussed in [Z1] and is part
of the program of applying ideas around Hrushovski’s construction of
’new strongly minimal structures’ for understanding classical analytic
structures.

We consider here the class of two-sorted structures of the form
(D, ex, R) where D (the domain of ex) is an infinite-dimensional vector
space over a fixed field K of characteristic zero in the usual language
of vector spaces, R (the range) a field of characteristic zero and ex is
a homomorphism of the additive group of D onto the multiplicative
group R× of the field.

1



In these structures, for a ∈ K, one can consider the relation

∃z(x = ex(z)&y = ex(a · z))

which in the case of D = R = C and ex = exp is represented locally
by a transcendental analytic function y = xa. Also, in the structures
where the kernel ker of ex is an infinite cyclic group one may consider
definable finitely generated groups of the form a1 · ker + . . .+ an · ker
for a1, . . . , an ∈ K. At the same time ex(a1 · ker + . . . + an · ker) is
a finitely generated multiplicative subgroup in the field R. Thus the
structures carry some interesting Diophantine geometry.

We introduce a predimension δ for finite subsets X ⊆ D :

δ(X) = l.d.K(X) + tr.d.(ex(X))− l.d.Q(X)

where l.d.K(X) is the dimension of the vector space over K generated
by X, l.d.Q(X) is the dimension of the vector space over Q generated
by X, tr.d. the transcendence degree.

Given a non-negative integer d, we consider the subclass Ed of the
class defined by the condition

δ(X) ≥ −d for any finite X ⊆ D. (1)

The class is always non-empty. The condition (1) is satisfied for the
complex numbers (as D and R) and ex = exp if K is a subfield of C
of a finite transcendence degree d and the Schanuel Conjecture holds.

This class proves to have a very nice model theory provided a
number-theoretical conjecture on intersections of varieties with tori
holds. In the terminology of [Z2] a basic torus is an algebraic sub-
group of the multiplicative group (R×)n (virtually given by a set of
equations of the form ym1

1 · . . . · ymnn = 1 with integer powers) and a
torus is a coset of a basic torus. Notice also that (R×)n is a torus
itself, so we say that a torus T ⊆ (R×)n is a proper subtorus, if
T 6= (R×)n.

The conjecture CIT states:
Let W ⊆ Rn be a Q-definable algebraic variety irreducible over Q.

Then there is a finite family τ(W ) of proper subtori of (R×)n such
that for any basic torus T ⊆ (R×)n and any irreducible component S
of the intersection W ∩ T satisfying

dimS > dimW + dimT − n
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there is Ti ∈ τ(W ) with S ⊆ Ti.

The Schanuel conjecture states that for any additively indepen-
dent complex numbers x1, . . . , xn

tr.d.(x1, . . . , xn, exp(x1), . . . , exp(xn)) ≥ n.

In [Z2] we formulate and discuss connections between a stronger Uni-
form Schanuel conjecture and CIT.

Under the assumption that CIT holds we prove that
(i) the class Ed is axiomatizable;
(ii) the subclass ECd of Ed-existentially closed structures is the

model completion of Ed in the existential expansion of the language,
its theory allows elimination of quantifiers in the expanded language
and any completion of the theory is superstable.

This allows us to study the classical structure, the field of the com-
plex numbers with raising to real powers. It corresponds to the case
D = R = C, ex = exp and K = R. Using [Z2] (which is based on works
of D.Bernstein, A.Kushnirenko, A.Khovanski and B.Kazarnovski) we
give a complete set of axioms for the structure and prove that it is
superstable and allows elimination of quantifiers to the level of exis-
tential formulas, provided the Schanuel Conjecture along with CIT
hold. In fact the Uniform Schanuel conjecture is sufficient.

The author is thankful to the referee of the paper for suggesting
many useful improvements.

2 Definitions and notation

This section along with definitions and notations discusses basic in-
gredients of Hrushovski’s construction which is standard enough, so
the reader can guess the proofs if they seem too short or are absent.

We use here some of the terminology of [Z2], slightly improved,
where we discussed K-linear and affine spaces, tori and their intersec-
tions with algebraic varieties.

For technical reasons we find it more convenient to represent the
two-sorted structures (D,R) in the equivalent way as one sorted struc-
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tures in the language LK which is the extension of the language of
vector spaces over Q by:

an equivalence relation E,
n-ary predicates L(x1, . . . , xn) for linear subspaces L ⊆ Dn given

by a set of K-linear equations in x1, . . . , xn,
n-ary predicates EW for algebraic varieties W ⊆ Rn definable and

irreducible over Q.

The interpretation can be explained in the above mentioned terms
as follows:

E(x, y) ≡ [ex(x) = ex(y)],
L(x1, . . . , xn) ≡ [〈x1, . . . , xn〉 ∈ L],
EW (x1, . . . , xn) ≡ [〈ex(x1), . . . , ex(xn)〉 ∈W ].

Definition E(K) is the class of structures D in language LK with
axioms saying that D is an infinite-dimensional vector space over K,
E is an equivalence relation on D which is congruent with respect to
the relations EW (x1, . . . , xn), R× = D/E can be identified with the
multiplicative group of a field of characteristic zero and the predicates
EW define its algebraic varieties over Q. The canonical mapping

ex : D → R×

is a homomorphism of the additive group of D into the multiplicative
group R× of the field.
The set of axioms above we denote PF(K) (K-powered field of char-
acteristic zero).

Notation For finite X,X ′ ⊆ D, Y, Y ′ ⊆ R
l.d.K(X) the dimension of the vector space spK(X) generated by

X over K;
l.d.Q(X) the dimension of the vector space spQ(X) generated by

X over Q;
tr.d.(Y ) the transcendence degree of Y ;
δ(X) the predimension of finite X ⊆ D :

δ(X) = l.d.K(X) + tr.d.(ex(X))− l.d.Q(X);

δ(X/X ′) = δ(X ∪X ′)− δ(X ′);
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For infinite Z ⊆ A and k ∈ Z δ(X/Z) ≥ k by definition means
that for any Y ⊆fin Z there is Y ⊆fin Y ′ ⊆ Z such that δ(X/Y ′) ≥ k,
and δ(X/Z) = k means δ(X/Z) ≥ k and not δ(X/Z) ≥ k + 1.

We let also
l.d.K(X/X ′) = l.d.K(X ∪X ′)− l.d.K(X ′);
tr.d.(Y/Y ′) = tr.d.(Y ∪ Y ′)− tr.d.(Y ′);
l.d.Q(X/X ′) = l.d.Q(X ∪X ′)− l.d.Q(X ′);
ker is the name of a unary predicate of type EW : x ∈ ker ≡

ex(x) = 1. We write ker|A for the realisation of this predicate in A.

Given d ∈ Z denote Ed(K) the subclass of E(K) consisting of all
D satisfying the condition:

δ(X) ≥ −d for all finite X ⊆ D.

Below we fix K and write simply Ed instead of Ed(K).

Denote SE the class of the substructures of the structures of E in
the language LK .

Given an integer d denote SEd the subclass of SE consisting of A
which satisfy δ(X) ≥ −d for any finite X ⊆ A.

Remark For any structure A in E and any X ⊆ ker|A in the structure

δ(X) ≤ 0

and thus Ed is empty for d < 0.

Notation Denote E0 (correspondingly SE0) the subclass of E (SE)
consisting of the structures A such that

δ(X) = 0

holds for any X ⊆ ker|A .

Remark Evidently E0 ⊆ E0.

Notation Denote E0
d = E0 ∩ Ed, SE0

d = SEd ∩ SE0.
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Definition A subspace L ⊆ Dn is said to be K-linear if there are
ki,j ∈ K (i ≤ r, j ≤ n) such that

L = {〈x1, . . . , xn〉 ∈ Dn : ki,1x1 + . . .+ ki,nxn = 0}.

Define dimL to be the corank of the matrix (ki,j), equivalently, the
Morley rank of the definable subset L of the vector space D.
Let L ⊆ Dn+l be a K-linear subspace, ā = 〈a1, . . . , al〉. Denote

L(ā) = {〈x1, . . . , xn〉 ∈ Dn : 〈x1, . . . , xn, a1, . . . , al〉 ∈ L}.

An affine subspace V ⊆ Dn is said to be K-affine defined over
the set C ⊆ D if V = L(c̄) for some K-linear subspace L ⊆ Dn+l

and c̄ ∈ C l.
The same terminology is applied for Q instead of K.

For L ⊆ Dn K-linear denote L̄ the minimal Q-linear subspace of
Dn containing L.
For W ⊆ Rn+l an algebraic variety, b̄ = 〈b1, . . . , bl〉 denote

W (b̄) = {〈x1, . . . , xn〉 ∈ Rn : 〈x1, . . . , xn, b1, . . . , bl〉 ∈W}.

Remark A K-affine subspace is defined over a set C iff
V = L0 + ā for some ā ∈ Dn ∩ spK(C) and L0 K-linear.

Lemma 2.1 If X = {x1, . . . xn+l} ⊆ D, X ′ = {xn+1, . . . xn+l}, x̄ =
〈x1, . . . xn+l〉, x̄′ = 〈xn+1, . . . xn+l〉 then:

l.d.K(X) = dimL, for L ⊆ Dn+l the minimal K-linear subspace
containing x̄;

l.d.Q(X) = dim L̄;
tr.d.(ex(X)) is the dimension of the minimal variety over Q con-

taining ex(x̄);
δ(X/X ′) = l.d.K(X/X ′) + tr.d.(ex(X)/ex(X ′))− l.d.Q(X/X ′);
l.d.K(X/X ′) = dimL(0l), where 0l is a string of l zeroes;
l.d.Q(X/X ′) = dim L̄(0l).

Proof Immediate from the definitions.2

Notation For A,B ∈ SE denote by A ≤ B the fact that A ⊆ B
as structures and δ(X/A) ≥ 0 for all finite X ⊆ B.
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Lemma 2.2 For any structure A of the class SE and finite X,Y, Z ⊆
A :

(i) If spQ(X ′) = spQ(X) then δ(X ′) = δ(X).
(ii) If spQ(X ′Y ) = spQ(XY ) then δ(X/Y ) = δ(X ′/Y ).
(ii) If spQ(Y ) = spQ(Y ′) then δ(X/Y ) = δ(X/Y ′).
(iv) δ(XY/Z) = δ(X/Y Z) + δ(Y/Z).

Lemma 2.3 For A,B,C ∈ SE
(i) if A ≤ B and B ≤ C, then A ≤ C;
(ii) if A ≤ B, Y ⊆ B, δ(Y/A) = 0, then AY ≤ B.

Proof Immediate from the definitions.2

Notation Let A ∈ SEd and X ⊆ A finite. Denote

∂A(X) = min{δ(X ′) : X ⊆ X ′ ⊆ A}.

Lemma 2.4 Let A ∈ SEd and X ⊆ A finite. Choose X ′ ⊆ A finite
such that

δ(X ′) = ∂A(X).

Then X ′ ≤ A.

Proof Immediate from the definitions.2

Lemma 2.5 Let A,B ∈ SEd, A ≤ B and X a finite subset of A.
Then

∂A(X) = ∂B(X).

Proof Immediate from the definitions.2

Lemma 2.6 Suppose A ∈ SEd, A′ ∈ SE , A′ = spQ(AX), and δ(X ′/A) ≥
0 for all finite X ′ ⊆ spQX. Then A′ ∈ SEd and A ≤ A′.

Proof We may assume that X is Q-linearly independent over A. Let
Z ⊆ A′, Z = {z1, . . . zn}, and zi = xi + yi for some xi ∈ spQ(X),
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yi ∈ A. Let {x1, . . . xk} be a Q-linear base of {x1, . . . xn}. Then, using
Lemma 2.2,

δ(Z) = δ(x1 + y1, . . . xk + yk, y
′
k+1, . . . , y

′
n)

for y′k+1, . . . , y
′
n appropriate Q-linear combinations of y1, . . . yn.

Rewrite

δ(Z) = δ({x1 + y1, . . . xk + yk}/{y′k+1, . . . , y
′
n}) + δ(y′k+1, . . . , y

′
n).

By the assumtions δ(y′k+1, . . . , y
′
n) ≥ −d. On the other hand

δ({x1 + y1, . . . xk + yk}/{y′k+1, . . . , y
′
n}) ≥ δ({x1, . . . xk}/A) ≥ 0

since
l.d.K({x1+y1, . . . xk+yk}/{y′k+1, . . . , y

′
n}) ≥ l.d.K({x1+y1, . . . xk+

yk}/A) ≥ l.d.K({x1, . . . xk}/A),
tr.d.(ex{x1 + y1, . . . xk + yk}/ex{y′k+1, . . . , y

′
n}) ≥

tr.d.(ex{x1 + y1, . . . xk + yk}/exA) ≥ tr.d.(ex{x1, . . . xk}/exA)
and

l.d.Q({x1+y1, . . . xk+yk}/{y′k+1, . . . , y
′
n}) = k = l.d.Q({x1, . . . xk}/A).

Thus
δ(Z) ≥ −d.

The same argument shows that

δ(Z/A) ≥ 0.

2

Lemma 2.7 There is an A ∈ SEd.

Proof Take an additive subgroup A = ω · Q ⊆ D for ω a non-zero
element in D. Define H = A/ωZ. Then H, considered as a multiplica-
tive group, is characterized by the property that it is a torsion group
such that any equations of the form xn = h has for any h exactly
n solutions. In other words H is isomorphic to the torsion subgroup
of an algebraically closed field R of characteristic 0. Define ex as
the canonical homomorphism A → R× corresponding to this isomor-
phism. Obviously, δ(X) = 0 for any finite X ⊆ A.2
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Lemma 2.8 Suppose A ∈ SEd and ex(A) contains the torsion sub-
group of the field. Then there is D ∈ Ed and an embedding of A into
D such that A ≤ D and ker|D = ker|A .

Proof Choose algebraically closed fields D and R of characteristic zero
such that A ⊆ D, A/E ⊆ R× and l.d.K(D/A) = tr.d.(R/exA) ≥ ℵ0.
We want to define ex : D → R× extending exA so that D ∈ Ed.

Denote A0 = A, ex0 = exA and H0 = ex0(A0).
Proceed by induction defining Aα, Hα and an endomorphism

exα : Aα → Hα

by choosing:
On the even steps: the first element a ∈ D\Aα and define exα+1(a)

to be any element in R× \acl(Hα). Put Aα+1 = Aα+Q ·a and extend
exα+1 to Aα+1 as a group homomorphism. Put Hα+1 = exα+1(Aα+1).

On the odd steps: the first element h ∈ R× \Hα and define a to be
any element in D \ spK(Aα) and exα+1(a) = h. Put Aα+1 = Aα+Q ·a
and extend exα+1 to Aα+1 as a group homomorphism. Put Hα+1 =
exα+1(Aα+1).

On both even and odd steps it follows from Lemma 2.6 that Aα+1 ∈
SEd and Aα ≤ Aα+1.

Also,
ker|Aα+1

= ker|Aα

since if ex(qa + a′) = 1 for some rational q = m
n and a′ ∈ Aα then

hm = gn for h = ex(a), g = ex(a′) ∈ Hα. Since by assumptions Hα

contains a root of degree m of gn, and h /∈ Hα, only q = 0 is possible.
2

3 Exponentially-algebraically closed struc-

tures

Definition A structure D in E0
d is said to be E0

d -exponentially-
algebraically closed (e.a.c.) if for any D′ ∈ E0

d , such that D ≤ D′,
any finite quantifier-free type over D which is realized in D′ has a
realization in D.
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Denote EC0
d the class of E0

d -exponentially-algebraically closed struc-
tures, or, in the shorter form, EC.

It follows from the transitivity of ≤-embedding and the inductive-
ness of the class Ed in the standard way

Proposition 1 For any D in E0
d there exists E0

d -e.a.c. structure con-
taining D.

Below D is always an E0
d -exponentially-algebraically closed struc-

ture.
By Lemma 2.5 we may omit D when writing ∂D.

Notation cl(A) = {b : ∂(Ab) = ∂(A)}

Lemma 3.1 The operator A 7→ cl in D is a closure operator, i.e. it
satisfies

(i) A ⊆ B implies A ⊆ cl(A) ⊆ cl(B);
(ii) cl(cl(A)) = cl(A);
(ii) For any b, c ∈ D : b ∈ cl(A, c) \ cl(A)→ c ∈ cl(A, b).

Proof Standard.2

We want to find out now what are the systems of equations and
inequalities that have solutions in any e.a.c.-structure.

Definition For C ⊆ D, an K-affine variety V ⊆ Dn and an alge-
braic variety W ⊆ Rn it is said that the pair (V,W ) is definable
over C if V is definable over spQ(C) and the variety W is definable
over the field Q(ex(spQ(C))) (we often say ’defined over ex(spQ(C))).

If W is irreducible over the corresponding set, then the pair is said
to be irreducible over C.
V is said to be free of additive dependencies over C if there is
no proper Q-affine subspace of Dn containing V.
W is said to be free of multiplicative dependencies over C if no
connected component of W lies in a proper subtorus of (R×)n.
A pair (V,W ) is said to be a free pair if both V is free of additive
dependencies and W is free of multiplicative dependencies.

10



Let W ⊆ Rn be an algebraic variety defined and irreducible over some
ex(C) for some C = spQ(C) ⊆ D. A pair (V,W ) is said to be a normal
pair over C if in some extension of D there are 〈a1, . . . , an〉 ∈ V and
〈b1, . . . , bn〉 ∈ W such that for any k ≤ n independent integer vectors
mi = 〈mi,1, . . .mi,n〉, i = 1, . . . , k, and

a′i = mi,1a1 + . . .+mi,nan, b′i = b
mi,1
1 · . . . · bmi,nn

we have

l.d.K(〈a′1, . . . , a′k〉/C) + tr.d.(〈b′1, . . . , b′k〉/ex(C)) ≥ k.

Lemma 3.2 Let C,A ∈ SE finite, C ≤ A, c̄ be the string of all
elements of C and ā be the string of elements of A. Let L be the
minimal K-linear space containing āc̄ and W the minimal algebraic
variety over Q containing ex(āc̄). Then the pair (L(c̄),W (ex(c̄))) is
normal.

Proof Take ā for 〈a1, . . . , an〉 and ex(ā) for 〈b1, . . . , bn〉 in the defini-
tion of normality. Then C ≤ A implies the inequalities required in the
definition. 2

To formulate an equivalent definition of normality we introduce the
following:

Notation Let V ⊆ Dn be an affine K-space defined with parame-
ters c̄. Choose a generic n-tuple ā in the space. Given a matrix m̄
of integer vectors mi = 〈mi,1, . . .mi,n〉, i = 1, . . . , k, consider a′i =
mi,1a1 + . . .+mi,nan and denote m̄V the minimal K-affine subspace
over c̄ containing 〈a′1, . . . , a′k〉, (the K-locus over c̄).

Similarly, for an algebraic variety W ⊆ Rn defined over d̄ and the
same m̄ choose a generic n-tuple b̄ in W, consider b′i = b

mi,1
1 · . . . · bmi,nn

and denote W m̄ the algebraic locus over d̄ of 〈b′1, . . . , b′k〉.
Evidently, the definitions do not depend on the choice of the generic

tuples.

Lemma 3.3 The pair (V,W ) is normal if and only if for any inde-
pendent integer vectors mi = 〈mi,1, . . .mi,n〉, i = 1, . . . , k

dim(m̄V ) + dim(W m̄) ≥ k.
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Proof Immediate from the definitions.2

Lemma 3.4 Let C ⊆ D and (V,W ) a normal free irreducible pair
over C. Let V ′ ⊆ V be a finite union of proper K-affine subspaces
definable over C and W ′ ⊆W a proper algebraic ex(C)-definable sub-
variety. Then there is ā in D such that ā ∈ V \V ′ and ex(ā) ∈W \W ′.
Moreover in some extension D′ ≥ D ā can be chosen generic in V
over C and ex(ā) generic in W over ex(C).

Proof Take ā in some extension of D to be generic in V over D and
b̄ in some extension of R generic in W over R. Choose a sequence
{b̄

1
l : l ∈ N} associated with b̄ in the following sense:

b̄1 = b̄ and (b̄
1
ml )m = b̄

1
l for any m, l ∈ N, and (x̄)m is understood

coordinatewise.
Define ex on A = D + spQ(a1, . . . an) as:

ex(
∑
i

mi

l
ai + d) =

∏
i

(bi
1
l )mi · ex(d)

for any integers mi, l 6= 0 and element d ∈ D. The definition is con-
sistent since V is free of additive dependencies. Evidently the for-
mula defines a homomorphism. The kernel of the homomorphism
coincides with that of ex on D, since W has no multiplicative de-
pendencies. Thus A ∈ SE . Notice that by the normality for any k
independent integer vectors mi = 〈mi,1, . . .mi,n〉, i = 1, . . . , k, it
holds δ({m1ā, . . . ,mkā}/D) ≥ 0.

Thus D ⊆ A satisfy the assumptions of Lemma 2.6 and hence
A ∈ SEd, D ≤ A. By the choice ā ∈ V \V ′ and ex(ā) ∈W \W ′. Since
D ∈ EC there is a realization of the type in D. 2

Proposition 2 A structure D in E0
d is e.a.c. iff given any C ⊆ D, a

normal free pair (V,W ) over C and a finite union V ′ ⊆ V of proper
K-affine subspaces definable over C, there is ā ∈ V ∩ lnW such that
ā /∈ V ′.

12



4 Definability of normality and free-

ness conditions

This technical section heavily relies on [Z2] where in particular a the-
orem of J.Ax is used. Later, while preliminary versions of the present
paper were put on my web-page, B.Poizat [P] and K.Holland [H] used
a preliminary version of [Z2] and the theorem of Ax to prove technical
results very similar to the main result in this section, for their own
purposes (however, linked with a Hrushovski style construction). So it
would be difficult to resolve the priority question if such one happens
to arise.

Let V (a) ⊆ Dn be a K-affine subspace defined over some finite
tuple a from D, V ′(a) a finite union of K-affine subspaces defined
over a, W (b) an algebraic variety defined over b, a tuple from R. In
fact, we may assume a ∈ Dn is a vector such that V (a) = L+a and L
is K-linear. Thus dimV (a) = dimL does not depend on a. Also, V (a)
is free of additive dependencies iff L is. It is evident that the set of a
for which V ′(a) is a proper subset of V (a) is quantifier-free definable
in the K-vector space language. Also, by basic algebraic geometry the
set of b satisfying for a given l the statement:

W (b) is irreducible and dimW (b) ≥ l

is quantifier-free definable in the language of fields.

Our further arguments use the following statement (Corollary 3 of
[Z2]).

Fact 1 Given an algebraic variety W (ā) ⊆ Cn there is a finite collec-
tion µ(W ) of non-zero integer vectors such that for any torus T ⊆ C∗n
and an infinite atypical component S ⊆ W (ā) ∩ T of the intersection
there is m̄ ∈ µ(W ) and a constant c (depending on a and T ) such that
all (a1, . . . , an) in the component satisfy am1

1 · . . . · amnn = c.

Lemma 4.1 The set of b such that W (b) is of dimension l, irreducible
and free of multiplicative dependencies is quantifier-free definable in
the language of fields.
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Proof Given W (b) which is not free of multiplicative dependencies,
W (b) ⊆ T for some proper torus. This implies that W (b) is an atypical
component of W (b)∩ T. By Fact 1 this is equivalent to the statement∨

m̄∈µ(W )

∀ȳ ∈W (b) ȳm̄ = const.

2

Notation Given a basic torus T ⊆ (R×)n there is a uniquely deter-
mined algebraic (group) variety (R×)/T and the corresponding regular
homomorphism

[T ] : (R×)n → (R×)n/T.

We write W/T for the image of W under the homomorphism instead
of [T ](W ). Also, since T is uniquely determined by any of it cosets,
we use the notation also when T is a non-basic torus.

Let T ⊆ P be tori, W ⊆ P. We say that W/T is an atypical
image with respect to P if

dimW/T < min{dimP/T,dimW}.

Easy dimension calculations show for irreducible W ⊆ P, W/T
atypical image, that for any generic w ∈W it holds

dimW ∩ Tw > 0 (2)

and
dimW ∩ Tw > dimW − dimP/T. (3)

The following Fact has been proved in [Z2]: The statement of the
Proposition 1 of [Z2] (or rather its reformulation in the proof) is
stronger than the Fact. The proof assumes CIT but the Corollary
3 of [Z2] (Fact 1 above, the function field case of CIT) in an obvious
way replaces CIT in this proof to yield:

Fact 2 Let W ⊆ RN be an algebraic variety, a ∈ Rr, some r < N,
P ⊆ RN a torus and

{y ∈ P : yaa ∈W} = W (a) ⊆ P.

Then there is a finite collection πP (W ) of basic subtori of P depending
on W only, such that given a torus T ⊆ P, for any connected infinite
atypical component X of W (a)∩T, there exists Q ∈ πP (W ) and c ∈ P
such that X ⊆ Q · c and X is typical in W (a)∩T with respect to Q · c.
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Proposition 3 1 Given W (a) ⊆ P = (F ∗)n an irreducible algebraic
variety, for any basic torus T ⊆ P with atypical image W (a)/T with
respect to P, there is Q ∈ πP (W ) such that

dimW (a)/Q = dimW (a)/T − dimQ/(Q ∩ T )

and
dimW (a)/T = dimW (a)/(Q ∩ T ).

Proof Let w ∈ W (a) be generic and X ⊆ W (a) ∩ T · w be a compo-
nent of the intersection of maximal dimension. Then by the additive
formula

dimW (a)/T = dimW (a)− dimX (4)

and dimX = dimW (a) ∩ T · w > 0. We may assume w ∈ X. By
Fact 2 there is Q ∈ πP (W ) such that (i) X ⊆ Q · w and (ii) X is a
typical component of the intersection (W (a)∩Qw)∩Tw with respect
to Qw. By (i) and the maximality of dimX, we have dimW (a)/T =
dimW (a)/(Q∩T ). And (ii) means that, given a connected component
Y ⊇ X of the variety W (a) ∩Qw, we have

dimX = dimY + dimQ ∩ T − dimQ. (5)

But Y is a component of a generic fiber of the mapping W (a) →
W (a)/Q, and by the classical theorem on dimension of fibers ([S],
Chapter 1, s.6, Thm 7)

dimY = dimW (a) ∩Qw = dimW (a)− dimW (a)/Q. (6)

Combining (4), (5) and (6) we get the requred equality on dimW (a)/Q.2

In case P = (R×)n we write π(W ) instead of πP (W ).

Lemma 4.2 If a pair (V,W (a)) in n-spaces is not normal then either
dimV +dimW (a) < n, or there is Q ∈ π(W ) defined by a matrix q on
l = codim Q independent integer n-rows as Q = {y ∈ (F×)n : yq = 1}
such that

dim qV + dimW (a)q < l.

1I am grateful to Kitty Holland for detecting a serious error in the formulation of the
Proposition in the previous version of the paper. The present version is quite similar to
an unpublushed result of her’s, and her proof is based on the similar results from Section
5 of [Z2]
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Proof Suppose dimV + dimW (a) ≥ n, and the pair is not normal,
which is witnessed by m̄, a set of k < n independent integer n-vectors,
as

dim m̄V + dimW (a)m̄ < k.

By definitions the mapping x → m̄x is is a linear surjective mapping
Dn → Dk and y → ym̄ is a surjective homomorphism (R×)n → (R×)k.
Denote the kernel of the second one T, thus the latter mapping in
notations above is P → P/T, and W (a)m̄ = W (a)/T.

Claim. W (a)/T is an atypical image.
Suppose not. Then, in case dimP/T ≤ dimW (a), we get dimW (a)/T =

dimP/T = k, a contradiction. In case dimW (a) < dimP/T we
get dimW (a)/T = dimW (a). It follows dim m̄V + dimW (a)m =
dimmV + dimW (a) ≥ dimV − dimT + dimW (a) ≥ n − dimT =
dimP/T, which contradicts the assumptions again. Claim proved.

By Proposition 3 there isQ ∈ π(W ) with dimW (a)/Q = dimW (a)/T−
dimQ/(Q ∩ T ) and dimW (a)/(Q ∩ T ) = dimW (a)/T.

Claim 2. W.l.o.g. we may assume that Q ⊇ T.
Indeed, the basic torus Q∩T is given by a sytem of k′ = codim Q∩

T ≥ k independent equations ym
′

= 1.
By definition m′ defines a linear surjective mapping

m′ : Dn → Dk′ , with kerm′ ⊆ kerm, so m can be obtained as the com-
position of m′ with another linear mapping with fibers of dimension
k′ − k. Thus,

dimm′V ≤ dimmV + k′ − k.

On the other hand

dimW (a)m
′

= dimW (a)/(Q ∩ T ) = dimW (a)/T = dimW (a)m.

Thus

dimm′V + dimW (a)m
′ ≤ dimmV + dimW (a)m + k′ − k < k′.

In other words, we can replace T by Q ∩ T, and so m by m′, and still
witness the failure of normality. Claim proved.

Let now the above basic torus Q ⊇ T be given by l = codim Q ≤ k
equations of the form yq = 1, and the matrix q induce the surjective
mappings

Dn → Dl and (R∗)n → (R∗)l.
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Since Q ⊇ T we have dim qV ≤ dimmV, while on R we have
dimW (a)q = dimW (a)m − (k − l), by the definition of Q.

The two last formulas yield

dim qV + dimW (a)q ≤ dimmV + dimW (a)m + l − k.

It follows
dim qV + dimW (a)q < l.

2

Corollary 1 Given V (a), V ′(a),W (ex(a)), as defined in the begin-
ning of the section, the statement about parameters a :

(V (a),W (ex(a))) is a free normal pair and V ′(a) is a proper subset of V (a)

is quantifier-free definable in LK .

Denote the formula from the corollary NFV,V ′,W (a). Denote EC the
set of axioms of the form

∀x[NFV,V ′,W (x)→ ∃y((y ∈ V (x))&(y /∈ V ′(x))&(ex(y) ∈W (ex(x))))]

It follows from Proposition 2

Corollary 2 For any D ∈ E0
d

D |= EC iff D is exponentially-algebraically closed.

5 Axiomatizing Ed
Notation Denote Ed/ ker the subclass of E for which δ(X/ ker) ≥ −d
holds for any finite X ⊆ D.
Denote E0

d/ ker = E0 ∩ Ed/ ker.

Lemma 5.1 For {x1, . . . , xn} ⊆ ker
(i) δ(x1, . . . , xn) = 0 iff l.d.K(x1, . . . , xn) = l.d.Q(x1, . . . , xn);
(ii) the condition δ(X) = 0 for all X ⊆ ker is equivalent to:

xn = k1x1 + . . . + kn−1xn−1 with k1, . . . , kn−1 ∈ K and 0 6= xi ∈ ker
for any i ≤ n implies k1, . . . , kn−1 ∈ Q.
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Proof (i) is immediate from the definitions. To see (ii) assume first
that the condition on ker holds and xn = k1x1+. . .+kn−1xn−1 is a min-
imal counterexample. By (i) then one gets xn = q1x1 + . . .+ qn−1xn−1

for some q1, . . . , qn−1 ∈ Q. Combining the two linear combinations one
comes to ki = qi for all i < n. The converse is obvious.2

Lemma 5.2 Let A ∈ SE0, B ∈ SE and A ≤ B. Then B ∈ SE0.

Proof Let X ⊆ B and X ⊆ ker . Then, since tr.d.(X/A) = 0,

0 ≤ δ(X/A) = l.d.K(X/A)− l.d.Q(X/A)

and hence l.d.K(X/A) = l.d.Q(X/A).
We want to prove that if xn = k1x1+. . .+kn−1xn−1 for x1, . . . , xn ∈

X then all ki ∈ Q.
Suppose x1, . . . , xn is a counterexample with kn−1 ∈ K\Q, x1, . . . , xl ∈
A and xl+1, . . . , xn ∈ B \A with n− l minimal possible.

Notice that then l.d.K(xl+1, . . . , xn/A) = n− l − 1 and hence
l.d.Q(xl+1, . . . , xn/A) = n − l − 1. Thus there are non-trivial integer
coefficients ml+1, . . . ,mn such that ml+1xl+1 + . . . + mnxn = y ∈ A.
It follows y ∈ ker . Combining this with the initial combination one
contradicts minimality.2

Lemma 5.3 E0
d/ ker = E0

d

Proof We assume d ≥ 0. Let D ∈ E0
d/ ker, X ⊆ D. Then δ(X/ ker) ≥

−d which means that δ(X ∪ Y ) ≥ −d for appropriate finite Y ⊆ ker .
Claim δ(X ∪ Y ) ≤ δ(X).
It is enough to prove that δ(Xy) ≤ δ(X) for any y ∈ ker . If y ∈
spQ(X) then the equality holds. If y /∈ spQ(X) then l.d.QXy =
l.d.QX + 1, l.d.KXy ≤ l.d.KX + 1, tr.d.ex(Xy) = tr.d.ex(X).
Claim proved.
It follows from the Claim that D ∈ E0

d and thus E0
d/ ker ⊆ E

0
d .

Assume now D ∈ E0
d . Then for any finite X ⊆ D any Y ⊆ ker one

has δ(X ∪ Y ) ≥ −d. It follows δ(X/ ker) ≥ −d. Thus D ∈ E0
d/ ker. 2
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Notation Let AK be the following set of axioms:
for any k1, . . . , kn ∈ K such that 1, k1, . . . , kn are Q-linearly indepen-
dent there is an axiom stating:

∀x̄(x1, . . . , xn ∈ ker \{0} → k1 · x1 + . . .+ kn · xn /∈ ker).

Remark If ker is a cyclic subgroup then AK holds in the structure.

Lemma 5.4 The subclass of E axiomatized by AK is exactly E0.

Proof By Lemma 5.1 AK holds for any D ∈ E0.
To prove the converse, by the same Lemma, we need to prove that for
any k1, . . . , kn ∈ K and a1, . . . , an, b ∈ ker if k1 · a1 + . . .+ kn · an = b
then there are q1, . . . , qn ∈ Q such that q1 · a1 + . . .+ qn · an = b.

Suppose w.l.o.g. that a1, . . . , an are Q-linearly independent and
k1 · a1 + . . . + kn · an = b ∈ ker . By the axioms there are integers
m1, . . . ,mn+1 such that k1 ·m1 + . . .+ kn ·mn +mn+1 = 0 with, say,
m1 6= 0. It follows that

m1 · b = k2 · (m1 ·a2−m2 ·a1)+ . . .+kn · (m1 ·an−mn ·a1)−mn+1 ·a1.

Since m1 ·ai−mi ·a1 ∈ ker for i = 2, . . . , n and m1 ·b+mn+1 ·a1 ∈ ker,
by induction hypothesis m1 · b+mn+1 ·a1 is a Q-linear combination of
m1 · ai −mi · a1 for i = 2, . . . , n and thus b is a Q-linear combination
of a1, . . . , an. 2

From now on we have to use the conjecture CIT formulated in the
introduction and discussed in [Z2]. Recall that τ(W ) is the finite set
of basic tori stipulated in the conjecture.

Notation Let, for a definable K-linear L ⊆ Dn+l, a natural num-
ber l and an algebraic variety W ⊆ Rn defined and irreducible over
Q, the formula

AL,W (x̄) := (∀z̄ ∈ kerl)[(x̄z̄ ∈ L)&(ex(x̄) ∈W )→
∨

T∈τ(W )

ex(x̄) ∈ T ].

Definition The pair (L,W ) as above is said to be m-special if the
minimal torus T(W ) containing W is ex(L̄(0l)) and

dimL(0l) + dimW < m+ dim L̄(0l).
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Equivalently, for an ā generic in L and a b̄ generic in W,

l.d.K(ā/ ker) + tr.d.(b̄)− l.d.Q(ā/ ker) < m.

Lemma 5.5 For a structure D in E and c̄ ∈ Dn, given m ∈ Z

δ(c̄/ ker) ≥ m iff
∧

(L,W ) is m-special

AL,W (c̄)

Proof Suppose, given m and c̄, all the formulae hold in D.
Let l, ā ∈ kerl and L be chosen so that c̄ā ∈ L and dimL(ā) =

l.d.K(c̄/ ker), dim L̄(ā) = l.d.Q(c̄/ ker) (see Lemma 2.1.) Remember
that dimL(ā) = dimL(0l) and dim L̄(ā) = dim L̄(0l). Let W be the
minimal algebraic variety over Q containing ex(c̄). We claim that

δ(c̄/ ker) = dimL(0l) + dimW − dim L̄(0l) ≥ m.

Suppose the opposite is true. Then (L,W ) is m-special and

D |= AL,W (c̄).

Hence, by the choice of L, ā and W, necessarily ex(c̄) ∈ T for a proper
torus T ∈ τ(W ). This contradicts the minimality of W. The right-to-
left implication in the statement is proved.

To prove the converse suppose that

δ(c̄/ ker) ≥ m and for some m-special (L,W ) D |= ¬AL,W (c̄).

Then for some ā ∈ kerl

c̄ā ∈ L & ex(c̄) ∈W \
⋃

T∈τ(W )

T.

Let b̄ ∈ kerr and N be a Q-linear subspace of Dn+r such that c̄b̄ ∈ N
and

dimN(b̄) = dimN(0r) = l.d.Q(c̄/ ker).

Notice that ex(N(0l)) is then equal to the minimal torus Tc containing
ex(c̄) and dimTc = dimN(0l). Also notice that

l.d.K(c̄/ ker) ≤ dimL(0l),

tr.d.(c̄/ex(ker)) = tr.d.(c̄) ≤ dimW ∩ Tc.
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Since δ(c̄/ ker) ≥ m,

dimL(0l) + dimW ∩ Tc − dimTc ≥ m.

By our assumptions Tc is not a subtorus of any T ∈ τ(W ), thus by
CIT

dimW ∩ Tc = dimW + dimTc − dim T(W ).

Notice that by assumptions T(W ) = ex(L̄(0l)) and dim T(W ) =
dim L̄(0l). Hence

dimL(0l) + dimW − dim L̄(0l) ≥ m,

which contradicts the fact that (L,W ) is m-special. 2

Corollary 3 The subclass Ed/ ker of E is axiomatized by the set of ax-
ioms:

ASd (∀x̄)AL,W (x̄) (L,W ) is (−d)-special.

Corollary 3 and Lemma 5.4 immediately imply

Theorem 1 The subclass of E axiomatized by ASd and AK is exactly
E0
d . The class of structures axiomatized by PF(K), ASd, AK and EC

is exactly EC0
d.

Notation Denote PCFd(K) the theory of EC0
d(K). In what follows

we omit K.

6 The theory of algebraically closed

K-powered fields of characteristic zero

Definition The extension of the initial language LK by predicates

EP (x̄) ≡ ∃ȳP (x̄, ȳ),

where P is a quantifier-free formula, is denoted LEK , and these predi-
cates are called E-predicates.
Notice that negations of AL,W (x̄) are equivalent to E-predicates.
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Lemma 6.1 For M,N ∈ E0, if M ⊆ N in the language LEK , then
M ≤ N.

Proof Given a finite X ⊆ N, its LK-quantifier-free type obviously
tells the value of δ(X).

Also, the statement ’∂M (X) = δ(X)’ follows from the LEK-quantifier-
free type of X. Indeed, using the Claim from the proof of Lemma 5.3,
one easily sees that, if m = δ(X), the statement is equivalent to

δ(X) = m & ∀Z δ(XZ/ ker) ≥ m.

By Lemma 5.5 the second part of the expression is given by negations
of E-predicates.

It follows from general properties of ≤ that for any Y ⊆ N, given
X ⊆ M such that ∂M (X) = δ(X), one has δ(Y/X) ≥ 0. Thus
M ≤ N.2

Lemma 6.2 Assume M1,M2 ∈ E0
d and both satisfy EC.

(i) Suppose A ⊆ M1, A ⊆ M2 and b̄i ∈ Mn
i are such that Ab̄i ≤

Mi for i = 1, 2 and the LK-quantifier-free types of b̄1 and b̄2 over
A coincide. Then the LEK-quantifier-free types of b̄1 and b̄2 over A
coincide.

(ii) Suppose M2 ≤M1. Then M2 ⊆M1 in the language LEK .

Proof (i) Let ∃x̄Pb1(x̄) be an E-predicate with parameters in Ab̄1
which holds in M1, with Pb1 quantifier-free. Let d̄ be a string in M1

for which Pb1(d̄) holds. Then Pb1(x̄) is a consequence of a formula
P 0
b1

(x̄) of the form

x̄āb̄1 ∈ L \ (L0 ∪ . . . ∪ Lk) & (ex(x̄āb̄1) ∈W \W 0),

where ā is the string of all elements of A, L is the minimal K-linear
space containing d̄āb̄1 and W is the minimal algebraic variety over Q
containing ex(d̄āb̄1), Li ⊆ L are K-linear subspaces and W 0 ⊆ W is
an algebraic subvariety over Q. By Lemma 3.2 it follows that (L,W )
is normal over āb̄1. Moreover, since normality is expressible quantifier-
freely in LK , the pair is normal over āb̄2. It follows from axioms EC
that ∃x̄P̄ 0

b2
(x̄) holds in M2 and hence ∃x̄Pb2(x̄) holds. Thus b̄1 and b̄2

satisfy the same E-predicates over A.
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(ii) Let A = M2 ≤M1 and b1, b2 ∈ A be of the same LK-quantifier-
free type. Then we have the assumptions of (i) satisfied, and the ar-
gument above proves that every E-predicate with parameters in M2

which holds in M1 must also hold in M2. The converse is obvious, thus
M2 ⊆M1 as an LEK-substructure. 2

Corollary 4 For D1,D2 ∈ EC0
d

D1 ⊆ D2 as LEK-structures iff D1 ≤ D2.

Notation Define ID to be the set of axioms of the form

∃x1, . . . , xm∀y1, . . . , ynAL,W (x1, . . . , xm, y1, . . . , yn)

for positive integers m and (L,W ) ranging over all the m-special pairs.

Remark If for any m there is X ⊆ D such that ∂(X) ≥ m then
D |= ID. Thus any e.a.c. infinite dimensional structure satisfies ID.
It is probable that any D ∈ EC0

d satisfies ID, so this set of axioms is
redundant.

Proposition 4 Suppose D |= PCFd+ID. Then any finite LEK-quantifier-
free type which is realized in an E0

d -extension of D is realized in D
itself.

Proof Consider an elementary extension D∗ of D. We prove that for
any finite A ⊆ D∗ and c̄ in an extension D′, with D∗ ≤ D′, the LEK-
quantifier-free type q of c̄ over A is realized in D∗. W.l.o.g. we assume
that A ≤ D∗.

Consider first the case ∂(c̄/A) = 0. Choose c̄′ in D′ extending c̄
such that ∂(c̄/A) = δ(c̄′/A) = 0. Since A ≤ D′ by Lemma 3.2 and
axioms EC the Lk-quantifier-free type of c̄′ over A is realized in D∗.
Let b̄′ be the realization. Since ∂(c̄′/A) = δ(c̄′/A) we have Ac̄′ ≤ D′.
Since δ(b̄′/A) = 0 and A ≤ D∗ we have Ab̄′ ≤ D∗. Hence by Lemma 6.2
the LEK-quantifier-free types of b̄′ and c̄′ over A coincide. Hence the
corresponding substring of b̄′ is a realization we sought for.

Let now ∂(c̄/A) = k > 0 and {c1, . . . , ck} be a ∂-base of c̄ over A.
It follows from ID and the saturatedness that there are {b1, . . . , bk}
in D∗ which are ∂-independent over A. Evidently the LK-quantifier-
free types of 〈b1, . . . , bk〉 and 〈c1, . . . , ck〉 over A coincide. Also A ∪

23



{b1, . . . , bk} ≤ D∗ and A∪{c1, . . . , ck} ≤ D′. Hence the LEK-quantifier-
free types of the strings coincide too. Thus we may identify the strings
and since ∂(c̄/A ∪ {c1, . . . , ck}) = 0 by the case considered above the
LK-quantifier-free type of c̄ over A is realized in D∗. 2

We say that a (partial) map ϕ : D1 → D2 is an LEK-monomorphism,
if it is injective and for any k-ary E-predicate S and any k-tuple a
from the domain of ϕ

D1 |= S(a) iff D2 |= S(ϕ(a)).

Lemma 6.3 Let D1 and D2 satisfy PCFd + ID, and A1 ≤ D1, A2 ≤
D2 such that there is an LEK-monomorphism

ϕ : A1 → A2.

or A1 = A2 = ∅.
Let DA

1 and DA
2 be the expansions of D1, D2 by the set of constants

naming elements of A1 and A2 in correspondence with ϕ. Then

DA
1 ≡ DA

2 .

Proof We prove that given ω-saturated elementary extensions D∗1
of D1 and D∗2 of D2, given finite B ⊆ D∗1, c ∈ D∗1 and a LEK-
monomorphism ϕ of A1∪B into D∗2 one can extend the monomorphism
to c. By symmetry, this yields a winning strategy for the Ehrenfeucht-
Fraisse game, and we are done.

We may assume that ϕ is the identity and A1 ∪B = A = ϕ(A). It
is enough to show that under the assumption for any c ∈ D∗1 we can
extend ϕ to some A′ ⊇ Ac as an LEK-monomorphism and A′ ≤ D∗1,
ϕ(A′) ≤ D∗2.

If ∂(c/A) = 1 then define A′ = Ac and ϕ(c) to be any element
from D∗2 which is not in the ∂-closure of A in D∗2. Then A′ and ϕ(A′)
are as required.

If ∂(c/A) = 0 then extend c to a finite string c̄ from D∗1 so that
δ(c̄/A) = 0. Again, as in the proof of Proposition 4, there is b̄ in D∗2
which realizes the LK-quatifier-free type of c̄ over A. Since δ(b̄/A) = 0,
Ab̄ ≤ D∗2 holds. Thus by Lemma 6.2 the LEK-quatifier-free types of b̄
and c̄ over A coincide. Put ϕ(c̄) = b̄, A′ = Ac̄.2
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To apply the Lemma we need A1, A2 satisfying the assumption.
In particular, we can not start with A1 = A2 = ∅ if d > 0. The
next lemma solves the problem for D1 and D2 satisfying the same
LK-existential sentences.

Lemma 6.4 For any finite subset A1 of a structure D1, model of
PCFd + ID, there is a finite subset Ã1 such that

(i) Ã1 ≤ D1;
(ii) if A2 is a subset of an ω-saturated model D2 of PCFd+ID and

there is a LEK-monomorphism ϕ : A1 → A2, then ϕ can be extended to
Ã1 and

ϕ(Ã1) = Ã2 ≤ D2.

Proof Let ā1 be the string of all elements of A1 and c̄ in D1 such that
δ(ā1c̄) = ∂(ā1). It follows A1c̄ ≤ D1. Let m = ∂(ā1).

Let q0(x̄ȳ) be the LK-quantifier-free type of ā1c̄. Let ā2 be a string
in D2 which is LEK-monomorphic to ā1. Then the E-predicates guar-
antee that q0(ā2ȳ) is consistent and thus ∂(ā2) ≤ m = ∂(ā1). By
symmetry ∂(ā2) = m = ∂(ā1). Let ȳ = d̄ be the realization of q0(ā2ȳ)
in D2. Since δ(ā2d̄) = ∂(ā2), we have ā2d̄ ≤ D2. Now Lemma 6.2 says
that ā2d̄ is of the same LEK-quantifier-free type as ā1c̄. 2

Theorem 2 The theory PCFd + ID is a model completion of
PF + AK + ASd + ID in the language LEK . The theory has quantifier
elimination in this language.

Proof It follows from Lemmas 6.3 and 6.4 that the theory is submodel
complete. Thus (see e.g. Theorem 13.1 of [S]) it has elimination of
quantifiers. 2

Remark In fact, given a model D of PCFd + ID we may assume
that there is a finite A ⊆ D with δ(A) = −d (otherwise D is a
model of PCFd′ for some d′ < d ) and thus A ≤ D. The fact that
there exists X ∼= A in the basic language can be expressed by the
formula ∃XAL,W (X) for some pair (L,W ) witnessing the fact that
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δ(A) = δ(A/ker) = −d (see Lemma 5.5). Then, by Lemmas 6.3 and
6.2,

PCFd + ID + ∃XAL,W (X)

is a complete theory.

Theorem 3 Any completion of PCFd + ID is superstable.

Proof Let D ∈ EC0
d satisfy ID and card D = λ. We want to estab-

lish the cardinality of the set S(D) of complete 1-types over D. Let
D∗ be an elementary extension of D which realizes all n-types over
D for all natural n. Let S#(D) the set of all complete n-types over
D which are realized in D∗ by n-tuples b̄ = 〈b1, . . . , bn〉 such that
δ(b̄/D) = ∂(b1/D). It follows that card S(D) ≤ card S#(D). From
general properties of ≤ we get Db̄ ≤ D∗, and by Lemma 6.2 the LEK-
quantifier-free type of b̄ over D is determined by the LK-quantifier-free
type of that. By quantifier elemination the complete type of b̄ over D
is determined by the LK-quantifier-free subtype. Thus card S(D) is
less or equal to the cardinality of QS(D), the set of all LK-quantifier-
free complete types over D, which is of power λ+ 2ω, since each such
type is uniquely determined by (V,W, {W

1
l : l ∈ N}) for some K-

affine space V, an algebraic variety W and an associated sequence of
varieties {W

1
l : l ∈ N}. 2

7 Raising to real powers in the com-

plex field

Let K ⊆ C be of finite transcendence degree d. Notice that

l.d.K(X) ≥ tr.d.(X/K) ≥ tr.d.(X)− tr.d.(K)

in this case. Thus

l.d.K(X)+tr.d.(exp(X))−l.d.Q(X) ≥ [tr.d.(X)+tr.d.(exp(X))−l.d.Q(X)]−d.

Assuming the Schanuel conjecture, the expression in the brackets
is non-negative. Thus one gets

δ(X) ≥ −d

26



for
δ(X) = l.d.K(X) + tr.d.(exp(X))− l.d.Q(X).

Assume now K is a subfield of the reals R and has transcendence
degree d, D = R = C, ex = exp, and let C(K) = (C, exp,C) be the
corresponding two-sorted structure on the complex numbers in the
language LK .

Lemma 7.1 (i) Assume SchC. Then C(K) satisfies PF+AK;
(ii) Assume also CIT. Then C(K) satisfies ASd.

Proof (i) Follows from the remarks above.
(ii) Again, Schanuel’s conjecture implies C(K) ∈ Ed/ ker, so the

statement follows from Corollary 3.2

Theorem 4 Assuming SchC+CIT, for any field K ⊆ R of finite tran-
scendence degree d, the structure C(K) satisfies PCFd+ ID. Thus the
theory of the structure allows quantifier elimination in the language
LEK and is superstable.

Proof The main result of [Z2], Theorem 5 followed by a Remark, state
under the assumtions of the theorem under the proof.

Fact 3 Let L ⊆ Cn be an R-linear subspace and W a family of al-
gebraic varieties such that (L,W (a)) is normal and free for any a in
a definable set of parameters C(W ). Then there is a positive real con-
stant R(L,W ) such that, given a ball B ⊆ Re(L) of radius R(L,W ),
there is a point

x ∈ (Re(L) + ıB) ∩ lnW (a) (notice that (Re(L) + ıB) ⊆ L). (7)

Moreover, for any number l we can choose a real constant R(L,W, l)
such that, given any R-affine hyperplanes Hi ⊆ Cn, (i = 1, . . . , l) and
a ball B ⊆ Re(L), there is an x satisfying (7) with

x /∈
l⋃

i=1

Hi.

27



The Fact yields condition EC. Thus C(K) satisfies PCFd(K), so it
is a structure from EC0

d(K).
Claim. Given countable A ≤ C there are countably many 0-

dimensional analytic subsets Si of Cn, for all n, such that any b̄ ∈ Cn
satisfying δ(b̄/A) = 0 belongs to one of the S′is.

Proof. We may assume that A is closed under taking K-spans
and under the operation ln(acl(exp(A))). We also assume that b̄ is
Q-independent over A. Let V ⊆ Cn be the minimal K-affine space
over A containing b̄, and W ⊆ Cn be the minimal algebraic variety
definable over exp(A) containing exp(b̄). Since δ(b̄/A) = 0, we have

dimV + dimW = n.

If the dimension of the analytic set V ∩ lnW is 0, then we take Si
to be this set. Otherwise, by Corollary 2 of [Z2] (under SchC+CIT),
there are finitely many tori (of the form exp(Mi + ci) for Mi a Q-
linear subspace, ci ∈ Cn, i = 1, . . . , l) such that any infinite analytic
component of exp(V )∩W belongs to one of the tori. Moreover, Lemma
3.1 of [Z2] proves that any such torus intersectsW atypically. It follows
immediately that exp(ci) can be chosen in acl(exp(A)), thus ci ∈ An.
Then exp(b̄) /∈ exp(Mi + ci), by our assumptions. It follows that b̄
belongs to

V ∩ lnW \
l⋃

i=1

Mi + ci + 2πiZn

which is a countable analytic subset of Cn. Claim proved.
It follows immediately from the claim that for countable A ≤ C

the ∂-closure of A is countable. Hence the ∂-basis of C is uncountable.
In particular, ID holds. 2
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