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Abstract

Finding coarse-grained, low-dimensional descriptions is an important task in the
analysis of complex, stochastic models of gene regulatory networks. This task
involves (a) identifying observables that best describe the state of these complex
systems and (b) characterizing the dynamics of the observables. In a previous
paper [13], we assumed that good observables were known a priori, and pre-
sented an equation-free approach to approximate coarse-grained quantities (i.e,
effective drift and diffusion coefficients) that characterize the long-time behavior
of the observables. Here we use diffusion maps [9] to extract appropriate observ-
ables (“reduction coordinates”) in an automated fashion; these involve the leading
eigenvectors of a weighted Laplacian on a graph constructed from network simu-
lation data. We present lifting and restriction procedures for translating between
physical variables and these data-based observables. These procedures allow us to
perform equation-free coarse-grained, computations characterizing the long-term
dynamics through the design and processing of short bursts of stochastic simula-
tion initialized at appropriate values of the data-based observables.
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1 Introduction

Gene regulatory networks are complex high-dimensional stochastic dynamical systems.
These systems are subject to large intrinsic fluctuations that arise from the inherent
random nature of the biochemical reactions that constitute the network. Such fea-
tures make realistic modeling of genetic networks, based on exact representations of the
Chemical Master Equation (such as the Gillespie Stochastic Simulation Algorithm, SSA
[18]) computationally expensive. Recently there has been considerable work devoted
to developing efficient numerical algorithms for accelerating the stochastic simulation
of gene regulatory networks [1, 19, 13, 37] and, more generally, of chemical reaction
networks. Many of these techniques are based on time-scales separation and classify the
biochemical reactions as “slow” or “fast” [32, 5, 21, 12, 7]. In this paper we combine
such acceleration methods with recently developed data-mining techniques (in particu-
lar, diffusion maps [9, 10, 30]) capable of identifying appropriate coarse-grained variables
(“observables”, “reduction coordinates”) based on simulation data. These observables
are then used in the context of accelerating stochastic gene regulatory network sim-
ulations; they guide the design, initialization, and processing of the results of short
bursts of full-scale SSA computation. These bursts of SSA are used to numerically solve
the (unavailable in closed form) evolution equations for the observables; such so-called
equation-free methods [25] for studying stochastic models have been successfully ap-
plied to complex systems arising in different contexts [20, 23, 39]. In the context of gene
regulatory networks – but with known observables – equation free modeling has been
illustrated in [13]; here we extend the approach to the more general class of problems
where appropriate observables are unknown a priori.

We describe the state of a gene regulatory network through a vector

X = [X1, X2, X3, . . . , XN ] (1.1)

where Xi are the numbers of various protein molecules, RNA molecules and genes in the
system. The behavior of the gene regulatory network is described by the time evolution
of the vector X(t). For naturally occurring gene regulatory networks the dimension N
of the vector X(t) is, in general, moderately large, ranging from tens to hundreds of
species. However, the temporal evolution of the network over time scales of interest can
be often usefully described by a much smaller number n of coordinates. For example,
in [13], we studied various models of a genetic toggle switch with N = 2, N = 4 and
N = 6 components of the vector X; yet in all cases, the slow dynamics was effectively
one-dimensional, and a single linear combination of protein concentrations was sufficient
to describe the system, i.e. n = 1. In this paper we show how, for this genetic network
system, good coarse variables can be found by data-mining type methods based on the
diffusion map approach.

This paper is organized as follows: We begin with a brief description of our model in
Section 2. Section 3 quickly reviews the equation-free approach for this type of bistable
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dynamics. Given a low-dimensional set of observables, the main idea is to locally esti-
mate drift and diffusion coefficients of an unavailable Fokker-Planck equation in these
observables from short bursts of appropriately initialized full stochastic simulations. In
Section 4.1 we show how to process the data generated by stochastic simulations to
obtain data-driven observables through the construction of diffusion maps [30, 29]. The
leading eigenvectors of the weighted graph Laplacian defined on a graph based on simu-
lation data suggest appropriate “automated” reduction coordinates when these are not
known a priori. Such observables are then used to perform “variable-free” computa-
tions. In Section 5 we present lifting and restriction procedures for translating between
physical system variables and the automated observables. The bursts of stochastic sim-
ulation required for equation-free numerics are designed (and processed) based on these
new coordinates. This combined “variable-free equation-free” analysis appears to be
a promising approach for computing features of the long-time, coarse-grained behavior
of certain classes of complex stochastic models (in particular, models of gene regula-
tory networks), as an alternative to long, full SSA simulations. The approach can, in
principle, also be wrapped around different types of full atomistic/stochastic simulators,
beyond SSA, and in particular accelerated SSA approaches such as implicit tau–leaping
[33] and multiscale or nested SSA [6, 12].

2 Model Description

Our illustrative example is a two gene network in which each protein represses the
transcription of the other gene (mutual repression). This type of system has been
engineered in E. coli and is often referred to as a genetic toggle switch [16, 22]. The
advantage of this simple system is that it allows us to test the accuracy of computational
methods by direct comparison with results from long-time stochastic simulations. More
details about the model can be found in [24] and in our previous paper [13]. The
system contains two genes with operators O1 and O2, two proteins P1 and P2, and the
corresponding dimers, i.e. N = 6 in (1.1). The production of P1 (P2) depends on the
chemical state of the upstream operator O1 (O2). If O1 is empty then P1 is produced
at the rate γ1 and if O1 is occupied by a dimer of P2, then protein P1 is produced at
a rate ε1 < γ1. Similarly, if O2 is empty then P2 is produced at the rate γ2 and if O2

is occupied by a dimer of P1, then protein P2 is produced at a rate ε2 < γ2. Note that,
for simplicity, transcription and translation are described by a single rate constant. The
biochemical reactions are (compare with [13])

∅
γ1O1+ε1P2P2O1

−→
←−

δ1

P1 ∅
γ2O2+ε2P1P1O2

−→
←−

δ2

P2 (2.1)

P1 + P1

k1

−→
←−
k
−1

P1P1 P2 + P2

k2

−→
←−
k
−2

P2P2 (2.2)
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P2P2 + O1

ko1

−→
←−
k
−o1

P2P2O1 P1P1 + O2

ko2

−→
←−
k
−o2

P1P1O2 (2.3)

where overbars denote complexes. Equations (2.1) describe production and degradation
of proteins P1 and P2. Equations (2.2) are dimerization reactions and equations (2.3)
represent the binding and dissociation of the dimer and DNA.

The state vector for our system is

X =
[
P1, P2, P1P1, P2P2, O1, O2

]
(2.4)

where P1 and P2 are numbers of proteins, P1P1 and P2P2 are numbers of dimers and
O1 ∈ {0, 1} and O2 ∈ {0, 1} are states of operators. Assuming that we have just one
copy of Gene 1 and one copy of Gene 2 in the system, then the values of O1 and P2P2O1,
resp. O2 and P1P1O2, are related by the conservation relations, namely

P2P2O1 = 1 − O1, resp. P1P1O2 = 1 − O2.

By virtue of (2.1), O1 = 1 means that the first protein is produced with rate γ1, while
O1 = 0 means that it is produced with rate ε1 < γ1 (similarly for the second protein).

Models such as the one defined by (2.1) – (2.3) can be validated experimentally,
by comparing their predictions with steady-state distributions of protein abundances
obtained through single cell fluorescence measurements of intercellular variability in
protein expression levels.

3 Brief review of equation-free computations

Suppose we have a well-stirred mixture of N chemically reacting species; furthermore,
assume that the evolution of the system can be described in terms of n < N slow vari-
ables (observables). In the following we assume that n = 1, and denote this variable Q.
The approach carries through for the case of a relatively small number of slow variables
as well. The variable Q might be the concentration of one of the chemical species or
some function of these concentrations (e.g. a linear combination of some of them). In
Section 4.1 we show how variable-free methods can be used to suggest an appropriate
Q. Let R denote a vector of the remaining (fast, “slaved” system observables) which,
together with Q provide a basis for the simulation space. Our assumption implies that
(possibly, after a short initial transient) the evolution of the system can be approxi-
mately described by the time-dependent probability density function f(q, t) for the slow
variable Q that evolves according to the following effective Fokker-Planck equation [34]:

∂f

∂t
(q, t) =

∂

∂q

(
−V (q)f(q, t) +

∂

∂q
[D(q)f(q, t)]

)
. (3.1)

If the effective drift V (q) and the effective diffusion coefficient D(q) are explicitly known
functions of q, then (3.1) can be used to compute interesting long-time properties of the
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system (e. g., the equilibrium distribution, transition times between metastable states).
Assuming that (3.1) provides a good approximation [16, 24], and motivated by the
formulas

V (q) = lim
∆t→0

< Q(t + ∆t) − q |Q(t) = q >

∆t
(3.2)

D(q) =
1

2
lim

∆t→0

< [Q(t + ∆t) − q]2 |Q(t) = q >

∆t
(3.3)

we used in [20, 23, 27, 39] the results of short δ-function initialized simulation bursts
to estimate the average drift, V , and diffusion coefficient D. Note that, in our context,
the limit ∆t → 0 in equations (3.2) and (3.3) should be interpreted as “∆t small, but
not too small” , i.e. the short bursts are short in the time scale of the slow variable,
yet long in comparison to the characteristic equilibration time of the remaining system
variables.

The steady solution of (3.1) is proportional to exp[−βΦ(q)], where the effective free
energy Φ(q) is defined as

βΦ(q) = −

∫ q

0

V (q′)

D(q′)
dq′ + ln D(q) + constant. (3.4)

Consequently, computing the effective free energy and the equilibrium probability dis-
tribution can be accomplished without the need for long-time stochastic simulations.
A procedure for computationally estimating V (q) and D(q) is as follows:

(A) Given Q = q, approximate the conditional density P (r|Q = q) for the fast
variables R. Details of this preparatory step were given in [13].
(B) Use P (r|Q = q) from step (A) to determine appropriate initial conditions
for the short simulation bursts and run multiple realizations for time ∆t. Use
the results of these simulations and the definitions (3.2) and (3.3) to estimate the
effective drift V (q) and the effective diffusion coefficient D(q).
(C) Repeat steps (A) and (B) for sufficiently many values of Q and then compute
Φ(q) using formula (3.4) and numerical quadrature.

Determining the accuracy of these estimates and, in particular, the number of replica
simulations required for a prescribed accuracy, is the subject of current work. An impor-
tant feature of this algorithm is that it is trivially parallelizable (different realizations
of short simulations starting at “the same q” as well as realizations starting at different
q values can be run independently, on multiple processors).

A representative selection of equation-free results from our previous paper [13], for a
stochastic model of a gene regulatory network, is provided in Figure 1. In [13] the (good)
observable Q was assumed to be known a priori. The upper left panel in Figure 1 shows
a sample time series of Q, clearly indicative of bistability, generated using the stochastic
model, while the upper right panel shows the effective free energy βΦ computed using
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Figure 1: Summary of equation-free results from [13]. To compute the figures, we used
model (2.1) – (2.3) where equations (2.2) – (2.3) were assumed to be at quasi-equilibrium,
for parameter values see caption of Figure 5 in [13].

(3.4) as the parameter γ ≡ γ1 = γ2 is varied. The equation-free steady state distribution
of Q obtained from this effective free energy is in excellent agreement with histograms
produced using long-time simulation (lower left panel). Equation-free computation has
also been used [13] to compute “stochastic bifurcation diagrams” (an example is shown
in the bottom right panel of Figure 1) using an extension of deterministic bifurcation
computation [38]. We believe this array of equation-free numerical techniques holds
promise for the acceleration of computer-assisted analysis of gene-regulatory networks.
We now extend this analysis to systems where the “good” observables are unknown a
priori by describing diffusion-map based variable-free methods.
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4 Variable-free methods

4.1 Theoretical framework

To find a good, low (n-)dimensional representation of the full N -dimensional stochastic
simulation data, we start by exploring the phase-space of most likely configurations
of the system through extensive stochastic simulations; these configurations X (or a
representative sampling of them) at, say M different times are stored for processing.
From M such recordings we obtain a set of M vectors X(1), . . . ,X(M) in R

N which
constitute the input to the diffusion map dimensionality reduction approach we will now
describe. A crucial step for dimensionality reduction is the definition of a meaningful
local distance measure between configurations. For continuous systems with equal noise
strengths in all variables, one may use the following pairwise similarity matrix

W̃ij = exp

[
−

(
‖X(i) − X(j)‖

σ

)2
]

(4.1)

where ‖ · ‖ is the standard Euclidean norm in R
N and σ is a characteristic scale for

the exponential kernel which quantifies the “locality” of the neighborhood in which the
Euclidean distance is considered (dynamically) meaningful [9].

For discrete chemical and biological reactions, as well as in other systems where the
components of the data vectors may be disparate quantities varying over different orders
of magnitude (possibly including even Boolean variables), the simple Euclidean norm
in equation (4.1) with a single scaling factor σ equal for all components may, of course,
not be appropriate. In this case, it is reasonable to consider different scalings for the N
different components, using an N -dimensional weight vector

a = [a1, a2, . . . , aN ] (4.2)

where ai > 0, for i = 1, . . . , N , and define a weighted Euclidean norm

‖X‖2
a
=

N∑

j=1

(ajXj)
2. (4.3)

This norm replaces the standard Euclidean norm in equation (4.1), where we may now
choose σ = 1, since this scaling can be absorbed into the vector a; thus we replace (4.1)
by

W̃ij = exp
[
− ‖X(i) − X(j)‖2

a

]
. (4.4)

The elements of the matrix W̃ are all less than or equal to one. Nearby points have
W̃ij close to one, whereas distant points have W̃ij close to zero. In the diffusion map
approach, given α ∈ [0, 1] (the choice of this parameter value is discussed later), we
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define the matrix W by

Wij =

(
M∑

k=1

W̃ik

)−α (
M∑

k=1

W̃jk

)−α

W̃ij (4.5)

Next, we define a diagonal M × M normalization matrix D whose values are given by

Dii =
M∑

k=1

Wik (4.6)

Finally we compute the eigenvalues and right eigenvectors of the matrix

K = D−1W. (4.7)

In this paper we will mainly work with the parameter α = 0. However, in other appli-
cations different values of α may be more suitable (see Appendix A). As discussed in
[30, 3, 29], if there exists a spectral gap among the eigenvalues of this matrix, then the
leading eigenvectors may be used as a basis for a low dimensional representation of the
data (see Appendix A). To compute these eigenvectors, we can make use of the fact that

K = D−1/2SD1/2 where S = D−1/2WD−1/2 (4.8)

is a symmetric matrix. Hence, K and S are adjoint and they have the same eigenvalues.
Since S is symmetric, it is diagonalizable with a set of M eigenvalues

λ0 ≥ λ1 ≥ . . . ≥ λM−1 (4.9)

whose eigenvectors Uj, j = 1, . . . ,M form an orthonormal basis of R
M . The right

eigenvectors of K are given by
Vj = D−1/2Uj. (4.10)

Since K is a Markov matrix, all its eigenvalues are smaller than or equal to one in
absolute value. Moreover, if the parameter σ in (4.1) is large enough (and, thus, the
norm vector in (4.4) is “small enough”), all points are (numerically) connected and the
largest eigenvalue λ0 = 1 has multiplicity one with corresponding eigenvector

V0 = [1, 1, . . . , 1] . (4.11)

We define the n-dimensional representation of N -dimensional state vectors by the fol-
lowing diffusion map

Ψn : X(i) →
[
V

(i)
1 , V

(i)
2 , . . . , V (i)

n

]
; (4.12)

that is, the point X(i) is mapped to a vector containing the i-th coordinate of each of
the first n leading eigenvectors of the matrix K. This mapping Ψn : R

N → R
n is defined

only at the M recorded state vectors. We will show later that it can be extended to
nearby points in the N -dimensional phase space, without full re-computation of a new
matrix and its eigenvectors. In Appendix A we provide a theoretical justification for
this method as a dynamically useful dimensionality reduction step.
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4.2 Computation of data-based observables

We replaced (4.1) by (4.4) where the weight vector (4.2) needs to be further specified.
Two natural choices for the values of components of the weight vector a = [a1, a2, . . . , aN ]
immediately arise. One option is to regard the absolute values of the components of the
state vector X as of “equal importance”, i.e.

ak = ω, for k = 1, 2, . . . , N, (4.13)

where ω is a single method parameter; this is identical to the use of a single σ in equation
4.1, namely σ = ω−1.

The above approach uses the Euclidean distance between data vectors as the basis
for graph Laplacian construction and eigenanalysis. In our case, the components of these
vectors are concentrations of different species (e.g. integer numbers of protein molecules,
each with its own range over the data set). Moreover, the data vectors contain integers
(0 and 1) representing states of Boolean operators. This motivates a second natural
choice of the weight vector a = [a1, a2, . . . , aN ]. We rescale the state vector X to span
the symmetrical domain (cube) in N -dimensional space, i.e.

ak =
ω̃

max
i

X
(i)
k − min

i
X

(i)
k

, for k = 1, 2, . . . , N, (4.14)

where the maximum and minimum values are computed over all i = 1, . . . ,M. Formula
(4.14) implies that components of the vector X(i) − X(j), i, j = 1, . . . ,M, satisfy

X
(i)
k − X

(j)
k ∈ [−ω̃, ω̃] for k = 1, . . . , N, i, j = 1, . . . ,M.

The difference between (4.13) and (4.14) is that the first formula implicitly assumes that
the fluctuations in different components of the state vector X are equally important,
i.e. the absolute values of fluctuations are important. Formula (4.14) on the other
hand implies that relative changes (compared to the maximal observed change) in each
component are more representative than the absolute values of the changes. We will see
below that (4.13) appears more suitable for our variable-free analysis.

4.2.1 Comparison of (4.13) and (4.14)

Using our illustrative gene regulatory network example (2.1) – (2.3) we now study the
dependence of the eigenvectors of the matrix K on the weighting vector [a1, a2, . . . , aN ].
We run the long-time Gillespie based stochastic simulation of (2.1) – (2.3) to obtain a
representative set of M state vectors using the following dimensionless stochastic rate
constants γ1 = γ2 = 1.14, ε1 = ε2 = 0, δ1 = δ2 = 7.5 × 10−4, k1 = k2 = 10−3,
k−1 = k−2 = 10, ko1 = ko2 = 0.4, k−o1 = k−o2 = 10. After removing initial transients,
we started recording the values of the state vector (2.4) every 2 × 108 SSA time steps.

9



ω λ0 λ1 λ2 λ3

0.02 1.00000 0.99986 0.94506 0.91360
0.01 1.00000 0.99920 0.77757 0.71122
0.005 1.00000 0.99279 0.44352 0.35515
0.002 1.00000 0.76262 0.10715 3.3 ×10−2

0.001 1.00000 0.28346 1.2 ×10−2 1.1 ×10−3

0.0005 1.00000 7.5 ×10−2 1.0 ×10−3 1.5 ×10−4

Table 1: Top eigenvalues of matrix K computed using (4.13) for α = 0 in (4.5).

We made 2000 recordings to obtain a data file with M = 2000 state vectors. Next,
we use these state vectors X(i) to compute the M × M matrix K and its eigenvectors.
We use formula (4.13) to compute W and D by (4.4), (4.5) and (4.6). Then we use
implicitly restarted Arnoldi methods (ARPACK package [28]) to find the eigenvectors
corresponding to the highest eigenvalues of the symmetric matrix S given by (4.8).
Finally, we compute the eigenvectors of K = D−1W by (4.10).

The formula (4.13) has a single parameter ω which is free for us to specify. It is
easy to check numerically that the larger the “local neighborhood” size selected (that
is, the smaller the ω value) the denser the connections between datapoints in the graph.
Table 1 shows the highest eigenvalues for different values of ω. We already know from
[13] that the system is effectively one-dimensional. A good observable for the system is
known to be Q = P1 − P2, i.e. the difference between the first two coordinates of the
state vector. However, the protein concentrations P1 or P2 were also found to give good
equation-free results.

We plot the “empirical” good observable of each data point i (its P1 component, i.e.

X
(i)
1 , or the difference of its P1 and P2 components, i.e. Q = X

(i)
2 −X

(i)
1 ) versus the one-

dimensional representation Ψ1(X
(i)) (see (4.12)) of the point. The results are given in

Figure 2 for two different values of ω. The fact that the empirical coordinate Q appears
to effectively be one-to-one with the “automated” coordinate Ψ1(X

(i)) for all points in
the data set confirms that Q is indeed a good coordinate for data representation (the
figure clearly shows Q as the graph of a function above Ψ1(X

(i)), i.e. that the relation
between Q and Ψ1(X

(i)) is one-to-one). The P1 vs. Ψ1(X
(i)) graph confirms that P1

is also a good observable; it also is approximately one-to-one with Ψ1(X
(i)), yet the

slightly “fat curve” suggests that Q is a “better” observable.
The dependence of the variable-free results on the value chosen for ω may be rational-

ized through equation (4.1). As discussed in Section 4.2, our parameter ω is analogous
to an inverse “cutoff length” in the computation of the diffusion map kernel; if it is
too large, then the graph becomes disconnected. Clearly, it is a model parameter that
has to be optimized depending on the problem; our results for ω = 0.0005 show a pure
linear relation between the “empirical” Q and the “automated” Ψ1(X

(i)) observables.

Increasing ω by a factor of 2 corresponds to raising the elements of the matrix W̃ to the
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Figure 2: Variable-free results using formula (4.13) and ω = 0.002 (left panels) or
ω = 0.0005 (right panels). We plot Ψ1(X

(i)) which corresponds to eigenvalue λ1 as
function of Q = P2 − P1 (top panels) and as function of P1 (center panels). We also
plot Ψ2(X

(i)) which corresponds to eigenvalue λ2 as function of Q = P2 − P1 (bottom
panels).
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ω̃ = 2 ω̃ = 0.1
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Figure 3: Variable-free results using formula (4.14) and ω̃ = 2 (left panel) or ω̃ =
0.1 (right panel); datapoints colored according to gene states: black=[0, 0], green=[0, 1],
blue=[1, 0], and red=[1, 1]. We plot Ψ1(X

(i)) which corresponds to eigenvalue λ1 as
function of Q = P2 − P1.

fourth power. This change in weight factor (followed by the normalization of (4.6)) leads
to a different clustering of the data points. Large ω implies that Euclidean distances
are meaningful when small; this results in a “more clustered” data set, where nearby
data points (e.g. points within one potential well) appear (in diffusion map coordinates)
relatively closer, while points far away (e.g. points in different potential wells) appear
(in diffusion map coordinates) relatively more distant. Indeed, in the case of continuous
variables, in the limit of large ω the eigenvectors of the diffusion map converge to the
eigenfunctions of a corresponding Fokker-Planck diffusion operator. In the case of two
deep potential wells, this eigenfunction is approximately constant in the two wells with
a sharp transition between them. This might explain the slightly flat regions at the two
edges of the apparent curve in the middle panel of Figure 2 for ω = 0.002; points within
the same potential well may differ in Q, yet appear more nearby in the “automated”
observable. We also include a plot of the relation between Q and the component of the
data in the second eigenvector Ψ2(X

(i)) for comparison.
Next we show that the weight vector computed using the formula (4.14) (based

on the magnitude of relative state variable changes) is unsuitable for our variable-free
analysis. We use the same set of M = 2000 state vectors X(i) to compute the M × M
matrix K and its eigenvectors, using formula (4.14) to compute W and D by (4.4),
(4.5) and (4.6). A single parameter ω̃ still remains to be specified in formula (4.14).
We now again compare the “empirical” and “automated” observables of all data points
(Q = P1−P2 as a function of Ψ1(X

(i)), the one-dimensional representation based on the
first nontrivial eigenvector of the matrix K). The results are given in Figure 3 for two
different values of ω̃. We see that the data split into four curves. Each curve corresponds
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to a distinct combination of gene operator states (actually, two of the curves effectively
coincide). There are exactly four possibilities of gene states taken from the set

[O1, O2] ∈
{

[0, 0], [0, 1], [1, 0] [1, 1]
}

.

If we use formula (4.13), then the contribution of the distance between gene operator
states to the data Euclidean distance is negligible compared to the fluctuations of the
protein numbers. Local distances computed using the scaling in formula (4.14) are
clearly not representative of the similarity of nearby (in this metric) points for the
system dynamics: there is no one-to-one correspondence between the empirically known
“good observable” Q and the “automated” Ψ1(X

(i)) . Indeed, for the parameter values
of our simulation, transitions between the 0 and 1 states of the operators are very fast
(“easy”); on the other hand the Euclidean distance of two data points that differ only
in these states is large when computed through the formula (4.14).

An alternative approach to computing the effective rate in (2.1) can be obtained
assuming that the reaction (2.2) is fast and that we have a lot of protein molecules in the
system. Then the quasi-steady state assumption gives the formula P1P1 = 2k1/k−1P

2
1 .

Hence, we can write the number of dimers as a simple function of the number of monomer
proteins. On the other hand, using the same approximation in equation (2.3), we obtain

O1 =
k−o1

ko1P2P2 + k−o1

. (4.15)

Equation (4.15) gives O1 as a real number in the interval [0, 1]. This number is a good
approximation for computing the effective rate in (2.1). However, it is not a value of the
Boolean variable O1 – it is only a probability that the gene “is on” at the given time.

If, on the other hand, the “on-off” operator transitions were slow, then Figure 3
would be quite informative: it would suggest that we should augment our observables
with the Boolean variables O1, O2, since these are “slow”. Because of the Boolean
nature of the gene operator variables, it is not possible to know a priori how often these
transitions occur, and, consequently, how to scale the quantized Boolean state distance
so that it “meaningfully” participates in the Euclidean distance used for diffusion map
analysis. As our diffusion map computations stand, we do not take into account the
temporal proximity of points – when they have been obtained from the same transient. If
such information is taken into account, it is conceivable that temporal proximity would
provide guidance in choosing the components of weight vectors (especially for Boolean
variables which change in a quantized manner) so that “local” Euclidean distances are
indeed representative of the dynamical proximity between data points.

5 Variable-free computations

We now couple the above automated detection of observables with the equation-free
computations in [13] in what we will refer to as “variable-free, equation-free” methods.
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The results in this section are for the model parameter values given in Section 4.2.1
using the weight vector defined by (4.13) with ω = 0.0005 and kernel parameter α = 0
(the standard, normalized graph Laplacian) in (4.5).

The data plot in terms of the observable Q and the component in the eigenvector
Ψ1(X

(i)) in Figure 2 suggested that a single diffusion map coordinate, denoted Qdmap ≡
Ψ1(X

(i)), is sufficient to characterize the system dynamics. The diffusion map coordinate
is found by performing the eigencomputations described in Section 4.1 using the full state
vector (N=6) at each of the M = 2000 recorded SSA datapoints (every 2 × 108 SSA
time steps) as input to our numerical routines.

In our previous paper [13] we described an approach to compute an effective free
energy potential in terms of the observable Q = P2 − P1. Variable-free computation
of the effective free energy is now feasible using a similar approach modified to analyze
simulation data in terms of the coordinate Qdmap. Figure 4 plots the effective potential
βΦ in terms of the automated reduction coordinate Qdmap. To evaluate the effective drift
(V ) and diffusion (D) coefficients required in the construction of the effective free energy
(equation (3.4)) we choose a value of Qdmap, locate instances when it appears in the sim-
ulation database, record its subsequent evolution within a fixed time interval, and then
average over these instances to estimate the rate of change in the mean and the variance.
This procedure is repeated for a grid of Qdmap values enabling numerical evaluation of
the integral in equation (3.4). The result of this analysis is compared in Figure 4 with
the potential obtained by directly constructing the probability distribution f(Qdmap)
from the time series and employing the relationship βΦ(Qdmap) ∼ − log [f(Qdmap)].

Section 5.2 describes a lifting procedure that allows short bursts of simulation, instead
of long time simulation, to be used in variable-free estimation of effective drift and
diffusion coefficients. The central idea of “variable-free equation-free” methods is to
perform equation-free analysis in terms of diffusion map variables, based on short bursts
of SSA simulation in the original variables. This strategy requires an efficient means
of converting between the physical variables of the system and those of its diffusion
map (a restriction step) and vice versa: lifting from the diffusion map back to physical
variables. For small sample sizes, eigendecomposition of the symmetric kernel S (defined
in (4.8)) yields the diffusion map variables for each data point; yet, as the number of
sample datapoints increases, the associated computational costs become prohibitive.
The Nyström formula [2, 4] for eigenspace interpolation is a viable alternative to repeated
matrix eigendecompositions for computing diffusion map coordinates of new datapoints
generated during the course of a simulation. Eigenvectors and eigenvalues of the kernel
S are related by SUj = λjUj, or equivalently

Uj(X
(i)) =

1

λj

M∑

k=1

SikUj(X
(k)) (5.1)

where Uj(X
(i)) denotes the component of the jth eigenvector associated with state vector

X(i). Eigenvector components associated with a new state vector Xnew cannot be com-
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Figure 4: Effective free energy βΦ as a function of Qdmap from binning of all datapoints
using an SSA database of 237 time steps (blue lines) and computed from numerical
integration of equation (3.4) using a 234 point subsampling (keeping 1 out of every 8
points) of this database (red lines). Numerical integration performed using a more severe
subsampling of the database with 231 points produces an effective free energy profile with
an unacceptable level of noise.

puted directly from (5.1) because entries of the matrix S are defined only between pairs

of datapoints in the original dataset. Defining the M × 1 vector Ŵnew of exponentials
of the negative squares of the distances between the new point and database points by

Ŵ new
i = exp

[
− ‖Xnew − X(i)‖2

a

]
, (5.2)

and the M × 1 vector Wnew by

W new
i =

(
M∑

k=1

W̃ik

)−α (
M∑

k=1

Ŵ new
k

)−α

Ŵ new
i , (5.3)

allows the generalized kernel vector Snew to be defined as follows:

Snew
i =

(
M∑

k=1

Wik

)−1/2 (
M∑

k=1

W new
k

)−1/2

W new
i . (5.4)

The entries in Snew quantify the pairwise similarities between the new point Xnew and
database points consistent with the definition of S in (4.8) [4].

5.1 Restriction from physical to diffusion map variables

The Nyström formula [2] is used to find the eigenvector component Uj(X
new) associated

with a new state vector Xnew
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Uj(X
new) =

1

λj

M∑

i=1

Ŝnew
i Uj(X

(i)) (5.5)

allowing the eigenvectors of the matrix K (and thereby the diffusion map coordinates)
associated with Xnew to be computed using (4.10). A full eigendecomposition is typically
performed first for a representative subset of the (large) number of SSA datapoints and
the Nyström formula is then used to perform the restriction operation in (5.5) which
amounts to interpolation in the diffusion map space.

5.2 Lifting from diffusion map to physical variables

The process of lifting (shown schematically in Figure 5) consists of preparing a detailed
state vector with prescribed diffusion map coordinates Qtarg

dmap. The main step in our
lifting process is the minimization of a quadratic objective function defined as follows

Obj(Qdmap(X)) = λobj(Qdmap(X) − Qtarg
dmap)

2 (5.6)

where λobj is a weighting parameter that controls the shape of the objective away from
its minimum at Qdmap(X

∗) = Qtarg
dmap. The implicit dependence of Qdmap on X makes

this optimization problem nontrivial.
We use here, for simplicity, the method of Simulated Annealing (SA) [26, 31] to

solve the optimization problem, and identify a value of the state vector X∗ with the
target diffusion map coordinates Qtarg

dmap. The SA routine [31] employs a “thermalized”
downhill simplex method as the generator of changes in configuration. The simplex,
consisting of N + 1 vertices, each corresponding to a trial state vector, tumbles over
the objective landscape defined by (5.6) sampling new state vectors as it does so. The
control parameter of the method is the “annealing temperature” which controls the rate
of simplex motion. At high temperatures the method behaves like a global optimizer,
accepting many proposed configurations (even those that take the simplex uphill i.e. in
the direction of increasing objective function value). At low temperatures a local search
is executed and only downhill simplex moves are accepted.

The starting simplex configuration for this N -parameter minimization may be se-
lected at random or (more reasonably) by taking those state vectors in the existing
database with diffusion map coordinates closest to the target Qtarg

dmap. It is important to
note that the SA optimization scheme requires the Nyström formula at each iteration to
compute Qdmap(X

trial) for trial state vectors, and thus evaluate the objective function
value, which determines whether the configuration will be accepted or not. Once the
objective has been evaluated at each of the starting vertices, the following steps are
repeated until a minimum is located:

(a) Move the simplex to generate a new state vector Xtrial;
(b) Evaluate the objective function value at the new state vector Obj(Qdmap(X

trial));
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Figure 5: A schematic of the procedure for lifting from diffusion map coordinate
Qdmap(X) to 6-dimensional state vector X via minimization of quadratic constraint po-
tential Obj(Qdmap(X)). Target values of diffusion map coordinate are shown at the base
of the figure, with the potential function to be minimized in each case indicated above
these targets. For each diffusion map coordinate value shown, 3 consistent state vectors
(generated by lifting) are indicated at top of figure.

(c) Decrement the annealing temperature.

The downhill simplex method prescribes the motion in step (a) making a selection from
a set of moves according to the local objective “terrain” (set of objective values at
the vertices encountered). Step (b) requires an evaluation using the Nyström formula.
We note here that this lifting strategy prepares state vectors with desired diffusion map
coordinates using search algorithm “dynamics”. The suitability of this approach relative
to alternatives that employ physical dynamics (e.g. using constrained evolution of the
stochastic simulator in the spirit of the SHAKE algorithm in molecular dynamics [36])
is a relevant and interesting question that merits further investigation.

5.3 Illustrative Numerical Results

Equipped with restriction and lifting operators between physical and “automated” vari-
ables, we can now perform all the equation-free tasks of [13] in the diffusion map coor-
dinate Qdmap i.e. in variable-free mode.

A procedure for variable-free computational estimation of V (q) and D(q) in (3.4) is
as follows:

[A] At the value Qdmap = qdmap lift to a consistent state vector using the approach
described in Section 5.2.
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Figure 6: Drift in the diffusion map coordinates. The shaded horizontal boxes indicate
the steady state probability distribution for M = 2000. Points from SSA trajectories are
shown at intervals of 3 × 106. Initial configurations for these runs are those shown in
Figure 5 prepared by lifting from Qdmap values of (−1.5, 0, 1.5). Trajectories drift towards
the most populated regions of the distribution.

[B] Use the state vector computed in step [A] as an initial condition for a short
simulation burst and run multiple realizations for time ∆t. Restrict the results
of these simulations (Section 5.1) and use the definitions (3.2) and (3.3) (with
Qdmap(t) instead of Q(t)) to estimate the effective drift V (qdmap) and the effective
diffusion coefficient D(qdmap).
[C] Repeat steps [A] and [B] for sufficiently many values of Qdmap and then compute
Φ(q) using formula (3.4) and numerical quadrature.

We performed lifting for 3 values of the automated reduction coordinate (Qdmap =
−1.5, 0, 1.5), generating several replicas in each case. From Figure 6 it is apparent that
the selected values of Qdmap are located near the “rims” of the wells of two local minima
on the effective free energy landscape for this system. The state vectors generated by
lifting are shown at the top of Figure 5. Figure 6 plots the SSA simulation evolution,
initialized at these state vectors, in the observable Qdmap. Also shown in Figure 6 is the
steady state distribution in terms of Qdmap obtained from long SSA runs. Estimates
for drift (V ) and diffusion (D) coefficients at Qdmap values of -1.5 and 0 produced by
sampling the simulation database and using the lifting procedure described in this paper
are compared in Table 2. It should be possible to reach a better agreement between
the coefficient estimates based on the long simulation database and those obtained by
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Database Lifting
(Qdmap)0 V D V D

-1.5 3.3 ×10−5 4.7 ×10−6 2.1 ×10−5 3.2 ×10−6

0. 5.3 ×10−6 4.0 ×10−6 7.9 ×10−8 4.1 ×10−6

Table 2: Estimates for drift (V ) and diffusion (D) coefficients (in s−1) at Qdmap values
of −1.5 and 0 using initial conditions drawn from the simulation database and prepared
by lifting.

a lifting procedure if we evolve the actual model dynamics with a constraint on the
prescribed Qdmap value - possibly through a parabolic constraint potential of the type
used in umbrella sampling (see also the “run and reset” procedure described in [14, 13]).
The effective free energy predicted by analyzing the full simulation database in terms
of Qdmap can be found in Figure 4.

6 Summary and Conclusions

The knowledge of good observables is vital in our ability to create effective reduced
models of complex systems, and thus to analyze and even design their behavior at a
macroscopic/engineering level more efficiently. In this paper we illustrated a connection
between computational data-mining (in particular, diffusion maps and the resulting
low-dimensional description of high-dimensional data) with computational multiscale
methods (in particular, certain equation-free algorithms). Our illustrative example con-
sisted of a model gene regulatory network known to exhibit bistable (switching) behavior
in some regime of its parameter space. We also presented examples of lifting and restric-
tion protocols, that enable the passing of information between detailed state space and
reduced “diffusion map coordinate” space. These protocols allow us to “intelligently”
design short bursts of appropriately initialized stochastic simulations with the detailed
model simulator. Processing the results of these simulations in diffusion coordinate space
forms the basis for the design of subsequent numerical experiments aimed at elucidating
long-term system dynamic features (such as equilibrium densities, effective free energy
surfaces, escape times between different wells, and their parametric dependence). In
particular, we confirmed that previously, empirically known, observables were indeed
meaningful coarse-grained coordinates.

In traditional diffusion map computations, a single scalar (a scaled Euclidean norm)
forms the basis for the identification of good reduced coordinates (when they exist). An
important issue that arose in our example, due to the disparate nature, value ranges and
dynamics of different data vector components, was the selection of appropriate relative
scaling among data component values. The computational approach we used was based
on the data ensemble, without any contribution from the dynamical proximity between
data points collected along the same trajectory. We believe that incorporating such
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information will be very useful in determining relative scalings among disparate data
components; finding ways to integrate such information among data ensembles collected
in different experiments, and possibly with different sampling rates will greatly assist in
this direction.

In this work, diffusion map computations were based on data collected from a single
long transient, that was considered representative of the entire relevant portion of the
(six-dimensional) phase space. In more realistic problems such long simulations will be
no longer possible; yet local simulation bursts, observed on locally valid diffusion map
coordinates can be used to guide the efficient exploration of phase space. Local smooth-
ness in these coordinates allows us to use them in protocols such as umbrella sampling
[41, 36] to “differentially locally extend” effective free energy surfaces. For example,
“reverse coarse” integration described in [17, 15] provides computational protocols for
microscopic/stochastic simulators to track backward in time behavior, accelerating es-
cape from free energy minima and allowing identification of saddle-type coarse-grained
“transition states”. Design of (computational) experiments for obtaining macroscopic
information is thus complemented by the design of (computational) experiments to
extend good low-dimensional data representations: both the coarse-grained coordinates
and the operations we perform on them can be obtained through appropriately designed
fine scale simulation bursts.

In this paper the connection between diffusion maps and coarse-grained computation
operated only in one direction: diffusion map coordinates influenced the subsequent
design of numerical experiments. An important current research goal is to establish the
“reverse connection”: the on-line extension/modification of diffusion map coordinates
towards sampling important, unexplored regions of phase space.
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Appendix A: Diffusion Maps

The following discussion is largely adapted from [3, 9]. We present a criterion for
dimensionality reduction and show how it leads to the diffusion map method.

Suppose we have M points X(i) ∈ R
N , i = 1, . . . ,M , and we define the matrix W by

(4.5). Given a mapping f : [1, . . . ,M ] → R
n, we define the functional L by the formula

L(f) =
∑

i,j

‖f(i) − f(j)‖2 Wij. (A.1)

We see that L(f) is always nonnegative. Moreover, Wij is close to (resp. far from) one
for vectors X(i) and X(j) which are near (resp. far) from each other. For a dimensionality
reduction function f to be useful, we must make sure that nearby points X(i),X(j) in
R

N are mapped to nearby points f(X(i)), f(X(j)) in R
n. To find such a mapping, one

can solve the following minimization problem

arg min
f∈F

L(f) where F = {f : FTDF = In,F
TD1 = 0} (A.2)

where F is the M × n matrix with row vectors f(i), D is the M × M diagonal matrix
with entries Dii =

∑
j Wij , i = 1, . . . ,M , In is the n × n identity matrix, 1 is a vector

of M ones, and 0 a vector of n zeros. The first constraint removes the arbitrary scaling
factor, while the second constraint ensures that we do not map all M points X(i) to the
same number. Since (A.1) can be rewritten as

L(f) =
M∑

i,j=1

‖f(i) − f(j)‖2 Wij = tr(FT (D − W)F) (A.3)

the solution F is given by the matrix of eigenvectors corresponding to the lowest eigen-
values of the matrix

D−1[D − W] = IM − K (A.4)

or equivalently by the largest eigenvalues of K. By the non-negativity of the functional
L(f) it follows that the eigenvalues of IM − K are all non-negative, or that all eigen-
values of K are smaller than or equal to one. The eigenvector corresponding to the
eigenvalue λ0 = 1 is the vector 1. Ordering the remaining eigenvectors in decreasing
order we see that the n-dimensional representation of N -dimensional data points, via
the minimization of (A.2) is the diffusion map (4.12).

We note that our M points and the matrix Wij can be also viewed as the weighted full
graph with M vertices, where the weight associated with an edge between points i and
j is equal to Wi,j. Then the previous analysis can be reformulated in terms of standard
spectral graph theory [8, 3]. More precisely, it was shown in [29] that this construction
leads to the classical normalized graph Laplacian for α = 0 in (4.5). If α = 1, then the
construction gives the Laplace-Beltrami operator on the graph. Finally, if the data are
produced by a stochastic (Langevin) equation, α = 1/2 provides a consistent method to
approximate the eigenvalues and eigenvectors of the underlying stochastic problem.
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Appendix B: Simple Illustrative Examples

We include a brief illustration of the application of the diffusion map approach to the
well known 3-dimensional “Swiss roll” data set [40, 35, 11] (shown in left panel of Figure
7) where datapoints lie along a 2-dimensional manifold. For this dataset X = [x, y, z];
to compute the diffusion map we use α = 1, and σ = 2 in equation (4.1). Figure
7 (right panel) plots these datapoints in terms of their components in the top two
significant eigenvectors (Ψ1(X

(i)), Ψ2(X
(i))) of the matrix K for this dataset; it shows

the “unrolled” 2-dimensional manifold detected by the diffusion map algorithm. The
same result is obtained irrespective of the ordering (or orientation) of the dataset used
to compute the pairwise similarity matrix.
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Figure 7: Left panel: Swiss roll dataset in R
3. Datapoints lie along a 2-dimensional man-

ifold. Datapoints are colored by their z-coordinate value (ordering of datapoints passed
to diffusion map routine is random). Right panel: plot of Ψ1(X

(i)) (corresponding to
eigenvalue λ1) against Ψ2(X

(i)) (corresponding to eigenvalue λ1) for points in the dataset
(same coloring scheme). The diffusion map “unrolls” the 2-dimensional manifold.

As a second illustration, Figure 8 shows the potential E(x, y) = x4/8−x3 +2x2 +y4/5+
6 exp[−2(x−2)2 −10y2] which has two minima connected by two paths. A subsampling
of the dataset generated by Monte Carlo simulation using this potential is shown in
Figure 9 (left panel) with the corresponding diffusion map shown in the right panel of
the figure. For this dataset X = [x, y]; to compute the diffusion map we use α = 0, and
σ = 0.5 in equation (4.1). Figure 9 (right panel) shows that points close to the bottom
of the wells are mapped to tight clusters in the diffusion map, with a clear distinction
between datapoints on each of the two transition pathways between the minima.
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Figure 8: Two-well potential with two connecting pathways between minima.
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Figure 9: Left panel: Subsampled dataset generated by Monte Carlo simulation using
the two-well potential (datapoints colored by energy according to colorbar). Right panel:
dataset diffusion map (same coloring scheme) with top eigenvalues indicated in inset.
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