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1 Introduction

We prove the global existence of weak solutions to the Navier-Stokes equations for com-
pressible, barotropic flow in a domain exterior to a compact obstacle (with nonzero
density at infinity). Our equations can be written in the form:

∂%

∂t
+ div (%~u) = 0, (1.1)

∂%~u

∂t
+ div (%~u ⊗ ~u) + Op(%) = µ∆~u + (λ + µ)O(div ~u), (1.2)

where the density % = %(t, x) and the velocity ~u = [u1(t, x), u2(t, x), u3(t, x)] are functions
of the time t ∈ (0, T ) and the spatial coordinate x ∈ Ω where Ω ⊂ R

3 is a domain exterior
to the compact obstacle and p(%) is the pressure. The viscosity coefficients µ and λ satisfy

µ > 0, λ + µ ≥ 0.

We prescribe the initial conditions for the density and the momentum:

%(0) = %0, (%ui)(0) = qi, i = 1, 2, 3; (1.3)

together with the no-slip boundary conditions for the velocity:

ui|∂Ω = 0, i = 1, 2, 3. (1.4)

We also prescribe the conditions at infinity:

lim
|x|→∞

%(t, x) = %, lim
|x|→∞

~u(t, x) = 0, (1.5)

where % > 0 is a given constant. Let us suppose that the pressure satisfies the assump-
tions:

p ∈ C1[0,∞),

∫ 1

0

p′(s)

s
ds < ∞, and (1.6)

there exist c1 > 0, c2 > 0 such that c1z
γ−1 ≤ p′(z) ≤ c2z

γ−1 for γ >
3

2
. (1.7)

The above assumptions hold for example for isentropic flow where p(z) = czγ .
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2 Apriori estimates and function spaces

Condition (1.5) implies that our quantity % cannot belong to L1. First of all, we formally
find the apriori estimates [4]. Let % be a solution of the system (1.1)-(1.5) and let us
define the auxiliary function H : [0,∞) → [0,∞) by the formula

H(z) =

∫ z

0

∫ s

0

p′(σ)

σ
dσ ds.

Then, equation (1.1) is equivalent to the identity

∂

∂t

{

H(%) − H(%) − H ′(%)(% − %)
}

+ div [%~u(H ′(%) − H ′(%))] = ~u · Op(%). (2.1)

Multiplying equation (1.2) by ~u, we obtain (using also (1.1))

∂

∂t
%
|~u|2
2

+ div

(

%~u
|~u|2
2

)

− ~u · µ∆~u − ~u · (λ + µ)Odiv ~u + ~u · Op(%) = 0,

consequently, by (2.1), we have

∂

∂t

(

%
|~u|2
2

+ H(%) − H(%) − H ′(%)(% − %)

)

+ div

[

%~u
|~u|2
2

+ %~u
(

H ′(%) − H ′(%)
)

]

−

−~u · µ∆~u − ~u · (λ + µ)Odiv ~u = 0.

Integrating over Ω and using the boundary conditions (1.4), (1.5) and the equation (1.1)
again, we have the energy identity in the form

d

d t

∫

Ω

%
|~u|2
2

+H(%)−H(%)−H ′(%)(%−%) dx+

∫

Ω

µ |O~u|2+(λ+µ) |div ~u|2 dx = 0. (2.2)

Now, let us define the function G : [0,∞) → [0,∞) by the formula

G(z) = H(z) − H(%) − H ′(%)(z − %), (2.3)

then we can formally deduce from (2.2), for all t ≥ 0,

∫

Ω

%
|~u|2
2

+ G(%) dx +

∫ t

0

∫

Ω

µ |O~u|2 + (λ + µ) |div ~u|2 dx dt ≤
∫

Ω

%0
|~q|2
2

+ G(%0) dx.

Motivated by the previous formula, it seems reasonable to find the relation between the
quantity

∫

Ω
G(%) dx and norms in some Lp-spaces. Following [4], Appendix A, we can

introduce the space Lγ
2(Ω) given by the definition: Let δ > 0 is a fixed number. Then

Lγ
2(Ω) =

{

h ∈ L1
loc(Ω) |hχ

|h|≤δ ∈ L2(Ω), h χ
|h|>δ ∈ Lγ(Ω)

}

. (2.4)
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This definition is independent of δ. Let ψ(x) is any convex function on [0,∞) which
is equal to c1x

2 for x small and to c2x
γ for x large where c1 and c2 are positive constants.

Then Lγ
2(Ω) = {h ∈ L1

loc(Ω) |ψ(h) ∈ L1(Ω)}, therefore Lγ
2(Ω) is an Orlicz space and we

can define the Luxembourg norm in Lγ
2(Ω).

We have the following lemma:

Lemma 1 : The space Lγ
2(Ω) is a separable, reflexive Banach space. Moreover, G(%) ∈

L1(Ω) if and only if % − % ∈ Lγ
2(Ω).

Proof: See [4], Lemma 5.3 and Appendix A.

3 Finite energy weak solution

Motivated by the previous section, we introduce the concept of finite energy weak solu-
tions (see [2] and [4] for details) of the problem (1.1) – (1.5).

Definition: We shall say that %, ~u is a finite energy weak solution of the problem (1.1),
(1.2), (1.4) and (1.5) on (0, T ) × Ω if the following four conditions are satisfied:

• % ≥ 0, % − % ∈ L∞(0, T ; Lγ
2(Ω)), ui ∈ L2(0, T ;W1,2

0 (Ω)), i = 1, 2;

• the energy E(t) = E[%, ~u](t) =
∫

Ω

1

2
% |~u|2 + G(%) dx satisfies the energy inequality

E(t) +

∫ t

0

∫

Ω

µ |O~u|2 + (λ + µ) |div ~u|2 dx dt ≤ E(0) for a.e. t ∈ (0, T ); (3.1)

• the equations (1.1), (1.2) are satisfied in D′((0, T ) × Ω); moreover, (1.1) holds in
D′((0, T ) × R

3) provided %, ~u were prolonged to be zero on R
3 − Ω;

• the equation (1.1) is satisfied in the sense of renormalized solutions, it means that

b(%)t + div (b(%)~u) + (b′(%)% − b(%))div ~u = 0 (3.2)

holds in D′((0, T ) × Ω) for any b ∈ C1(R) such that

b′(z) ≡ 0 for all z ∈ R large enough, say, z ≥ M (3.3)

where the constant M may vary for different functions b.

In the following, we shall introduce that the initial data %0, qi, i = 1, 2, satisfy compati-
bility conditions of the form:

%0 − % ∈ Lγ
2(Ω), %0 ≥ 0, qi(x) = 0 whenever %0(x) = 0,

|qi|2
%0

∈ L1(Ω), i = 1, 2, 3. (3.4)

Our main result reads as follows:

Theorem 1 : Let A ⊂ R
3 is a bounded, open domain of the class C2+ν , ν > 0. Let

Ω = AC = R
3 − A. Let the data %0, qi satisfy the compatibility conditions (3.4) and the

pressure satisfies (1.6) and (1.7).
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Then given T > 0 arbitrary, there exists a finite energy weak solution %, ~u of the
problem (1.1), (1.2), (1.4), (1.5) satisfying the initial conditions (1.3).

Let n > 0 is sufficiently large and let us denote the ball of the diameter n by Bn, i.e.

Bn = {x ∈ R
3 : ‖x‖≤ n}.

Then, we can obtain the existence result for the Navier-Stokes equation for compressible
fluid in the bounded domain Bn ∩Ω using the approzimation scheme introduced in [2] or
[4]. The presented proof of Theorem 1 will be done by passing to the limit for n → ∞.

4 Approximation

The starting point of our proof will be the following lemma. It is the existence result for
bounded domains proven in [2].

Lemma 2 : Let Ω ⊂ R
3 is a domain exterior to the compact obstacle of the class

C2+ν , ν > 0. Let the data %0, qi satisfy the compatibility conditions (3.4). Let n > 0 is
sufficiently large such that

(R3 − Ω) ⊂ Bn−1 = {x ∈ R
3 : ‖x‖≤ n − 1}

and let us define the domain

Ωn = Ω ∩ Bn = Ω ∩ {x ∈ R
3 : ‖x‖≤ n}.

Let T > 0. Then there exist functions %n, ~un such that

• %n ≥ 0, %n − % ∈ L∞(0, T ; Lγ(Ωn)), ui
n ∈ L2(0, T ;W1,2

0 (Ωn)), i = 1, 2;

• the energy En(t) = E[%n, ~un](t) =
∫

Ωn

1

2
%n |~un|2 + H(%n) dx satisfies the energy

inequality

dEn

d t
+

∫

Ωn

µ |O~un|2 + (λ + µ) |div ~un|2 dx ≤ 0 in D′(0, T ); (4.1)

• the equations (1.1) and (1.2) are satisfied in D′((0, T )×Ωn); moreover, (1.1) holds
in D′((0, T ) × R

3) provided %n, ~un were prolonged to be zero on R
3 − Ωn;

• the equation (1.1) is satisfied in the sense of renormalized solutions, it means that

b(%n)t + div (b(%n)~un) + (b′(%n)%n − b(%n))div ~un = 0

holds in D′((0, T ) × R
3) for any b ∈ C1(R) such that (3.3) holds (provided %n, ~un

are set zero outside Ωn);
• %n(0) = χ

Ωn
%0, (%ui

n)(0) = χ
Ωn

qi, i = 1, 2, 3.
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Proof: See [2], Theorem 1.1.

Let n > 0 is sufficiently large. Then we can use the previous Lemma 2 to obtain a
functions %n, ~un defined on the set (0, T )×Ωn. We will prolonge this function to the set
(0, T ) × Ω by the formula

%n = % in (0, T ) × R
3 − Bn, ~un = 0 in (0, T ) × R

3 − Bn. (4.2)

Now, we can recall the basic estimates for a finite energy weak solutions %n, ~un that can
be deduced from the continuity equation and from the energy inequality.

Lemma 3 : Let the pressure satisfies the hypotheses (1.6) and (1.7). Let %n, ~un be a finite
energy weak solution of the problem (1.1) – (1.5) on (0, T ) × Ωn obtained by Lemma 2.
Let us prolonge the functions %n and ~un by the formula (4.2). Then

∫

Ω

%n(t) − % dx =

∫

Ωn

%n(0) − % dx for any t ∈ [0, T ]. (4.3)

Moreover,

ess sup
t∈[0,T ]

(

‖%n(t) − %‖
L

γ

2
(Ω)

+ ‖√%n~un‖L2(Ω)3

)

+

∫ T

0

‖O~un(t)‖2

L2(Ω)
dt ≤ cE0, (4.4)

where c is a constant and

E0 =

∫

Ω

%0
|~q|2
2

+ G(%0) dx.

Proof: The property (4.3) is a consequence of the continuity equation (1.1), the proof
can be found in [3], Proposition 2.1.

Now, we can rewrite (4.3) to the form

∫

Ω

−H ′(%) (%n(t) − %) dx =

∫

Ω

−H ′(%) (%n(0) − %) dx for any t ∈ [0, T ]. (4.5)

By virtue of the energy inequality (4.1), we have

∫

Ωn

1

2
%n |~un|2 + H(%n) dx (t) +

∫ t

0

∫

Ωn

µ |O~un|2 + (λ + µ) |div ~un|2 dxdτ ≤

≤
∫

Ωn

%0
|~q|2
2

+ H(%0) dx (4.6)

for a.e. t ∈ [0, T ].
Consequently, adding (4.5) and (4.6) and using (4.2), we have

ess sup
t∈[0,T ]

∫

Ω

1

2
%n |~un|2 + G(%n) dx +

∫ T

0

∫

Ω

µ |O~un|2 + (λ + µ) |div ~un|2 dxdt ≤
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∫

Ωn

%0
|~q|2
2

+ H(%0) − H(%) − H ′(%) (%n(0) − %) dx ≤

≤
∫

Ω

%0
|~q|2
2

+ G(%0) dx = E0, (4.7)

which gives (4.4).
Q.E.D.

Next estimate has a local character and can be formally proved by testing equation (1.2)
by the quantity 4−1∂xi

%θ – see [4] for details.

Lemma 4 : Let the pressure p satisfy the hypotheses (1.6) and (1.7). Let %n, ~un be a
finite energy weak solution of the problem (1.1) – (1.5) on (0, T )×Ωn obtained by Lemma
2. Let us prolonge the functions %n and ~un by the formula (4.2). Let the data %0, qi satisfy
the compatibility conditions (3.4). Let B ⊂ B ⊂ Ω be a given ball. Then there exist θ > 0
and a constant c depending on %0, qi, B and T such that

∫ T

0

∫

B

p(%n)%θ
n dx dt ≤ c(B) (4.8)

and
∫ T

0

∫

B

G(%n)%θ
n dx dt ≤ c(B). (4.9)

Proof: The estimate (4.8) can be found e.g. in [2], Proposition 2.3. The estimate (4.9)
is an consequence of (4.8) and (4.4).

Q.E.D.

5 Weak convergence

By virtue of the Lemma 2, we can find the sequence %n, ~un of finite energy weak solutions
of the problem (1.1) – (1.5) on (0, T ) × Ωn. Let us prolonge the functions %n and ~un by
the formula (4.2). Because of (4.4), we have

ess sup
t∈[0,T ]

‖%n(t) − %‖
L

γ

2
(Ω)

.

Thus there exists w ∈ L∞(0, T ; Lγ
2(Ω)) and the subsequence of %n such that

%n − % → w weakly star in L∞(0, T ; Lγ
2(Ω))

passing to the subsequence as the case may be. Let us denote % = w + %. Then we have

%n − % → % − % weakly star in L∞(0, T ; Lγ
2(Ω)). (5.1)
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Similarly, using (4.4) again, we have

~un → ~u weakly in L2(0, T ; D1,2
0 (Ω)) (5.2)

where the space D1,2
0 (Ω) is a completion of D(Ω) with respect to the norm

‖v‖
D

1,2

0
(Ω)

=

√

∫

Ω

|Ov|2 dx.

We shall prove that % and ~u are finite energy weak solutions of the problem (1.1), (1.2),
(1.4), (1.5) satisfying the initial conditions (1.3).

As a first step of our proof of Theorem 1, we shall prove the following lemma:

Lemma 5 : The limit functions % and ~u given by (5.1) and (5.2) satisfy the equation
(1.1) in D′((0, T ) × R

3) provided %, ~u were prolonged to be zero on R
3 − Ω. Moreover

%n → % in C([0, T ]; Lγ
weak(B)) for any ball B ⊂ R

3, (5.3)

%nun → %u in C([0, T ]; Lq
weak(B)) for any ball B ⊂ Ω, where q =

2γ

γ + 1
(5.4)

p(%n) → p(%) weakly in L1((0, T ) × B) (5.5)

and
∂%~u

∂t
+ div (%~u ⊗ ~u) + Op(%) = µ∆~u + (λ + µ)O(div ~u) (5.6)

in D′((0, T ) × Ω). Here, the bar stands for an L1-weak limit.

Remark: Here, the convergence with respect to the weak topology in (5.3) means

t →
∫

Ω

%n(t)g dx converges uniformly to t →
∫

Ω

%(t)g dx

for any g ∈ Lγ′

(Omega) where 1/γ +1/γ′ = 1. Similarly, we understand the convergence
with respect to the weak topology in (5.4).

Proof: Let φ ∈ D((0, T ) × R
3). Our functions %n and ~un were prolonged by (4.2).

Moreover, let us prolonge functions %n and ~un by zero on R
3 − Ω.

By Lemma 2, the continuity equation holds in D′((0, T ) × R
3) for the functions

%nχ
Ωn

and ~un. It gives

∫ T

0

∫

Ω

%nχ
Ωn

φt dxdt +

∫ T

0

∫

Ω

%nχ
Ωn

~un · Oφ dx dt = 0. (5.7)

As ~un were prolonged 0 outside Ωn, we have the equation

∫ t

0

∫

Ω−Ωn

% φt dx dt +

∫ T

0

∫

Ω−Ωn

% ~un · Oφ dxdt = 0. (5.8)
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Adding (5.7) and (5.8), we have

∫ T

0

∫

Ω

%nφt dx dt +

∫ T

0

∫

Ω

%n~un · Oφ dx dt = 0 for all φ ∈ D((0, T ) × R
3). (5.9)

Let B ⊂ R
3. Then, by virtue of (4.4) and Hölder inequality, we have that %n are bounded

in L∞(0, T ; Lγ(B)) and

%n~un are bounded in L∞(0, T ; Lq(B)) where q =
2γ

γ + 1
. (5.10)

Therefore (5.9) implies

∂%n

∂t
are bounded in L∞(0, T ;W−1,q(B)).

And we can use the Arzela-Ascoli theorem to deduce (5.3) (compare with [1], Lemma
3.5). Consequently, using (5.2), (5.3), (5.10) and Sobolev embedding theorem, we have

%n~un → %~u in L2(0, T ; Lq(B)).

As the ball B was arbitrary, we can pass to the limit in (5.9) for n → ∞ to deduce
that the limit functions % and ~u given by (5.1) and (5.2) satisfy the equation (1.1) in
D′((0, T ) × R

3) provided %, ~u were prolonged to be zero on R
3 − Ω.

Similarly, by virtue of (1.2), (5.10) and Arzela-Ascoli theorem, we obtain (5.4).
Consequently, using (5.2), (5.4) and Sobolev embedding theorem, we have

%n~un ⊗ ~un → %~u ⊗ ~u in D′((0, T ) × B) (5.11)

for all balls B ⊂ B ⊂ Ω. Finally, Lemma 4 gives (5.5) and we can pass to the limit for
n → ∞ in (1.2) to deduce (5.6).

Q.E.D.

6 Strong convergence of the density

In view of the above results, % and ~u satisfy (1.2) as soon as we show p(%) = p(%) in (5.6).
To this end, we first prove the strong convergence of the densities %n. We start with the
following lemma about the effective viscous pressure:

Lemma 6 : Let the pressure p satisfy the hypotheses (1.6) and (1.7). Let %n, ~un be a finite
energy weak solution of the problem (1.1) – (1.5) on (0, T ) × Ωn obtained in Lemma 2.
Let us prolonge the functions %n and ~un by the formula (4.2). Let

%, ~u and p(%) are weak limits obtained in (5.1), (5.2) and (5.5).
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Then

lim
n→∞

∫ T

0

∫

Ω

ψφ
(

p(%n) − (λ + 2µ)div ~un

)

b(%n) dx dt =

=

∫ T

0

∫

Ω

ψφ
(

p(%) − (λ + 2µ)div ~u
)

b(%) dx dt

for any b ∈ C1(R) and any ψ = ψ(t) ∈ D(0, T ) and φ = φ(x) ∈ D(Ω). Here again, the
bar stands for an L1-weak limit.

Proof: This is a standard result about the effective viscous flux, i.e. about the quantity
p(%) − (λ + 2µ). The result has local character, therefore its proof is the same as if %n

and ~un were the solutions on a fixed bounded spatial domain - see [4], Chapter 5, or [2],
Lemma 4.2.

Q.E.D.

By virtue of the Lemma 6, we can prove the following two important lemmas. Both
results have of local character, therefore, its proof is the same as if %n and ~un were
solutions solutions on a bounded fixed spatial domain (see [2]).

Lemma 7 : Let %n, ~un be a finite energy weak solution of the problem (1.1) – (1.5) on
(0, T )×Ωn obtained in Lemma 2. Let % is the weak limit obtained in (5.1). Let us intro-
duce the family of cut-off functions Tk by

Tk(z) = k T
( z

k

)

for z ∈ R, k = 1, 2, 3, . . .

where T ∈ C∞(R) is chosen so that

T (z) = z for z ≤ 1, T (z) = 2 for z ≥ 3, T concave.

Let B ⊂ R
3 is a bounded ball. Then there exists a constant c independent of k such that

lim sup
n→∞

∫ T

0

∫

B

|Tk(%n) − Tk(%)|γ+1
dx dt ≤ c

for any k ≥ 1.

Proof: See [2], Lemma 4.3 or [3], Lemma 4.2.
Q.E.D.

Lemma 8 : The limit functions %, ~u solve (1.2) in the sense of renormalized solutions,
i.e. (3.2) holds in D′((0, T ) × R

3) for any b ∈ C1(R) satisfying (3.3) provided %, ~u are
set zero outside Ω.

Proof: See [2], Lemma 4.4 or [3], Proposition 4.1.
Q.E.D.

We are going to complete the proof of

p(%) = p(%). (6.1)
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To this end, we introduce a family of functions Lk ∈ C1(R):

Lk(z) =

{

z log(z) for 0 ≤ z < k,

z log(k) + z
∫ z

k

Tk(s)
s2 ds for z ≥ k.

(6.2)

Seeing that Lk can be written as

Lk(z) = βkz + bk(z) (6.3)

where bk satisfy (3.3), we can use the fact that %n, ~un are renormalized solutions of (1.1)
to deduce

∂tLk(%n) + div (Lk(%n)~un) + Tk(%n)div ~un = 0 in D′((0, T ) × R
3). (6.4)

Similarly, by virtue of Lemma 8 and (6.3),

∂tLk(%) + div (Lk(%)~u) + Tk(%)div ~u = 0 in D′((0, T ) × R
3). (6.5)

Now, we can estimate (for k sufficently large, say, k > % + c, where c is a constant which
can be easily compute from the definition of Lk)

χ
{|Lk(%n)−% log(%)|≤1}

∣

∣Lk(%n) − % log(%)
∣

∣ ≤

≤ χ
{|%n−%|≤c1}

·
∣

∣Lk(%n) − % log(%)
∣

∣ + χ
{0<c1<|%n−%|≤c3}

, ·
∣

∣Lk(%n) − % log(%)
∣

∣ (6.6)

where c1, c2 and c3 are constants. Note, that the constant second term in (6.6) appears
only when % is small and the equation z log(z) = % log % has two solutions. Consequently,
using meanvalue theorem, we have

‖χ
{|Lk(%n)−% log(%)|≤1}

∣

∣Lk(%n) − % log(%)
∣

∣ ‖L∞(0,T ;L2(Ω)) ≤

‖χ
{|%n−%|≤c1}

·
∣

∣Lk(%n) − % log(%)
∣

∣ ‖L∞(0,T ;L2(Ω)) +

+‖χ
{0<c1<|%n−%|≤c3}

, ·
∣

∣Lk(%n) − % log(%)
∣

∣ ‖L∞(0,T ;L2(Ω)) ≤

≤ c‖χ
{|%n−%|≤c1}

·
∣

∣%n − %
∣

∣ ‖L∞(0,T ;L2(Ω)) + c µ{0 < c1 < |%n − %| ≤ c3} (6.7)

where µ{·} denotes the Lebesgue measure. By virtue of (4.4), we see that the right hand
side in (6.7) is bounded. Using (4.4) again, we obtain that (for each k) the sequence

{Lk(%n) − % log(%)}n is bounded in L∞(0, T ; Lγ
2(Ω)). (6.8)

Thus, we have

Lk(%n) − % log(%)
n→∞−−−→ Lk(%) − % log(%) weakly star in L∞(0, T ; Lγ

2(Ω)).
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In view of (6.4) and abstract Arzela-Ascoli theorem, we also have

Lk(%n) − % log(%)
n→∞−−−→ Lk(%) − % log(%) in C([0, T ]; Lγ

weak(B)) (6.9)

for any bounded ball B ⊂ Ω. Taking the difference of (6.4) and (6.5) and integrating
with respect to t, we get

∫

Ω

(Lk(%n) − Lk(%))(t)φdx =

+

∫ t

0

∫

Ω

(Lk(%n)~un − Lk(%)~u) · Oφ + (Tk(%)div ~u − Tk(%n)div ~un)φ dxdt

for any φ ∈ D(Ω). Passing to the limit for n → ∞ and making use of (5.2) and (6.9), one
obtains

∫

Ω

(Lk(%) − % log(%) − Lk(%) + % log(%))(t)φdx = (6.10)

=

∫ t

0

∫

Ω

(

Lk(%) − % log(%) − Lk(%) + % log(%)+
)

~u · Oφ dx dt+

+ lim
n→∞

∫ t

0

∫

Ω

(Tk(%)div ~u − Tk(%n)div ~un)φdx dt

for any φ ∈ D(Ω). As the velocity components ui, i = 1, 2 belong to L2(0, T ;W1,2
0 (Ω)),

it holds
|~u|

dist[x, ∂Ω]
∈ L2(0, T ; L2(Ω)). (6.11)

Now, let r be a fixed integer and let us consider a sequence of functions φm ∈ D(Ω) such
that

0 ≤ φm ≤ 1, φm(x) = 1 for all x ∈ Ωr such that dist[x, ∂Ω] ≥ 1

m
and

|Oφm(x)| ≤ 2m for all x ∈ Ω and φm(x) = 0 outside Ωr.

Taking functions φm as test functions in (6.10), passing to the limit for m → ∞ and
making use of (6.11), one derives

∫

Ωr

(

Lk(%) − % log(%) − Lk(%) + % log(%)
)

(t) dx =

=

∫ t

0

∫

Ωr

Tk(%)div ~u dxdt − lim
n→∞

∫ t

0

∫

Ωr

Tk(%n)div ~un dxdt. (6.12)

Observe that the term Lk(%) − % log(%) − Lk(%) + % log(%) is bounded in view of (6.3).
At this stage, the main idea is to let k → ∞ in (6.12). By virtue of (4.4) and (6.6)

(we can use the estimate (6.6) because Lk(z) = z log(z) for z < k), we can assume

%n log(%n) − % log(%) → % log(%) − % log(%) weakly star in L∞(0, T ; Lα
2 (Ω))

11



for all α ∈ (1, γ). We also have

Lk(%) − % log(%) → % log(%) − % log(%) in L∞(0, T ; Lα
2 (Ω)) for any α ∈ (1, γ), (6.13)

since, making of use (4.4) and (6.2),

‖Lk(%) − % log(%) − % log(%) − % log(%)‖L∞(0,T ;Lα
2
(Ω)) ≤

≤ lim inf
n→∞

ess sup
t∈[0,T ]

‖Lk(%n) − %n log(%n)‖Lα
2

≤

≤ c kγ−α sup
n

ess sup
t∈[0,T ]

‖χ
{|%n−%|≥1}

· %n(t)‖Lγ → 0 as k → ∞.

Similarly, we obtain

Lk(%) − % log(%) → % log(%) − % log(%) in L∞(0, T ; Lα
2 (Ω)) for any α ∈ (1, γ). (6.14)

Finally, by virtue of Lemma 6 and the monotonicity of the pressure, we can estimate the
right hand side of (6.12):

∫ t

0

∫

Ωr

Tk(%)div ~u dx dt − lim
δ→0+

∫ t

0

∫

Ωr

Tk(%n)div ~un dx dt ≤

≤
∫ t

0

∫

Ωr

(Tk(%) − Tk(%))div ~u dxdt. (6.15)

By virtue of Lemma 7 and (5.2), the right-hand side of (6.15) tends to zero as k → ∞.
Now, we can pass to the limit for k → ∞ in (6.12) to conclude

∫

Ωr

% log(%) − % log(%) − % log(%) + % log(%) dx (t) = 0 for a.e. t ∈ [0, T ]. (6.16)

Because of the convexity of the function z → z log z − % log(%), we have

% log(%) − % log(%) ≥ % log(%) − % log(%) a.e. in (0, T ) × Ωr

which, combined with (6.16) and with the fact that r is arbitrary, gives

% log(%) − % log(%) = % log(%) − % log(%) a.e. in (0, T ) × Ω. (6.17)

By virtue of (6.2), we can assume (cf. with (6.6))

(

% + %n

2

)

log

(

% + %n

2

)

− % log(%) → w weakly star in L∞(0, T ; Lα
2 (Ω))

for all α ∈ (1, γ), where, in view of convexity, w ≥ % log %−% log(%). Thus, using convexity
and (6.17),

0 ≤ hn =
1

2
%n log(%n) +

1

2
% log(%) −

(

% + %n

2

)

log

(

% + %n

2

)

w∗

−−→ % log(%) − % log(%) − w

12



weakly star in L∞(0, T ; Lγ
2(Ω)). As % log(%) − % log(%) − w ≤ 0, we have weak star con-

vergence hn → 0 which together with hn ≥ 0 yields even strong convergence hn → 0 in
L1

loc((0, T ) × Ω). Consequently, we have also strong convergence

%n − % → % − % in L1
loc((0, T ) × Ω).

In particular, it implies (6.1).

7 The energy inequality

Our proof of Theorem 1 will be finished provided that we will prove the energy inequality.
To this end, let us consider the positive test function ψ ∈ D(0, T ). Multiplying (4.6) by
ψ and integrating over t in the interval [0, T ], we obtain

∫ T

0

ψ

∫

Ωn

1

2
%n |~un|2 +H(%n) dx dt+

∫ T

0

ψ

∫ t

0

∫

Ωn

µ |O~un|2 +(λ+µ) |div ~un|2 dx dτ dt ≤

≤
∫ T

0

ψ

∫

Ωn

%0
|~q|2
2

+ H(%0) dx dt. (7.1)

Consequently, adding (4.5) and (7.1) and using (4.2), we have

∫ T

0

ψ

∫

Ω

1

2
%n |~un|2 +G(%n) dx dt+

∫ T

0

ψ

∫ t

0

∫

Ω

µ |O~un|2 +(λ+µ) |div ~un|2 dxdx dτ dt ≤

≤
∫ T

0

ψ

∫

Ωn

%0
|~q|2
2

+ G(%0) dxdt =

∫ T

0

ψ(t)E0 dt. (7.2)

Let B is a bounded ball, then we can estimate the left-hand side of (7.2) from below:

∫ T

0

ψ

∫

Ω

1

2
%n |~un|2 + G(%n) dxdt +

∫ T

0

ψ

∫ t

0

∫

Ω

µ |O~un|2 + (λ + µ) |div ~un|2 dx dτ dt ≥

≥
∫ T

0

ψ

∫

Ω∩B

1

2
%n |~un|2 + G(%n) dxdt+

+

∫ T

0

ψ

∫ t

0

∫

Ω∩B

µ |O~un|2 + (λ + µ) |div ~un|2 dx dτ dt (7.3)

Now, using (4.9), (5.1), (5.2), (5.11) and (5.4), we can pass to the limit for n → ∞ in
the inequalities (7.3) and (7.2) to obtain:

∫ T

0

ψ

∫

Ω∩B

1

2
% |~u|2 + G(%) dxdt +

∫ T

0

ψ

∫ t

0

∫

Ω∩B

µ |O~u|2 + (λ + µ) |div ~u|2 dxdx dτ dt ≤

13



≤
∫ T

0

ψ(t)E0 dt.

As B and ψ are arbitrary, it implies our energy inequality (4.1) and the proof of Theorem
1 is finished.
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