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Abstract. The collective movements of unicellular organisms such as bacteria or addebawling)
cells are often modeled by partial differential equations (PDESs) thatidesthe time evolution of cell
density. In particular, chemotaxis equations have been used to model tleeneravtowards various kinds
of extracellular cues. Well-developed analytical and numerical methedmfdyzing the time-dependent
and time-independent properties of solutions make this approach attrattweever, these models are
often based on phenomenological descriptions of cell fluxes with natdioeespondence to individual cell
processes such signal transduction and cell movement. This leads toefteonquof how to justify these
macroscopic PDEs from microscopic descriptions of cells, and how to rblatenacroscopic quantities
in these PDEs to individual-level parameters. Here we summarize reagreps on this question in the
context of bacterial and amoeboid chemotaxis, and formulate severapopiglems.

1 Introduction

In view of the enormous complexity of many biological problems, it is readertatassert that ‘biology will
inspire and motivate new mathematics in the years to come, much as physicsibdsrdoany centuries!
We follow the spirit of this philosophy in this contribution, and summarize repesgress in embedding
certain aspects of cell-level biology into population-level equations in theegbof taxis-driven movement
of unicellular organisms. We also formulate several open mathematical prable

We begin with a simple random walk model and its connection to a partial diffafequation in Section
2.1. This classical example will illustrate basic relations between random aatk®DESs. In Section 2.2
and 2.3, we present examples of more complicated random walks thatsdracédd from the biology of
unicellular organisms, and summarize recent results on mapping the midmstahastic processes that
describe cell movement to macroscopic equations for cell density. In 8eftiove define two classes
of random walks that include the biological models from Section 2. We willtbalin random walks with
internal dynamics of type P (when spatial variations in intracellular variabeegnored and cells are treated
as points) and type D (when the internal state variables of interest varpnwhtncell). The former applies
to small cells such as bacteria, while the latter applies to larger amoeboid cehstyBes lead to a number
of open mathematical problems, and a mathematician who is less interested in tigechlatwtivation can
find these problems in Section 3. On the other hand, a biologist who is morestgéiin how this area of
mathematical biology relates to his/her research can focus on Section 2.
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2 From individual to collective behavior of unicellular organisms

Moatile organisms can sense their environment and respond to it (i) by direatgement toward or away
from a signal, which is callethxis (ii) by changing their speed and/or turning frequency, which is called
kinesis or (iii) by a combination of these. The first is chemotaxis and the secomdatheesis if the signal
is a chemical, but despite their differences, the two are collectively egféoras chemotaxis. Chemotaxis
involves: (i) the extracellular signal, (ii) the signal transduction machinattthnsduces the extracellular
signal into an intracellular signal, and (iii) changes in the motile behavior ofelig in response to the
intracellular signal. To move away from repellents or toward attractantsisrga must extract directional
information from the extracellular signal, which is usually a scalar field, agabtare two distinct strategies
that are used to do this.

The first strategy is used by bacterial cells, which detect the signal ityteaishe present location,
move away, measure the signal again and from a comparison of the twe a@ecile next step. Thus they
measure the temporal variation in the signal as they move through the exieloh&f. [9] and references
therein). Cells that are large enough to detect typical differences irighal ®ver their body length, e.g.,
amoeboid cells, employ the second strategy: these cells make a ‘two-popaga-sneasurement, com-
pare the signals, and crawl towards better conditions. In either castbearonsideration in understanding
population-level behavior is whether or not an individual merely deteetsitnal and responds to it, or
whether the individual alters it as well, for example by consuming it or by agipgjfit so as to relay the
signal. In the former case there is no feedback from the local densitgividnals to the external field, but
when the individual produces or degrades the signal, there is cougtagén the local density of individ-
uals and the intensity of the signal. The latter occurs during aggregatior afithe moldDictyostelium
discoideumwhere cells move up the gradient of cAMP and relay cAMP as well [2],, &&l in pattern
formation by the bacteriuri. coli discussed later in Section 2.2.

Although the details of the two strategies used by cells during chemotaxis grdifferent, the same
classical Patlak-Keller-Segel (PKS) chemotaxis equations

%’Z = V. (D,Vn—xnVS), Q)
% = D;AS+ f(n,95). (2)

and its variant forms have been widely used to model the population densitydonse to external signals.
Heren is the cell densityS is the signal concentratior),, and D, are the diffusion constants, andis
the chemotaxis sensitivity. Questions of existence and uniqueness of ssjyiattern formation, and in
particular aggregation, and the dependence of these properties cattine and strength of the chemotac-
tic response have been widely studied [16]. However, the generalepnoof justifying the macroscopic
equations from the microscopic details of signal transduction and movermehtramslating the micro-
scopic parameters into macroscopic quantities in different contexts remelradlenge. Some progress on
this has been made recently in the background of both swimming bacteria amihgreukaryotic cells
[15, 26, 8, 9, 10, 38]. In the following we begin with a simple example in Se@i@nand summarize the
main results for bacteria in Section 2.2 and for crawling cells in Section 2.3.

2.1 The telegraph process in the absence of internal dynamics

How the PKS equation (1) relates to the movement of individuals can besiaddrin the context of a
stochastic process called the telegraph process. In this process,wéizdll the telegraph random walk
(TRW), a particle whose position is € R moves with speed in either direction. The particle changes
its direction according to a Poisson process with constant turning fregugn> 0. It can be simulated
as follows: choose a small time stég and update the position of a particle&$ + At) = z(t) £ s At
where=s is its velocity at timet. At each time step, generate a random numbeniformly distributed
in (0,1), and ifr < Ao At the particle changes direction, and otherwise it continues. Three reaizatio
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Figure 1: (a)Three random trajectories generated by the TRWAfpe= s = 1. (b) The histogram of particle
distribution obtained by a simulation @6, 000 particles (gray) and by solution of the macroscopic equation
(3) (red line).

trajectories of particles for the TRW are shown in Figure 1(a). Since thg picess is stochastic, different
realizations that begin at the same initial point are different, but the av&ettavior of many particles, each
executing the TRW, is deterministic.

In biological applications the quantity of interest is often this average, whigpresented by the density
n(z,t) of particles at point: and timet. This satisfies the macroscopic telegrapher’s equation [14, 18]

0*n on 5 0?n

@ + 2)\05 =S @
In Figure 1(b), we show the density profile predicted from (3) (red Jicejnpared with a histogram of
positions of 10,000 particles that started:é) = 4 and follow the TRW. One sees that stochastic fluctu-
ations around the mean are relatively small, and the density profile doehare significantly for other
realizations using 10,000 particles.

Equation (3) shares some similarities with (1)-(2), but the fundamentatelifte between them is that
the coefficients of (3) are written in terms of the paramedgrands of the TRW. That is, the parameters
of the individual-level behavior fully determine the macroscopic evolutiothefdensity given by (3). The
PKS system also contains coefficients that should reflect cell-leveVimehaut until recently there was no
mechanism for relating micro- and macroscopic parameters. We will adiifiesgzroblem in Section 2.2
and 2.3.

The macroscopic equation (3) has been derived rigorously in [18]ttz associated TRW has been
studied by many authors [14, 18, 28]. The exact solution of (3) carbbened by a variety of methods
and it can be shown from the exact solution that the TRW is approximateddiffuaion process in a
suitable limit. The motivation for finding macroscopic equations rests in the faatgahthere are many
established techniques for the analysis of PDEs that lead to a qualitatieestarttling of how various
processes interact to affect the solutions, and (b) we can bypasertiputationally-intensive individual-
based simulations by solving the macroscopic PDEs. Progress toward tletoiimacro transition for the
PKS system is reported in [34, 24]. In the remainder of the paper wemrasre complicated examples of
random walks that are used for modeling the behavior of unicellular mng@nwe summarize recent results
on the derivation of macroscopic PDEs starting from the evolution equairce phase-space density, and
we formulate open problems in this field.
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2.2 Individual-level behavior of flagellated bacteria and nacroscopic PDEs

Many flagellated bacteria such Bscoli swim using a run-and-tumble strategy in which movement consists
of more-or-less straight runs interrupted by tumbles [2, 4]. When rotatedterclockwise the flagella form

a bundle that propels the cell forward with a speed 10 — 30 um/s; when rotated clockwise the bundle
flies apart and the cell ‘tumbles’. Tumbles reorient the cells in a more-srr&@slomly-chosen direction,
with a slight bias in the direction of the previous run, for the next run [8je Tun and tumble movement is

a 3D analog of the TRW, and in the absence of signal gradients the ramdtinis unbiased, with a mean
run time~ 1 s and a tumble time- 0.1s. However, when exposed to an external signal gradient, the cell
responds by increasing (decreasing) the run length when moving ®awdy from) a favorable direction,
and therefore the random walk is biased with a drift in that direction [1, T8k coordinated movement
of these bacteria can lead to a variety of cell density patterns including rkestwocalized aggregation and
traveling waves (Figure 2).
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Figure 2: Simulated E. coli patterns by a cell-based modg) Network formation from an uniform cell
lawn; (b) Aggregate formation from the networ{g) Traveling wave formation from a single inoculum in
the center. Adapted from [29] with permission.

The TRW is an example of a larger class of random walks called velocity-juogepses [25]. Bacteria such
asE. coliare typically small £ 1um in length), and for movement purposes can be characterized as point
particles with positiox € RV and velocityv € V € RY. By approximating the relatively short tumbling
stage as an instantaneous jump, individual movement is described asityyalop process [25], and the
statistics of movement of cells can be described by the probability densitigich evolves according to the
transport equation

SR v Vplev,0) = “Apevit) + A [ T v ) V. @
\%

Here ) is the turning rate and@’(v’, v) is the turning kernel. When the cells are well separated and there is
little mechanical interaction between themgan also be regarded as the cell density as a functicn of
and¢. The observed macroscopic densitys an integral ofp over all variables other than space and time,
i.e,n= [,pdv here.

In the absence of a signal gradients a constant=£ )\;), and on suitable time and space scales, and
under suitable hypotheses on the turning kefhehis velocity-jump process reduces to a diffusion process

[15]. In the diffusion equation
on
— =V-(D, 5
5 =V (DuVn) (5)
that results, the macroscopic coefficiéht can in general be a second-rank tensor, but viiensymmetric
itis a scalar and,, = s2/(N (1 —14)\o) whereN is the spatial dimension ang; is the so-called index of
directional persistence that characteriZefl5]. In the presence of a chemical signal the PKS chemotaxis

equation (1) was derived in the diffusion limit by assuming that the extraceBidaal fieldS enters via
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small perturbations of the unstimulated turning raf26]. The essential assumption was that the time scale
for the microscopic random walk is well separated from the transportigfugion time scales.

Experimental advances have led to extensive study of the mechanisntserfdlahemotaxis, and much
is known for the model systei. coli. Therefore representations of the macroscopic chemotactic sensitivity
in terms of parameters that characterize the microscopic intracellular signatitrction network became
possible, which was carried out in a sequence of papers [8, 9, 88]8] linternal state variables were
introduced to describe the time-dependent signal transduction andveesp/hen this is done the transport
equation becomes

% + V- (vp) + Vy - (fp) = —A(y)p + / AW (v, v, y)p(x, vy, t)dv’, (6)
|4
where q
Y _ f(y, S(x,t)) (7)

dt
models signal transduction andy ) describes the motor response. The entire signal transduction of bacteria
is very complicated and detailed models involve many state variables [33],éutajor processes consist
of fast excitation in response to signal changes and slow adaptatiombhetcs out the background signal.
These processes can be captured by the cartoon description

dyi  G(S(x,1)) — (y1 +y2)

E - te ’ (8)
dy G(S(x,1)) —yo

e i : 9)

HereG(S) models signal detection via surface receptorstarahdt, specify the excitation and adaptation
time scales, with, << t,. Using this cartoon description fér applying moment closure techniques and a
regular perturbation method, the macroscopic equation

on 52 , bs?t,
A Fo WISl o wesnp wa s wa LA E (10)
with b = —%|y1=0 was first derived in 1D in [8], and later extended to 3D in [9]. The majsuagption

in this derivation is that the signal gradient is shallow, G'(S)VS - v ~ O(e)sec!, andt,\g ~
O(1), which results in a clear separation of the microscopic time scales from thesoapic transport and
diffusion time scales. Other assumptions include time-independent sigjral§'(x), a linear turning rate
A = )Xo — by; and no directional persistengg; = 0. New moment closure methods were developed in
[38] to generalize the derivation for time dependent sigials S(x,t) and nonlinear dependence of the
turning rate on internal variablés= Xy — by1 + azyi — - - - with the previous case correspondsifo= 0,
for all i > 2. The shallow gradient assumption becon%él’(S)(VS -V %—f) ~ O(e) sec! and the
same equation (10) was derived under this condition with directional pmrses appearing as a scaling of
the turning rates by a factor ¢f — ;). The method also works for any finite system of internal dynamics
f(y) in polynomial form under the assumption of separability of microscopic andoseapic time scales.
Cell movement in the presence of multiple signals and external forces wasaisidered in [38].
Many cells have multiple receptor types and thus can respond to many difiégmals. How a cell in-
tegrates these different signals and responds properly is not knogenieral, but in bacteria different
signaling pathways share the same network downstream of the recepitberefore different signals are
integrated at the signal processing step. In this case, the fur@tisrgenerally a function of all signals,

G = G(S51, 59, ,Sn), and the macroscopic equation for cell density becomes
on oG oG
T V- [DnVn — Xon <651VS1 + -4 aSmVSmﬂ , (11)



where

D, = 782 and = bs”ta
"7 Noo(l— ) X0 NI+ Ao(1 = da)ta) (1 + Ao(1 — va)te)’

Other generalizations are possible. For example, bacteria generally swiorércomplicated environments
with external forces acting on them, and macroscopic equations canibeddieom a velocity jump process
with acceleration terms. As an example, when cells swim close to a surfacanthare curved to the right
when observed from above [7] due to an imbalance of viscous forddeell body, and this bias has
been shown to induce spiral density patterns [37]. By treating the swimmisgbian external force, the
macroscopic equation

SN @5 (xS + 60(vS)H)] (12)
ot

has been derived in two space dimensions in [38]. K&i€): = ((VS)s, (—V.S)1)T is a vector orthogonal
to V.S, and the diffusion coefficient and the chemotactic sensitivities under suegdion of fast excitation
are as follows:

82

w2
2X0(1 = va) + 557250y

b= a2 Po(1 — ) o1 — ) + ) — ] 2)
T (01— o) + 22+ ) (3(1— da)? + )

wob(1 — 1hq)s?(200(1 — 1bg) + )
2((Mo(1 = a) + 1) + W) A (1 — a)? +wj)

The parametew, measures the swimming bias, whilg is the index of directional persistence. Notice
that the swimming bias decreases the diffusion coefficient and the chematuditivity xo, and introduce

a drift or a second taxis-like term in the direction orthogonal to the sigrealignt. Also notice that);
appears only in the scaling factor of the turning rate constangdb. The method developed in [38] can
be used to incorporate the effect of more general imposed forcedlas we

D, =

Bo =

2.3 The route from individual-level descriptions of amoebail cells to macroscopic PDEs

The directed motion of eukaryotic cells (for examiéctyostelium discoideurfibd) or leukocytes) is more
complicated than bacterial motion. Cells detect extracellular chemical and mealhsagnals via membrane
receptors, and these trigger signal transduction cascades that@iotiacellular signals. Small differences
in the extracellular signal over the cell are amplified into large end-to-endceiltular differences that
control the motile machinery of the cell and thereby determine the spatial Idgatiz# contact sites with
the substrate and the sites of force-generation needed to producedlinection [32, 5]. For instance,
well-polarized Dd cells are able to detect and respond to chemoattractaiemps with as little as a 2%
concentration difference between the anterior and posterior of the8gllirectional changes of a shallow
gradient induce polarized cells to turn on a time scale of 2-3 secondsWh8}eas large changes lead to
large-scale disassembly of motile components and creation of a new “leatiyjed directed toward the
stimulus [12].

Thus the first important difference from the bacterial case is that amnidoél-based model of Dd that
purports to provide at least a caricature description of direction seasighgnovement cannot treat cells as
points, but must allow for spatial variations in the finite cell volume (or aregbn Zhere are a number
of models for how cells extract directional information from the cAMP fieleh &&arly suggestion was that
directional information is obtained by the extension of pseudopods baakM@ receptors, and that sensing
the temporal change experienced by a receptor is equivalent to séinsiggatial gradient [11]. However,
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more recent experiments show that cells in a steady gradient can polatiee direction of the gradient
without extending pseudopods [32]. Thus cells must rely entirely onrdiitees in the signal across the cell
body for orientation. Moreover, the timing between different compondnteaesponse is critical, because
a cell must decide how to move before it begins to relay the signal. Analyaisnofdel for the cCAMP relay
pathway, in which cells are treated as squat cylinders, shows that apetiences a significant difference
in the front-to-back ratio of cCAMP when a neighboring cell begins to sif@lalwhich demonstrates that
sufficient end-to-end differences for reliable orientation can bergéea for typical extracellular signals;
all that is needed is that the direction-sensing pathways respond atteéasst as the cCAMP pathway.
More recently, a number of simplified models of directional sensing in eokiarghemotaxis have been
developed [17, 22, 21]. The model used in [6] produces realisticegggjon when suitable formal rules for
cell movement are used, as shown in Figure 3.

@ o ®)

Figure 3: Aggregation patterns in Dd predicted by a cell-based model with realisticRANracellular
dynamics and formal movement rules. (a): a single aggregation cehteving cell streams and a superim-
posed spiral cAMP wave (blue), and (b) several competing aggmegeentersFrom [6] with permission.

The second complication that must be dealt with is that the force-generataminagy that drives the motion
of eukaryotic cells plays a central role in the macroscopic responses# tedls to chemotactic signals. In
the ‘run-and-tumble’ description of bacterial motion we assumed that jumpsingantaneous.€., forces
were Dirac distributions) and the bacterial behavior was described al®eity jump process. Moreover,
the reduction to a diffusion process can still be carried through if theréngalifetime in the tumble state,
as long as the transitions are instantaneous [26]. In contrast, the disdai@nges in eukaryotic cells are
much slower and depend directly on the signal location, and thus this hasnclimed in the model. This
has been done at the single cell level, using a model for intracellular cAM&ndics, and treating the cells
as deformable viscoelastic ellipsoids that exert forces on the substchemaranother. This more complex
model also produces realistic aggregation patterns, as shown in Figlue there is a huge gap between
realistic, single-cell models and continuum descriptions. Thus far onl{ivelasimple cell-based models
have been used for the derivation of macroscopic descriptions, foedisens elaborated below.

Following [6, 10, 21], a cell is described &, = {¢ € RY| || £ ||< o} whereN = 20or N = 3 is
the dimension of the physical spade,, B, is a circle (forNV = 2) or a sphere (fotN = 3). The model
of an eukaryotic cell is formulated in terms of the position of its cemtez RY, its velocityv € RY,
its internal state functiong : B, — R% and its membrane state functioas 9B, — R%. We denote
byy = (y,z) € Y the combined internal and membrane state. Heie a suitable, in general infinite-
dimensional, Banach space.

The force per unit mass on the centroid of a cell is denotedrly, v,¥), and the internal state and




Figure 4: Intermediate (a) and late-stage (b) aggregation patterns in Dd predicyed tell-based model
with cAMP dynamics, directional sensing and orientation, and cell-cell egldsubstrate interactions.
From [31] with permission.

velocity are assumed to evolve according to

oy .
dv _
a - f(X,V,y), (15)

whereG : Y x S — Y is a mapping between Banach spacesBndR” x RY x Y — RY. This generality

is needed because the combined internal statecludes quantities that depend on the location in the cell
or on the membrane, and which may, for example, satisfy a reaction-diffagigation or another evolution
equation. The example of (14) that will be used in Section 3 (Random walk e reaction-diffusion
equation fory

%‘; = DAy + f(y), in B,, (16)

b(y,z) =0, in 0B,. a7)

Thus the boundary condition fgrinvolves a relation between it and the membrane state funciigresrhaps
to reflect binding or other processes such as scaffold formation. @hedary variables in turn evolve

according to the equation
0z

Tl g(z,9), in 0B, (18)
whereS is the external signal, and this could also incorporate diffusion on thedaoyiby suitably altering
the equation. The equation (15) is in general a stochastic differentiatieguhat can incorporate the
random processes observed in cells, and thus the individual-bdsaddres formulated as a random walk.

The derivation of macroscopic equations for eukaryotic cells is a chatigtask. A simple model of the
form (14-15) for a single cell is studied in [10]. This model captures #seetial features of cell movement
in response to traveling waves of chemoattractant. Moreover, there axispping? : Y — RF, k < oo,
satisfying F(x,v,y) = F(x,v,P(y)) whereF : RV x RV x R¥ — R such that a closed evolution
equation for the variablg = P(y) can be derived. Then the cellular random walk written in terms ofr(
y) can be equivalently formulated in terms of the finite-dimensional state varigbles z). In particular,
one can formulate an equation for the probability distributidr, v,z) (compare with the equation (6)
written for p(x, v, y) in the bacterial case). Asymptotic analysis of this transport equation leads/giem
of macroscopic hyperbolic equations, but it is not known if that systemircaurn be reduced to (1);
details are given in [10]. The derivation of macroscopic equationsyitems when the finite-dimensional
reduction? : Y — R* is not possible is an open problem.
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3 Open problems

In this section we define several random walks motivated by the foredgpamhggical examples and formu-
late several open problems relating to the derivation of macroscopic eggiétiat incorporate microscopic
properties of these random walks. Solving these problems will not onlytéeraelv developments in mathe-
matics, but the results will also enhance our understanding of behavimiasdllular organisms. As before,
we denote byV the dimension of the underlying physical space, whEre- 2 when cell movements are
restricted to a surface amd = 3 when cell moves freely in space. We start with two definitions — a cell of
type P corresponds to bacterial (prokaryotic and smaller) cells and a cell efilyporresponds to larger
cells such as Dd.

Definition 1 A cell of type P is a point-like particle described by its positiog RY, velocityv € RY and
internal statey € R% whered is a positive integer.

Definition 2 A cell of type D is a ball described by the position of its center RY, velocityv € RY,
radius o > 0, internal state functiong : B, — R% and membrane state functioas 0B, — R, where

BQ = {(377@/72” ” (a;,y,z) HS Q}'

Random walk P: We consider a cell of type P. Its position evolves according to

dx
= v 19
i (19)
The random velocity changes are the results of a Poisson process wiithgtfirequency\(y). The
probability of a change in velocity from’ to v, given that a reorientation occurs, 1{v,v’). The
internal state evolves according to (7).

Open Problem 1: Consider a population of cells of type P that move by Random walk P in aieidt) €
C>(RYN x R*). The general problem is to derive equations for the cell density frdrbased models
with f : R — R% X @ R? — (0,00) andT : R?Y — (0, 00) under a variety of signal gradients.
As shown in Section 2.2, the problem has been investigated for a cartsonpdien off given by (8)—(9),
analyticalA and symmetricl” [9, 8, 38]. Equation (10) has been derived for shallow gradiémts,H =
%G’(S)(Vs-v+%f) ~ O(e) sect withe = s/(L\g) =~ 10~2. The chemotactic sensitivity derived would
be zero for, = 0, which agrees with the biological fact that instantaneous adaptation to tred pigcludes
aggregation. It remains to be determined whether the PKS equation (1) aridst/forms gives a good
representation of the population dynamics for bacterial chemotaxis, homahescopic quantities relate
to microscopic parameters, and if the PKS equation fails under certainkhaemacroscopic equation can
be derived. In [39] it is shown that for an ultra-small signal gradiéht< O(<?) sec!, the chemotactic
response of the population provides a small perturbation, via higher s, of the cell density, which
evolves according to a diffusion process withy = s?/(N\g). However, for large signal gradient& (>
O(1) sec’!) equation (10) fails since the macroscopic velocity

us = x(S)VS=s <bSG’(S)VS> (—1/ V@ (tgAoA — 1)1vdv> (20)
Ao Vv
can exceed realistic cell speeds whéfi is large. In this case the microscopic time scale and macroscopic
time scales are lumped together and new techniques are needed to deriveamgic equations. Therefore
the problem remains to be solved for a large signal gradiént O(1) sec’!, where the adaptation tintg
can vary from seconds to minutes.

Random walk P1: Random walk P1 is the same as random walk P except that cell velocity ehang

. . dv
between turnings as a result of external forces. priak




Open Problem 2: Random walk P1 witlf given by (8)—(9) anch as a swimming bias has been shown
to predict transient spiral patterns [37] similar to what is observed. titquél1) has been derived from
random walk P1 under the shallow gradient assumption [38]. Theritf@mains to determine whether the
equation (11) also has spiral solutions under certain conditions whehechwith the signal equation.

Random walk P2: Random walk P2 is the same as random walk P1 except that the turning date an
turning kernel also depends on the external force fidld, X\ = A(y,b), T =T(v,v',b).

Open Problem 3: Chemotaxis of bacteria has the potential to facilitate waste degradation in bitiatiore
processes. There bacterial movement are subject to convection bgdluidll as active swimming towards
wastes. Presumably the fluid motion alters bacterial moving pattern by alterthguots and tumbles,
therefore the running velocity, turning kernel and turning rate aretiume of the local fluid velocityu
etc. The macroscopic equation that incorporates cell-fluid interactiorsrtiedx derived and may not be a
simple addition of convective flux to the chemotaxis equation.

Open Problem 4: A more general problem is to derive macroscopic equations that inaiepoell-cell

interaction. One step in this direction is made in [20]. Another question is whigthehemotaxis equation
with volume-exclusion [30] can be derived from the random walk P.

Random walk D: We consider a cell of type D. The position of its center evolves accordi(itio Its
internal state evolves according to the PDE (16)—(17). The membranéustetiens evolve according to
the ODE (18) wheré is the external signal. The velocity evolves according te V(y) whereV (y)
is a random variable.

Open Problem 5: The general question is: under what conditions can be the collectiavioeiof cells
that undergo Random walk D be described by equation (1)? As digstusskection 2.3, the derivation
of macroscopic equations has been addressed for a simplified modelinfiividual behavior of cells of
type D; details are given in [10]. However, even in this simplified case theasegpic equations are not
the classical chemotaxis equation (1), and whether the macroscopic eguzdin under some conditions,
be reduced to (1) remains an open problem. Considering a differemtdndl-based model of the form of
Random walk D, brings additional challenges to the derivation of macpiseguations. The derivation
of macroscopic equations remains open, for example, for the balanadiyatian model of Levineet al,
[21] and for the intracellular model of Dd developed by Tang, Dallon atidr@r [35, 6].

4 Summary

We have summarized recent results and open problems in modeling the batfawiellular organisms,

with a focus on the derivation of macroscopic equations from individaaetd models. We also formu-
lated several open problems in this area in mathematical terms. Advances ieding @i PDEs, random

processes, moment closure technigues and asymptotic analysis must ba orade to resolve these prob-
lems. This makes the ‘micro-macro transition in biology’ an exciting area okatmesearch in applied
mathematics.
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