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Amongst the most striking aspects of the movement of many ani-
mal groups are their sudden coherent changes in direction. Recent
observations of locusts and starlings have shown that this directional
switching is an intrinsic property of their motion. Similar direction
switches are seen in self-propelled particle (SPP) and other models
of group motion. Comprehending the factors which determine such
switches is key to understanding the movement of these groups.
Here we adopt a coarse-grained approach to the study of directional
switching in a SPP model assuming an underlying one-dimensional
Fokker-Planck equation (FPE) for the mean velocity of the parti-
cles. We continue with this assumption in analysing experimental
data on locusts and use a similar systematic FPE coefficient estima-
tion approach to extract the relevant information for the assumed
FPE underlying that data. We determine the mean time between
direction switches as a function of group density for the SPP model.
This systematic approach allows us to identify key differences be-
tween the SPP model and the data, revealing that individual locusts
increase the randomness of their movements in response to a loss
of alignment by the group. We give a quantitative description of
how locusts use noise to maintain swarm alignment. We discuss
further how properties of individual animal behaviour, inferred us-
ing the FPE coefficient estimation approach, can be implemented
in the SPP model in order to replicate qualitatively the group level
dynamics seen in the experimental data.

collective behaviour | locusts | swarming | density dependent switching |
coarse-graining

While recent years have seen an explosion in the number
of simulation models of moving animal groups, there

is little detailed comparison between these models and data
(1, 2). The models usually produce motion that ‘looks like’
that of a swarm of locusts, a school of fish or a flock of birds,
but the similarities are difficult to quantify (3). Furthermore,
the simulation models themselves are often difficult to under-
stand from a mathematical viewpoint since, by their nature,
they resist simple mean-field descriptions. These complica-
tions make it difficult to use models to predict, for example,
the rate at which groups change direction of travel or how
spatial patterns evolve through time. We are left with a mul-
titude of models all of which seem to relate to the available
data, but none of which provides clear predictive power.

One approach to the problem of linking data to model be-
haviour is the detailed study of the local interactions between
animals. This approach has yielded better understanding of
the rules which govern the interaction of fish (4, 5) and birds
(6, 7). However, establishing these rules is technically diffi-
cult since it requires automated tracking of individuals over
long periods of time and quantification of often complicated

interactions.
Coherent animal groups often make sudden changes in

direction (1, 8, 9). In some cases a switch in direction is a
response to an external influence, such as the presence of a
predator, but in other cases animal groups appear to switch
direction spontaneously. Recently, experiments on various
densities of desert locusts (Schistocerca gregaria) in a homo-
geneous environment confirmed that directional switching can
occur without changes in the external environment (8). In ex-
periments with lower locust densities it was found that groups
of locust nymphs were highly aligned and marched in one-
direction around a ring-shaped arena for up to two or three
hours, before spontaneously switching direction in the space
of only a few minutes and marching in the opposite direc-
tion, again for a number of hours. In experiments with higher
densities marching groups formed travelling in the same di-
rection for the 8-hour duration of the experiment. The group
property of average velocity/alignment (as it will variously
be denoted throughout the rest of this paper) of the locust
experiments was previously modelled by a one-dimensional
self-propelled particle (SPP) model similar to that in (10).
In a manner analogous to the experiments in (8) this model
also exhibits spontaneous direction switching where ‘particles’
rapidly change alignment.

In this paper we investigate directional switching in a SPP
model and in our data of the motion of locusts. A coarse-
grained model characterises the behaviour of a system in terms
of a single “coarse” variable (average locust velocity in our
case) and does not take into account the “fine” details of the
behaviour of individual locusts. If such a model is explicitly
available we can apply available mathematical techniques to
study the properties of group switching as will be shown later
for a simple toy model. In a more complicated scenario, where
we are not able to write a coarse-grained model explicitly,
we can often still assume that there exists a coarse-grained
Fokker-Planck equation (FPE) describing the evolution of the
average velocity of the particles in the SPP model. We use ap-
propriately initialised computational experiments to estimate
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the (explicitly unavailable) drift and diffusion coefficients of
such a FPE. The drift coefficient represents the mean rate of
change of the average velocity of the locusts, while the diffu-
sion coefficient quantifies the randomness of the evolution of
this coarse-grained variable (precise mathematical definitions
are given later in Eqs. [13] and [14]). We also estimate the
drift and diffusion coefficients of a coarse-grained FPE based
on experimental data. Coarse-graining enables efficient de-
scription and analysis of these data and assists the refinement
of the individual based model so as to simulate observed group
properties more accurately.

Our studies suggest that an individual’s response to a loss
of alignment in the group is increased randomness of its mo-
tion, until an aligned state is again achieved. This alignment-
dependent stochasticity, using randomness to keep the group
ordered, appears counterintuitive. While the constructive ef-
fects of noise at the level of an individual have been reported
in other biological systems (11), here we present an exam-
ple where noise has been found to be a constructive force at
the collective level in an ecological system. Furthermore, the
lack of sources of environmental noise in the experiment under
consideration indicates the internal character of these fluctu-
ations. Noise induced alignment seems, in this case, to be an
intrinsic characteristic of collective coherent motion.

The paper is organised as follows: we start by providing an
analytical result for mean switching times of the SPP model
with global interactions and compare this to its equation-free
approximation in the case of local interactions. After demon-
strating that coarse-graining works well for our model simula-
tions we adopt a similar FPE coefficient estimation approach
to the locust data in order to find the drift and diffusion coef-
ficients of the assumed underlying FPE. This analysis illumi-
nates similarities and important differences between the model
and the data and allows us to better understand directional
switching in both cases. We conclude by proposing a new,
modified model which reproduces the experimental observa-
tions more accurately than the previously used SPP models.

The self-propelled particle (SPP) model

We consider a group of N ‘locusts’. Each locust adjusts its
behaviour according to the behaviour of its neighbours which
can be found less than a distance R (the interaction radius)
from it. A locust’s behaviour is described by its position,
xi ≡ xi(t), and velocity, ui ≡ ui(t), i = 1, . . . , N , which
evolve according to the model adapted from Czirók et al (10):

∆xi = ui∆t, [1]

∆ui =
n

G
“

ūloc
i

”

− ui(t)
o

∆t + ∆Qη
“

ūloc
i

”

, [2]

where ∆t is the time step between successive position and ve-
locity updates. ∆Q is a random variable uniformly distributed
in [−

√
∆t ω/2,

√
∆t ω/2] with mean 0 and variance ∆tω2/12,

where ω is the (constant) system noise amplitude.

ūloc
i =

1

ni(t)

X

j∈JR

i

uj(t) [3]

is the mean of the velocities of the particles local to (inside
the interaction radius of) particle i, where J R

i ≡ J R
i (t) is

the set of all j ∈ {1, 2, . . . , N} such that |xi(t) − xj(t)| < R
(i.e. the set of particles (including particle i itself) located
within the interaction radius, R, of particle i at time t) and

ni(t) = |J R
i (t)| (i.e. the number of particles located within

the interaction radius of particle i at time t). The function
G : R → R is chosen to be

G(z) =
1

1 + β
{z + βsign(z)}, [4]

where β is a positive constant. Finally η is a function of the
local mean velocity, ūloc

i , which can be varied to change the
behaviour of the model. We consider motion in a domain
of constant length L with periodic boundary conditions, di-
rectly motivated by the experiments described in (8), where
locusts march in a ring-shaped arena. Note that in this one-
dimensional geometry we allow the particles to cross through
each other.

In (8) and (10) the function η is chosen to be one. Simi-
larly we will choose η ≡ 1 in our initial model and later revise
this choice after analysis of the experimental data. Let us
note that the model in (10) is a special case of model [1] – [2]
where β = ∆t = 1 and η ≡ 1 throughout.

A toy model with globally interacting particles

To illustrate our coarse-graining technique we will first study
a modification of the model [1] – [2] where all particles inter-
act with each other. The advantage of this model is that we
can obtain the coarse-grained equations explicitly: we know
that the assumptions, made later to justify coarse-graining,
hold exactly and hence we can validate the approach. More-
over, we can obtain analytical results for this model, as shown
below. We thus replace the local average [3] in formula [2] by
the global average,

U(t) =
1

N

N
X

j=1

uj(t),

to obtain:

∆ui =
˘

G (U(t)) − ui(t)
¯

∆t + ∆Q, [5]

for i = 1, 2, . . . , N, where η ≡ 1 for simplicity and the march-
ing group comprises all N individuals. Note that this toy
model is the original model with the domain length, L, equal
to 2R. Equations [5] are now only one-way coupled with equa-
tions [1] (i.e. the positions of the locusts do not affect the ve-
locities, but the velocities do affect the positions). Assuming
that the number of locusts in the marching group is fixed and
equal to N , this toy locust problem can be described by the
system of N equations [5].

A quantity of interest is the mean switching time between
different directions of motion of the group (left or right) for
which, in this special case of global interaction, we can find an
explicit formula. Adding equations [5] and dividing through
by N and invoking the central limit theorem

∆U ≈
˘

G(U) − U
¯

∆t +
ω√
12N

∆W, [6]

where ∆W is the normal random variable with mean 0 and
variance ∆t (i.e. the standard Brownian process). Assum-
ing the approximation in [6] to be exact, let fN (U, t) be the
probability distribution function of the random variable U .
Given initial condition fN (U, 0), the distribution fN (U, t) can
be computed (as in (12)) as a solution of the FPE,

∂fN

∂t
=

∂

∂U

„

ω2

24N

∂fN

∂U
−

˘

G (U) − U
¯

fN

«

. [7]
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(c)

Fig. 1. The global interaction model [5]. For β = 1, ω = 3 and N = 10 ((a) and (b) only). (a) The analytically derived SPD (solid line) of the approximate FPE for the

average velocity, (see Eq. [6]) and the equation-free derived approximation to the SPD (dashed line). (b) The analytically derived potential (solid line) and the equation-free

derived approximation to the potential (dashed line). (c) Mean switching time vs N : Analytically derived solution (solid line) and values simulated using the model [5] (squares).

Note that there is a log-scale on the T1-axis. In this global interaction case it is clear that the mean switching time increases exponentially with the number of locusts.
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Fig. 2. Equation-free analysis of the local interaction model. L = 90, R = 5, β = 1, ω = 2.6 and N = 30 ((a) and (b) only). (a) Estimation of the diffusion

coefficient of the unavailable FPE for the coarse variable, U . (b) Two approximations of the SPD. The histogram represents a sample of the alignments (taken every 50 time

steps) from one long simulation. The curve represents the equation-free estimation to the SPD. (c) Mean switching time as a function of the number of locusts, N , derived

using the equation-free technique (crosses with dashed best fit line) and from simulation (squares with full best fit line).

Notice that, apart from the small approximation due to the
application of the central limit theorem, this is an exact equa-
tion for the coarse-grained observable U . The steady solution
of [7] is given by

fNst(U) = C exp [−φN (U)] , [8]

where C is a normalisation constant and the potential, φN (U),
can be computed as

φN (U) =
12Nβ

ω2(1 + β)

ˆ

U2 − 2|U |
˜

. [9]

The potential is symmetric with respect to U = 0. It has two
global minima at U± = ±1. Fig. 1 shows (a) the stationary
probability distribution (SPD), fNst(U), given by [8] and (b)
the potential, φN (U), given by [9], both plotted as solid lines.
The mean switching time can be computed (as in (12)) as a
function of N ,

T1 =
24N

ω2

Z 0

−1

exp [φN (U)]

Z U

−∞

exp [−φN (ξ)] dξdU. [10]

The function T1(N) is plotted (full line) in Fig. 1(c), with
approximations to the variation of the mean switching time
with N (squares) given by stochastically simulating the model.

There is quantitative agreement between the simulations and
the theoretical formula [10]. There is no doubt, in the case
of global interaction, that the dependence of mean switching
time on the number of particles in the system is exponential.
It can be approximated (see SI) as

T1 ≈
s

πω2(1 + β)3

12Nβ3
exp

»

12Nβ

ω2(1 + β)

–

. [11]

Equation-free approach

We now return to the original model [1] – [2] with finite inter-
action radius. Unlike in the case of the toy global interaction
model, we are unable to derive an explicit, closed-form equa-
tion for the coarse-grained observable U , i.e. the analogue
of equation [7]. However, we hypothesise that such a closed
equation,

∂fN

∂t
=

∂2 (D(U)fN )

∂U2
− ∂ (F (U)fN )

∂U
, [12]

exists, where D(U) and F (U) are the diffusion and drift coef-
ficients respectively. Using an equation-free approach (13,14)
we are still able to approximate quantities such as the mean
switching time by designing and performing short computa-
tional experiments to estimate, on demand, the drift and dif-
fusion coefficients of the unavailable, coarse-grained FPE [12]
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for the mean velocity, U , of the locusts. Following (13,15) we
approximate

F (U) ≈
fi

U(t + δt) − U(t)

δt

fl

, [13]

D(U) ≈ 1

2

fi

[U(t + δt) − U(t)]2

δt

fl

, [14]

where 〈·〉 represents an ensemble average over several, consis-
tently initialised, short replica simulations with the detailed
model [1] – [2]. δt is a small number of time steps of the pro-
cess (typically between one and five) dictated by the timescale
on which the coarse-grained equation [12] becomes valid. We
can then use the drift and diffusion coefficients to approxi-
mate, via quadrature, the potential:

φ(U) = −
Z U

0

F (s)

D(s)
ds + ln(D(U)) [15]

and hence the SPD of the underlying FPE (using Eq. [8]).
The equation-free approach involves initialising the parti-

cles consistently (lifting), so that their velocities give a specific
value of alignment, U . We perform a large number of replica
simulations (typically 1000) allowing each one to evolve for a
short time period δt. This provides representative averages for
the drift and diffusion coefficients of FPE [12] using formulae
[13] and [14] respectively. After we have found the values of
these desired quantities at the first alignment we repeat the
process on an evenly spaced grid of possible alignments. Ap-
plying this technique in the case of global interaction gives an
excellent fit to the analytical solutions, as expected (see Fig.
1(b),(a)).

In the more biologically realistic ‘local’ model, [1] – [2], we
found that slightly smoother results were obtained by initial-
ising particles with both a prescribed alignment and a velocity

variance which, in long simulations, was observed to be consis-
tent with the particular alignment value. The diffusion coeffi-
cient of a specific case (N = 30) of the local model is shown in
Fig. 2(a) to be approximately constant, while the drift coeffi-
cient has a characteristic antisymmetric cubic shape, indica-
tive of the symmetric double-welled potential (see SI). Such
an effective potential is consistent with most particle veloci-
ties being aligned (in one direction or in the other) most of
the time, with occasional switches between directions whose
frequency depends on the height of the potential barrier be-
tween the wells relative to their depth. This is corroborated
by the approximations to the SPDs given in Fig. 2(b). The
histogram represents the proportion of time the mean veloc-
ity of the particles spends at each allowed value bin during
a long-time simulation, while the curve is the equation-free
approximation to the SPD.

For a range of N we used the short-burst equation-free
derived potential to estimate the mean switching time using
a modified version of Eq. [10]:

T1 =

Z U+

U−

1

D(ξ)
exp [φ(U)]

Z U

−∞

exp [−φ(ξ)] dξdU, [16]

where U− and U+ are the mean velocities at which the two
minima of the potential occur. We also established the re-
lationship between mean switching time and N by counting
the switches during a long simulation for the same range of
N . The two methods give similar, apparently exponential,
relationships (see Fig. 2(c)).

Experimental data
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(c)

Fig. 3. Analysis of the experimental data. N = 30 ((a), and (b) only). The diffusion coefficient (a) and drift coefficient (b) estimated using [13] and [14] respectively. (c)

Variation of the mean switching time with the number of locusts, calculated using the estimated potentials and Eq. [16] (crosses with dashed best fit line) and by counting the

number of direction switches (squares with full best fit line). Note the log scale on the y-axis.

Locusts exhibit dynamic directional switching over a range
of different densities. In previously reported experiments (8)

we recorded the directional alignment of groups of between 5
and 100 locusts for 8 hours. The ring-shaped arena in which
the locusts were placed is analogous to the one-dimensional
domain with periodic boundary conditions used in the SPP
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model. We can thus use similar techniques to analyse the
experimental data as we did with the long-term simulations.
However, the equation-free approach (involving many consis-
tent initialisations of the velocity - and even possibly of the
variance of the velocity - of live locusts) is not practical in
an experimental setting. Instead, we use a similar systematic
FPE coefficient estimation approach from observations of the
velocities of the locusts over a long period of time (an ‘equilib-
rium run’). During the first two hours of the experiments the
activity of the locusts changed significantly, while in the latter
six hours activity tended to be relatively consistent. We thus
amalgamated, for each number of locusts up to 40, the obser-
vations of the locusts’ velocities over several experiments after
the first two hours of each experiment. We collected instances
of the same alignment, U(t) and the alignment, U(t + δt), a
short time, δt, later and used these in equations [13] and [14]
to estimate the drift and diffusion coefficients of the underly-
ing FPE. Although experiments were carried out for numbers
of locusts above 40 there were too few switches in the six hour
interval to provide a meaningful estimate of drift and diffusion
coefficients.

Fig. 3(a) and (b) show the estimated drift and diffusion
coefficients of the alignment for the experiment with 30 lo-
custs. The drift coefficient in Fig. 3(b), although noisy, still
has a roughly cubic shape consistent with that estimated for
the SPP model. Unlike the SPP model, however, the diffu-
sion coefficient appears to have a quadratic shape, with its
maximum at zero alignment. The potential (see SI), although
not perfectly symmetric, is still double-welled, indicating the
tendency of the particles to exhibit collective motion in one
direction or the other.

We used Eq. [16] to calculate, for different N , the mean
switching times from the potentials constructed by system-
atic estimation. We also found the mean switching time di-
rectly by taking the total time of the experiment and di-
viding it by the number of switches made. Both methods
give an approximately exponential relationship between mean
switching time and N (see Fig. 3(c)). This implies that the
more locusts there are, the less often they switch and, as the

number of locusts becomes sufficiently large, there are effec-
tively no switches over the duration of a day’s marching (∼ 8
hours). There are quantitative differences between the re-
sults obtained by direct estimation of number of switches and
the result of the coarse-grained approach. Two key sources
may contribute to this: (i) The assumption that there ex-
ists a coarse-grained FPE for the average velocity, U , is valid
only approximately. Such a discrepancy was already observed
when we substituted the toy model [5] by model [1] – [2] (see
Fig. 2(c)). In the case of the toy model [5] we know that
there exists a closed FPE [7] and the results are exact, (see
Fig. 1(c)). On the other hand, in the original model [1] – [2]
the coarse-grained equation was not readily available and our
computations revealed that it is valid only approximately. (ii)
For the experiments there is also a second source of error since,
unlike the computational model, we cannot obtain unlimited
time series data. The length of the time series is limited by
experimental restrictions. Binning the available time series as
a histogram does not yield a symmetric SPD, which suggests
that these time series are not long enough (see SI).

The fact that the diffusion coefficient increases when group
alignment is low indicates that the locusts might respond
to low group alignment by increasing the noisiness of their
motion. To test this hypothesis we refined the SPP model
[1] – [2]. Instead of taking the function η(ūloc

i ) (multiplying
the uniform random variable, ∆Q, in the velocity update Eq.
[2]) to be unity, we chose it to be a nontrivial function of the
local mean velocity, ūloc

i , specifically,

η
“

ūloc
i

”

=
3

2

(

1 −
„

ūloc
i

|ūloc
i |max

«2
)

, [17]

where |ūloc
i |max is the maximum of the absolute value of the

mean local velocity; for this choice η(ūloc
i ) does not become

negative. We specifically chose this functional form for η in
order to obtain a quadratic shaped diffusion. The factor 3/2
is chosen to make the overall size of the noise in the original
and revised models the same (see SI).
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(c)

Fig. 4. Analysis of the revised model. L = 90, R = 5, β = 1, ω = 2.6, |ūloc
i |max = 1.5 and N = 30 ((a) and (b) only). The interaction radius was chosen

to be consistent with (8) and the noise was chosen so as to mimic the relationship between locust number and mean switching time given by the experimental data. (a)

The diffusion coefficient of the revised model mimics the quadratic shape of the actual diffusion coefficient for the locusts, peaking at approximately zero alignment. (b) The

potential has two deep wells giving further favourable comparison to the experimental data. (c) Comparison of the exponential relationship between the number of locusts and

mean switching time, given by the revised model (squares with full best fit line) and the experimental data (crosses with dashed best fit line). Note the log scale on the y-axis.

In Fig. 4(a) the quadratic nature of the effective diffusion
coefficient is recovered by the refined model. Qualitatively,
the potential of the new model compares favourably with the
potential of the actual locust data (see SI). A further useful
validation of the revised model is that the mean switching
time is significantly increased for all values of N in compar-
ison to the original model (compare the simulation-derived
mean switching times (squares with the full best fit lines)
in Fig. 2(c) to Fig. 4(c)). A higher diffusion coefficient at
lower alignments suggests that the locusts ‘prefer’ to be in a
highly aligned state: when the locusts leave this state they in-
crease the randomness of their movements and consequently
a new aligned state is arrived at more quickly. The effect of
this altered diffusion coefficient on the evolution of the coarse
variable, U , is evidenced in Fig. 5. The transitions between
ordered states in the original model are very sharp (see Fig.
5(a)), whereas the transitions for the experimental data are

relatively noisy (See Fig. 5(b)). The noisiness of the transi-
tions appears to be replicated well by the revised model (see
Fig. 5(c)). In general it can be seen that the marching band
switches direction more frequently in the original model than
the revised model.

Discussion

Our analysis of self-propelled particle models and of ani-
mal movement data has revealed a number of novel features.
Firstly we established that the mean switching time increases
exponentially with the number of particles/locusts. As lo-
cust density increases the turning rate of the group rapidly
decreases. This observation has implications regarding at-
tempts to control the locusts’ motion: at high densities it
becomes increasingly difficult to influence a group’s direction.
Secondly we used the systematic Fokker-Planck equation coef-
ficient estimation approach on experimental data. Our results
indicated that the individuals move more randomly in locust
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Fig. 5. Typical evolution of the average velocity, U , for (a) the original model, (b) the actual locust data and (c) the revised model. N = 30, L = 90, R = 5, β = 1,

ω = 3.9 ((a) and (c) only) and |ūloc
i |max = 1.5 ((c) only). In (a) and (c) we have used an altered value of ω and a rescaled time axis in order to better illustrate the

similarities and differences between the models and the data.
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groups with low alignment. This appears to enable the group
to find (and remain in) a highly aligned state more easily.

One of the most useful aspects of our agent-based ap-
proach is that it enhances our ability to speculate about the
behaviour of individual locusts from group level information:
we alter individual behavioural rules and use self-propelled
particle models to test the effect that these alterations have
on the coarse variable, U . This enables us to verify the va-
lidity of these individual-scale alterations. We thus used our
experimental observations to guide our modelling, changing
the noise term for the individual locusts so that it becomes
larger when the alignment is smaller. We found the relation-
ship between group number and mean switching time to again
be exponential, but with longer mean switching times than in
our previous model.

It would be interesting to consider whether recent find-
ings about cannibalistic interactions between marching locusts
(16) can provide rationalisation for the observation of appar-
ently increased individual randomness in response to a loss of
alignment at the group level: given the risk of exposing the
rear of the abdomen to oncoming insects (16), there may be

selection pressure on an individual to minimise the time spent
in the disordered phase. A longer inter-switch time might also
be selected for in an evolutionary scenario since it allows the
locusts to remain in a coherent group for longer periods, po-
tentially increasing harvesting efficiency and reducing preda-
tion (5, 17–19).

We have provided evidence that our revised model is more
biologically justifiable than our original model; new functional
forms such as [17] may be useful in the formulation of other
self-propelled particle models characterising collective animal
behaviour. Our findings provide strong evidence for the seem-
ingly unexpected phenomenon of randomness contributing to
the creation of coherent behaviour at the collective level.
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