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Abstract Swarming, schooling, flocking and herding are all names given to the wide variety
of collective behaviours exhibited by groups of animals, bacteria and even individual cells. More
generally, the term swarming describes the behaviour of an aggregate of agents (not necessarily bi-
ological) of similar size and shape which exhibit some emergent property such as directed migration
or group cohesion. In this paper we review various individual-based models of collective behaviour
and discuss their merits and drawbacks. We further analyse some one-dimensional models in the
context of locust swarming. In specific models, in both one and two dimensions, we demonstrate
how varying parameters relating to how much attention individuals pay to their neighbours can
dramatically change the behaviour of the group. We also introduce leader individuals to these
models. Leader individuals have the ability to guide the swarm to a greater or lesser degree as
we vary the parameters of the model. Finally, we consider evolutionary scenarios for models with
leaders in which individuals are allowed to evolve the degree of influence neighbouring individuals
have on their subsequent motion.

1 Introduction

Often we need only look out of the window to see the principles of collective behaviour at work; in
a flock of birds for example. Other collective behaviours which capture our imaginations are those
of fish schools, locust plagues and bee swarms. Sometimes we almost forget that, as humans in
crowded environments, we exhibit some of the most interesting collective behaviours of any species
(Couzin and Krause, 2003). As well as the aesthetically pleasing aspect of watching a swarm in
motion, studying collective behaviour has practical applications: understanding fish schooling can
lead to more well developed fishing strategies; a knowledge of the way locusts interact and stay
together in devastatingly large, coherent groups may shed light on potential strategies which may
be used to disrupt these groups and halt the swarm’s destructive progress (Buhl et al., 2006; Yates
et al., 2009); studying how humans interact in crowds can be key in devising and implementing
efficient and safe crowd control policies, which will help to avoid fatalities in possibly overcrowded
situations such as football grounds, music concerts and shopping centres (Couzin and Krause,
2003).

Over the course of the last twenty-five years several so called ‘self-propelled particle’ (SPP)
models (a specific class of individual-based model (IBM)) have been introduced and analysed, in
one dimension (Czirók et al., 1999), in higher dimensions (Couzin et al., 2002; Cucker and Smale,
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2007; Vicsek et al., 1995), both without and with leaders (Couzin et al., 2005; Jadbabaie et al.,
2003; Shen, 2008), with and without internally or externally generated noise and incorporating
more biologically realistic interaction rules (Aoki, 1982; Couzin et al., 2002; Gazi and Passino,
2004a; Huth and Wissel, 1992; Mogilner et al., 2003; Reynolds, 1987). These models attempt
to replicate naturally observed phenomena from not only animal groups but other self-propelled
interacting groups of individuals such as robots. Several attempts have been made to evolve the
characteristics of such models (Spector et al., 2005) and to compare the evolved characteristics
with those of actual animal swarms (Wood and Ackland, 2007) in order to understand better the
possible mechanisms by which these characteristics may have evolved. Many of the models have
been found, at least qualitatively, to replicate some of the complex emergent behaviours exhibited
by these groups.

In this paper we aim to give a brief overview of some of the above classes of SPP models or
IBM. We will discuss a paradigmatic example of each in more detail, illustrating the highlights
and pitfalls. For some of the most important and seminal models (Czirók et al., 1999; Vicsek et al.,
1995) we derive novel results pertaining to phase transitions as parameters of the model vary (see
Sections 2 and 3). We also consider the effects of evolving these SPP models in the presence of an
‘informed individual’ allowing parameters to change in subsequent generations of particles in order
to find stable parameter values in a manner analogous to Wood and Ackland (2007). The overview
we give is by no means an exhaustive review of SPP models or IBMs. We have selected a variety
of archetypal models which cover a wide range of biological situations and modelling regimes but
there are, of course, several areas which we will not have space to discuss. These include traffic
(Helbing, 2001; Helbing and Tilch, 1998) and human crowd modelling (Helbing et al., 2007; Turner
and Penn, 2002) to name but two.

The remainder of this paper is structured as follows. In Section 2 we discuss the most basic
SPP model, formulated in one dimension by Czirók et al. (1999). After discussing alterations to the
model we go on to consider suitable application areas in the specific context of locust swarming. We
present higher dimensional models in Section 3. We begin by discussing the simple model proposed
by Vicsek et al. (1995) and show that complex emergent behaviours are possible given even the
simplest of interaction rules in two dimensions. We consider alterations to the model and summarise
the analysis of the potential convergence of the individuals in the model to a common direction. We
also consider the archetypal model of Cucker and Smale (2007) in both a discrete and continuous
formulation and the biologically motivated model of Couzin et al. (2002). In Section 4 we introduce
the concept of leadership in SPP models. We analyse three different types of leadership in the three
paradigmatic models previously introduced and discuss possible effects these leader particles can
have upon the behaviour of the group as a whole. Finally we discuss the concept of evolving SPP
models in order to test theories about the selective pressures acting on individuals which give rise
to specific behavioural types. We combine the work of previous sections by introducing evolvable
parameters to SPP models in one and two dimensions, studying how the parameters vary as a
result of each individual’s ability to follow an informed leader. We conclude with a short discussion
of the current status of SPP modelling and possible avenues for further research.

2 One-dimensional models

The simplest case of a SPP model is the Czirók model in one dimension. The system studied
by Czirók et al. (1999), for example, consists of N autonomous agents on a line of length L with
periodic boundary conditions. The ith particle, with lateral position xi moves in one direction or the
other along the line with variable speed ui. The velocity of each agent is updated by considering an
average of its own velocity and those of its ‘neighbours’. The neighbours of agent i are those particles
which lie within a distance r of agent i’s position, xi. The interaction radius, r, is a predefined
constant which, in the original model, was chosen to be the same for each particle in the simulation.
We use J r

i to denote the set of neighbours of particle i, excluding itself, and ni(t) = |J r
i | is the

number of these neighbours. The particles are initialised with a random initial position, xi ∈ [0, L),
and a random initial velocity, ui ∈ {−1, 1}. Their positions and nondimensionalised velocities are
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evolved using the following two rules, identical for each particle, i = 1, 2, . . . , N ,

xi(t+ 1) = xi(t) + v0ui(t), (2.1)

ui(t+ 1) = {G(〈u(t)〉i)} +∆Qi, (2.2)

and

〈u〉i =
1

ni + 1



ui +
∑

j∈J r
i

uj



 . (2.3)

〈u〉i is the mean of the nondimensionalised velocity of the particles in the interaction radius of
particle i and v0 is a velocity scaling necessitated by choosing a specific time-step. The role of
the function G is to scale the average nondimensional velocity measured by each particle towards
unity. A generalisation of the odd function, G, representing this velocity adjustment, is as follows:

G(z) =
z + β sign(z)

1 + β
, (2.4)

where

sign(z) =







1, for z > 0;
0, for z = 0;

−1, for z < 0,

and Czirók et al. (1999) take β is taken to be 1. ∆Qi represents noise drawn from a uniform
distribution with support [−η/2, η/2] where η will be referred to as the amplitude of the noise. In
this, original, statement of the Czirók model (or adapted versions thereof) the time-step is simply
taken to be unity, which avoids the necessity of scaling the noise with the time-step, but leaves the
model with one fewer degree of freedom. When recapitulating the models we prefer to state them
with generality and consistency, which necessitates, in some cases, the introduction of an arbitrary
time-step, ∆t:

xi(t+∆t) = xi(t) +∆tvi(t) (2.5)

vi(t+∆t) = vi(t) +∆t {G(〈v(t)〉i) − vi(t)} +∆Qi. (2.6)

Note that vi now represents the dimensional velocity of particle i. The noise parameter η should
scale with the square root of the time-step, ∆t. We note that the choice of distribution from which
the noise is drawn is perhaps less than optimal. Mathematically, at least, it would make more sense
to consider normal distributions, especially when considering ensemble properties of the group, such
as the average velocity. In order to obtain an update equation for the average velocity of the group,
we must sum equation (2.6) over all individuals. Normal noise has the convenient property that
the sum of two (or more) normal distributions is still normal, whereas the sum of two uniform
distributions gives the non-standard, non-differentiable triangle distribution. We must sum a large
number of uniform random variables in order to be able to invoke the Central Limit Theorem and
obtain an accessible (normal) distribution. It is pertinent to suggest that noise should be chosen
with a specific context in mind. For example, the appropriate noise could be chosen in line with
the experimental situation we are trying to model. Often, however, in biological situations it is
difficult to determine the nature of the noise and a simple, mathematically tractable, distribution
is used to approximate the actual noise distribution.

Fig. 1 displays the typical behaviour of particles in the Czirók model over a short time period.
Alignment is reached in the absence of underlying or external group coordination although individ-
ual particles can sporadically break away from the group. Once the group has formed, its direction
is not fixed in time. Given sufficient random particle turning events, due to noise, the direction of
the group may be reversed (see Fig. 1 (c)).

Czirók et al. (1999) present a continuum analogue of their discrete, one-dimensional model:

∂U

∂t
= f(U) + µ2 ∂

2u

∂x2
+

2µ2

ρ

∂U

∂x

∂ρ

∂x
+ η, (2.7)

∂ρ

∂t
= −v0

∂(ρU)
∂x

+D
∂2ρ

∂x2
, (2.8)
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Fig. 1: Panel (a) shows the typical evolution of the particles’ positions over 1000 time-steps (∆t = 1)
using the Czirók model (see equations (2.1) and (2.2)). Panel (b) shows the corresponding average nondi-
mensionalised velocity of the particles over the same time period. The high average velocity from t ≈ 400
onwards in (b) corresponds to movement in a common direction of most of the particles seen in (a). Panel
(c) shows a longer time course for the same model (10,000 time-steps). The ensemble directional switches
at t ≈ 3000 and t ≈ 5000 are characteristic of the model. Parameter values are as follows: number of
individuals, N = 100; uniform size of interaction radius, r = 0.005; normalised domain length, L = 1;
particle speed, v0 = 0.001 and noise parameter, η = 2.

where U(x, t) is the coarse-grained dimensionless velocity field and ρ(x, t) is the coarse-grained
density. The self-propulsion term, f(U), is an antisymmetric function with f(U) > 0 for 0 < U < 1
and f(U) < 0 for U > 1. The noise, η, has zero mean and a density-dependent standard deviation:
η2 = σ2/ρτ2. For a more thorough discussion of the derivation and analysis of this continuum limit
see (Czirók et al., 1999).

Using this continuum analogue Czirók and Vicsek (1999) demonstrate that, in the zero noise
case (i.e. η = 0), the two steady states of the system, where all the particles move in the same
direction (either positive or negative), are absolutely stable to small perturbations and that it is
plausible to assume that the behaviour of the system converges to those steady states. However,
since the model without noise is physically uninteresting in one dimension we will not discuss it
further and will concentrate, subsequently, on finite, non-zero noise.

In the original formulation of the model (∆t = 1) it is possible to adapt the update rule (2.2)
so the importance that particle i places on its own, current velocity is variable; from complete
self-importance, ignoring all the particles around it, to a complete disregard for its own previous
velocity. Introducing a weighting parameter, α, the equation for the mean velocity of the surround-
ing particles used in the velocity update equation becomes

〈u〉i =
1

ni(t) + α



αui +
∑

j∈J r
i

uj



 . (2.9)

Choosing α = ∞ implies complete independence from other particles whereas choosing α = 0
implies a particle’s next velocity is independent of its previous velocity. Choosing α = 1 returns
us to an equivalent formulation of equation (2.3), where the velocities of all particles in the near
neighbourhood, including particle i itself, are given equal weighting. We must be careful when
choosing α = 0 since it is possible that a particle may find itself in a position where it has no
nearest neighbours. In this case the velocity update rule is undefined. If this happens, since the
particle has no neighbours from which to draw influence, it continues with its current velocity.

Fig. 2 shows the variation of group alignment with the weighting parameter and the interaction
radius. By alignment at each time-step we refer to the normalised sum of the absolute value of the
mean velocities of all particles,

1
N

∣

∣

∣

∣

∣

N
∑

i=1

ui

umax

∣

∣

∣

∣

∣

, (2.10)

where umax is the maximum, over all particles, of the absolute value of their velocities. This
measure gives us a sense of the cohesion of the group. The group alignment for a simulation was
taken to be the average of the values of the alignments during the second half of the simulation.
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(a) (b)

Fig. 2: Alignment averaged over the second half of 50 simulations of the weighted Czirók model for varying
values of the interaction radius, r, and the weighting parameter, α. The simulations in (a) were run in
the absence of noise (i.e. η = 0) and those in (b) with noise parameter η = 2. Alignment values near
unity indicate that the individuals moved in the same direction for the majority of the second half of
the simulation. Alignment values near zero indicate that individuals travelled in different directions in a
disordered manner for the majority of the simulation. In both the presence and absence of noise there
is reduced group alignment when particles ignore each other and higher alignment when particles interact
strongly with each other. All particles were initialised with a random position on the domain and a randomly
chosen initial velocity of either v0 or −v0. The other parameters common to both simulations were N = 100,
Tfinal = 500 (time for which the simulation was run), ∆t = 1, v0 = 0.01 and L = 1 (domain length). We
have smoothed the alignment surface for ease of viewing. Data points are on an equally spaced 11 by 11
grid of interaction radii and weighting parameters.

We consider only the second half of the simulation in order to allow the particles to ‘warm up’
(to allow aggregation to occur or otherwise) so that initial conditions do not have too significant
an effect on the measured alignment. In general we see reduced cohesion when particles pay little
attention to each other and are more focussed on their own velocities (i.e. α ≫ 1 or r = 0) and
larger cohesion when particles are more aware of each other, either by giving more weight to other
particles’ velocities (reduced α) or simply by considering more particles (increased r). The addition
of noise to the model has the effect of smoothing the transition between ordered and unordered
states and changing the values of α and r at which this transition occurs.

In one dimension there is a limit to the complexity of an SPP model. Eftimie et al. (2007a,b)
introduce a continuum version of an IBM (Othmer et al., 1988). By assuming several different types
of inter-particle interactions in the IBM (combinations of attraction, repulsion, and alignment) they
derive corresponding systems of hyperbolic PDEs. They show that a variety of observed and, as
yet, unobserved (in nature) behaviours result from these continuum models. Levine et al. (2000)
describe a one-dimensional model which incorporates attraction and repulsion forces, and leads
rapidly to a steady state distribution of particles. In their original model (incorporating soft-core
repulsions only) they find that, as the number of individuals in the group increases, the size of the
group remains constant. They recognise that this is biologically unrealistic and, as such, introduce
hard-core (large) repulsions which are much stronger than the corresponding attractive forces. This
allows group size to expand linearly with an increase in members, with each individual maintaining
a certain distance from its neighbours. This model, incorporating attraction and repulsion, does not
rely on physically unrealistic periodic boundary conditions for cohesion as the Czirók model does.
Groups can be held together on an infinite domain, which represents a major advantage. However,
in one dimension this model lacks the interesting dynamic behaviour of the Czirók model since
the attraction and repulsion forces quickly balance and particles are not able to pass through each
other, leading to a steady state distribution of particles. The model also relies on global particle
interaction which is often deemed physically unrealistic. Similar attraction-repulsion models in two
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dimensions (Gazi and Passino, 2003, 2002, 2004a,b; Mogilner et al., 2003) have more interesting
behaviour and will be discussed further in Section 3.5.

2.1 Applications

Adaptations of Czirók’s original representation have been used to model collective motion in ani-
mals. Buhl et al. (2006) used an adapted version of the Czirók model to describe the alignment of
a number of locust nymphs marching in a ring-shaped arena. Despite the locusts having freedom
to move in two dimensions, the annular nature of the arena means that this situation can be con-
sidered to be a one-dimensional domain with periodic boundary conditions, and therefore that the
locusts’ movements are amenable to representation using the Czirók model (see equations (2.1)-
(2.3)). Buhl et al. (2006) found that, as the density of locusts increased, they showed a dramatic
shift from seemingly solitary, individual-based behaviour to highly cohesive group-level behaviour,
identifying a critical density for the onset of collective motion in locusts. The locusts demonstrated
a transition from random movement with no clear group orientation to almost ubiquitous motion
in one direction around the ring-shaped arena, within a short range of densities. Crucially, Buhl
et al. (2006) also discovered a dynamic instability in locust density which allowed the locust groups
to switch direction in the absence of external perturbation. This directional switching was found
to be exhibited at densities typical of locusts in the field indicating that naturally formed locust
groups in the wild can exhibit spontaneous directional switching. The Czirók model with noise
also exhibits these directional switches (see Fig. 1 (c)) and, as such, a weighted adaptation of the
model was deemed appropriate to model the average velocity of the locusts.

The adapted version of the Czirók model used to represent the alignment of the locusts employs
the same position update equation as in Czirók et al. (1999) (see equation (2.1)), but alters the
weighting of the velocities in a manner which is significantly different to the weighting described
above. The velocity update equation (2.2) of the original model becomes

ui(t+ 1) = αui(t) + (1 − α)[G(〈u(t)〉i) − ui(t)] +∆Qi, (2.11)

where the time-step, ∆t, is explicitly taken to be 1 (which corresponds to approximately 3.6 seconds
of experimental time) and 〈u(t)〉i is, as in the original formulation of the model, the mean velocity
of all the particles in the interaction radius of particle i, including i itself. For each simulation all
particles were initialised with random initial positions and nondimensional velocities, ui ∈ {−1, 1}.
Significantly there is no value of α that will return us to the original model1 and, as such, this
model represents a departure from Czirók’s model. We will therefore refer to the model given by
equation (2.11) as the Buhl model. Buhl et al. (2006) claim that, for locusts, α corresponds to an
inertia-like term, when a locust is considered in the absence of near neighbours.

Interestingly, although Buhl et al. (2006) chose to model the movement of locusts using a
Czirók-type model to describe velocity of the particles, the actual experimental data they extracted
were for instantaneous alignment, which they referred to as the average orientation for all moving
locusts. They found, at least qualitatively, that the switching behaviour of the alignment of the
moving locusts was replicated by the average velocity of the particles in their revised model. The
interaction radius of the particles (assumed to be the same for each individual) was determined from
detailed analysis of the behaviour of locusts in the experimental arena. Other parameter values,
such as the underlying speed of the locusts, v0, and the domain length, L, were also determined
experimentally, whereas the magnitude of the noise term, η, was chosen by trial and error in order
to replicate qualitatively the switching behaviour of the locusts.

Buhl’s groundwork on the modelling of locust behaviour was built upon by Yates et al. (2009)
who attempted to quantify the comparison between experimental data and the model. They were
able to implement this quantitative comparison by introducing a ‘coarse-grained’ variable which
avoids the ‘fine’ details of the behaviour of individual locusts. The coarse variable found to represent
the dynamics of the model system appropriately was the average particle velocity, U . This is the

1 However, choosing α = 1/2 will return us to the more generalised formulation of the velocity update
equation (2.6) with ∆t = 1/2.
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Fig. 3: Panel (a) exhibits a sample time course of alignment of 30 locusts from the experiments described by
Buhl et al. (2006). The switching behaviour of the group is clearly evident. Panel (b) displays the average
velocity of 30 individuals simulated according to the Buhl model with experimentally derived parameter
values: L = 36, r = 2, v0 = 1, α = 0.66, η = 2. Qualitatively there appears to be a good comparison
between the switching behaviour exhibited by the data and that replicated by the model. First published in
Proc. Natl. Acad. Sci. USA (Yates et al., 2009).

same quantity compared qualitatively to the locusts’ alignment in Buhl et al. (2006). This is
convenient as it is an easy quantity to calculate given the velocities of the individual locusts. In
special cases (i.e. global interaction, r = L/2) it is possible to derive analytically a stochastic
differential equation (SDE) describing the evolution of the coarse-grained variable, U , from the
IBM. Yates et al. (2009) estimated the diffusion coefficient from experimental data and, following
a method from Erban et al. (2006), used this to revise the IBM in order to replicate the coefficient of
the SDE describing the coarse variable, U . It was necessary to change the way in which individuals
reacted to locally ordered and disordered situations. When individuals found themselves in a more
ordered state (i.e. a high value of |〈u〉i|, indicating the locusts in the interaction radius of locust
i were travelling mainly in the same direction) it was hypothesised that individuals tended to
decrease the randomness of their motion in order to stay aligned with their cohort. However, when
a locust found itself in a disordered situation, with the absolute value of the local average velocity
being low, it was supposed that the individual increased the random element of its movement in
order to bring the group back into an ordered phase.

Consequently, the velocity update equation (2.11) of the IBM was altered to reflect these
hypotheses. Instead of assuming the magnitude of the noise term, η, to be constant Yates et al.
(2009) assumed it to be a quadratic function of the local average velocity:

η(〈u〉i) =
3
2

{

1 −
( 〈u〉i

|〈u〉i|max

)2
}

, (2.12)

where |〈u〉i|max is the maximum absolute value of the local average velocity. This ensures that
the function η, representing the magnitude of the noise term, is always positive. This quadratic
dependency of η on 〈u〉i ensured that when the absolute value of local alignment measured by
an individual was high the randomness the individual locust introduced to the system remained
relatively low and when an individual found its neighbours in a locally disordered state, it corre-
spondingly increased the randomness of its motion.

The model with the revised noise term (2.12) showed, at least qualitatively, a diffusion coefficient
which replicated that of the experimental locust data much more accurately than the original Buhl
model. The results indicated that individuals move more randomly in locust groups with low
alignment, which appears to enable the group to find (and remain in) a highly aligned state more
easily. Yates et al. (2009) hypothesised that the revised functional form of their position update
equation may be useful in the formulation of other SPP models characterising collective animal
behaviour.
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Fig. 4: Diffusion coefficients of the SDEs (corresponding to the behaviour of the original and revised Buhl
models and the experimental data) as a function of average velocity/alignment found by estimation from
time series data (Yates et al., 2009) for 30 locusts/particles. Panel (a) represents the diffusion coefficient
as a function of alignment for the Buhl model (see equation (2.11)). (b) The diffusion coefficient of an
SDE supposed to underlie the experimental data and (c) The diffusion coefficient of the SDE underlying
the model with adapted noise magnitude (see equation (2.12)). First published in Proc. Natl. Acad. Sci.
USA (Yates et al., 2009).

3 Higher dimensional models

3.1 The Vicsek Model

The model originally described by Vicsek et al. (1995) to represent flocking in noisy environments is
often considered to be the two-dimensional analogue of the Czirók model described in the previous
section. Here we initially consider a version of the model in the absence of noise. The model (which
we shall henceforth refer to as Vicsek’s model) assumes that each particle has a velocity with a
constant magnitude and that the directions (or headings) of the particles change at each time-step.
In the discrete, deterministic, two-dimensional implementation of this model the direction, θi, of
particle i (i = 1 . . . , N) is updated as follows:

θi(t+ 1) = arg







exp (iθi(t)) +
∑

j∈J r
i

exp (iθj(t))







, (3.1)

where2 the right-hand side in the above update equation can be summarised as the ‘average’
direction of the particles (excluding particle i) within a circle of radius r > 0 (the interaction
radius), i.e. J r

i represents the set of all the particles, j, such that ||xi − xj ||2 < r2, excluding
particle i itself. Again we choose to recapitulate the model in a time-step independent manner as
follows:

θi(t+∆t) = θi(t) +∆t



arg







exp (iθi(t)) +
∑

j∈J r
i

exp (iθj(t))







− θi(t)



 . (3.2)

Often, when simulating flocking models, periodic boundary conditions are used on square domains
(Czirók and Vicsek, 1999; Vicsek et al., 1995). Taking r to be small in comparison to the domain
length gives the ‘local-interaction’ model. In the ‘global-interaction’ model all particles interact
with all other particles at every time-step.

The position update equation is analogous to that of the Czirók model (see equation (2.5)),
but now our position is a vector rather than a scalar:

xi(t+∆t) = xi(t) +∆tvi, (3.3)

where vi = cos(θi)i + sin(θi)j and i and j are unit vectors in the x and y directions, respectively.
In order to simulate biological situations we add noise to the revised direction update equation

2 To distinguish from particle index, i, we have labelled
√

−1 as i.
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(3.2):

θi(t+∆t) = θi(t) +∆t



arg







exp (iθi(t)) +
∑

j∈J r
i

exp (iθj(t))







− θi(t)



+∆θi, (3.4)

where ∆θi is a random number chosen with uniform probability from the region [−η/2, η/2] where,
as in the Czirók model, η is referred to as the magnitude of the noise and scales with

√
∆t. Choosing

η = 2π represents random reorientation of each particle, ignoring its original velocity and those of
its neighbours. With such a large noise term we would not expect to see any coordinated motion.

It should be noted, quite apart from any differences of opinion as to the statistical distribution
of the noise, the precise step in which the noise is implemented is also a topic of debate. Vicsek
et al. (1995) choose to add the noise term to the average of the neighbours’ perfectly measured
headings, implying that the noise is as a result of the individuals being unable to implement the
measured velocity accurately (‘angular noise’). Grégoire and Chaté (2004) make a strong argument
that “errors are made when estimating interactions, for example, because of a noisy environment”.
Consequently they propose that the heading update rule should in fact be

θi(t+∆t) = θi(t) +∆t [arg {ηni(t) exp (i∆θi)

+
∑

j∈J r
i

exp (iθj(t)) + exp (iθi(t))} − θi(t)], (3.5)

where ∆θi is now delta-correlated white noise (∆thetai ∈ [−π, π]) and η again controls the mag-
nitude of the noise term.

Vicsek et al. (1995) demonstrate a series of interesting flock-like behaviours (see Fig. 5) and
show that their models can give rise to a system where all agents eventually move in the same
direction (see Fig. 5 (d)).

By varying the interaction radius and noise parameter, whilst keeping the number of individuals
constant, we elicit a wide variety of behaviours from the Vicsek model: Fig. 5 demonstrates just
some of these behaviours. Clearly the model exhibits several different types of behaviour as the
parameters vary: from completely random uncorrelated behaviour of individuals (not shown, often
known as ‘gas’ phase), through the formation of small cohesive groups with an absence of global
correlation (see Fig. 5 (b) and (c) often known as ‘liquid’ phase), to a single group encompassing
all individuals travelling in the same direction (see Fig. 5 (d), ‘solid’ phase).

In the classical sense a phase transition refers to the transformation of a thermodynamic system
from one ‘phase’ or ‘state’ to another (e.g. liquid to solid (evaporation) or solid to gas (sublima-
tion)). As a result of a change in some external condition (temperature, pressure or volume in
the classical definition) certain properties of a medium change (often in a discontinuous manner).
Analogously, in a system of self-driven particles, when a parameter of the system changes causing
the particles to alter their behaviour from a disordered to an ordered state (or vice versa) this is
known as a phase transition. The interaction-radius-dependent phase transition described above is
reminiscent of the density-dependent phase transitions detailed by Vicsek et al. (1995). In order to
elicit their density-dependent phase transition they reduced the size of the domain whilst keeping
particle numbers constant, leading to an increase in density. This process is essentially analogous
to increasing the interaction radius. In Fig. 6 we demonstrate phase transitions as a function of
interaction radius and density (by varying particle number and domain size).

In Fig. 6 we see that the density-dependent phase transition arising from altering the number of
particles (see Fig. 6 (a)) is less sharp than that caused by altering the domain size with a constant
number of particles (see Fig. 6 (b)). In the first case, low density implies low particle numbers,
which are unlikely to have low alignment values. In the extreme, N = 1, the alignment is, by
definition, equal to its maximum, 1. In a two-particle system (N = 2) in order for the alignment to
be close to zero, both particles would have to move in opposite directions for the duration of each
simulation, which is extremely unlikely. The same low particle density with a large fixed number
of individuals on a correspondingly large domain gives a much higher probability of low alignment
due to the eventual formation of small clusters of individuals often travelling in opposite directions
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Fig. 5: Typical behaviours of the Vicsek model simulated using the original model formulation (see equations
(3.1) and (3.3)) with ∆t = 1 and noise incorporated. The directional alignment of all individuals is displayed
for varying values of interaction radius and noise. Noise is implemented as angular noise, as in the original
Vicsek model. In each case the number of particles is N = 300, the domain is normalised (L = 1) and the
particles move with common speed v0 = 0.01. Panel (a) shows a typical initial configuration of the particles
at random positions with random headings. Panel (b) demonstrates the formation of small compact groups
of individuals who travel together in random directions in the case where the interaction radius is small
and noise is also small: r = 0.01, η = 0.1. Panel (c) shows the formation of larger, better aligned/coherent
groups as a consequence of an increased interaction radius at the same noise level: r = 0.03, η = 0.1. Panel
(d) shows the formation of a single coherent group encompassing all individuals as a result of a further
increase in interaction radius which more than compensates for an increase in the noise term: r = 0.1,
η = 1.

to each other (see Fig. 5 (b)). The phase transition exhibited in Fig. 6 (c) as a result of varying
the interaction radius is sharp, indicating some critical interaction radius, rc, above which group
motion is dominant and below which particles act as individuals. Vicsek et al. (1995) interpret
the existence of such critical thresholds in density as evidence that, in the limit of large particle
numbers, the model exhibits a kinetic phase transition analogous to phase transitions found in
equilibrium systems.

As in the case of the Czirók model, it is possible to adapt the update rule (3.1) so that the
importance particle i places on its own current velocity is variable; from complete self-importance,
ignoring all neighbouring particles, to complete disregard for its own previous direction. Reintro-
ducing the weighting parameter, α, the direction update equation (in the absence of noise), (3.1),
becomes

θi(t+ 1) =



arg







1
ni(t) + α



α exp(iθi(t)) +
∑

j∈J r
i

exp (iθj(t))













 . (3.6)
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Fig. 6: Phase transitions exhibited by the Vicsek model as a function of density and interaction radius over
a range of values of the noise parameter, η. Panels (a) and (b) show the phase transition caused by changing
the density. In (a) the density is changed by varying the number of individuals between N = 1 and N = 100
with constant domain length, L = 1, whereas in (b) the number of individuals remains constant, N = 100,
but the length of the domain changes between L = 1 and L = 10, giving the same range of densities as in
(a). In both cases the density varies from 1 individual per unit area to 100 individuals per unit area and
all particles have a constant interaction radius, r = 0.2. Panel (c) exhibits the phase transition caused by
varying the interaction radius between r = 0 and r = 0.5 with a constant number of individuals, N = 100,
and constant domain size, L = 1. Each simulation is run for a range of noise parameters from η = 0.1 to
η = 2. Alignments are averaged over the second half of a 500 time-step simulation and over 50 repeats.

(a) (b)

Fig. 7: Alignment averaged over the second half of 50 simulations of the weighted Vicsek model for varying
values of the interaction radius, r, and the weighting parameter, α. The simulations in (a) were run in the
absence of noise (i.e. η = 0) and those in (b) with noise parameter η = 2. Alignment values near unity
indicate that the individuals travelled in the same direction as each other for the majority of the simulation.
Alignment values near zero indicate that individuals travelled in different directions in a disordered manner
for the majority of the simulation. The other parameters common to both simulations were N = 100,
Tfinal = 500 (time for which the simulation was run), ∆t = 1, v0 = 0.01 and L = 1 (domain length). All
individuals were initialised with random positions and direction. We have smoothed the alignment surface
for ease of viewing. Data points are on an equally spaced 11 by 11 grid of interaction radii and weighting
parameters.

Fig. 7 shows the variation in group alignment with weighting parameter and interaction radius.
By alignment at each time-step we refer to the normalised cumulative Euclidean distance travelled
by the particles,

1
N

∣

∣

∣

∣

∣

N
∑

i=1

vi

∣

∣

∣

∣

∣

=
1
N

√

√

√

√

(

Re
N
∑

i=1

exp(iθi)

)2

+

(

Im
N
∑

i=1

exp(iθi)

)2

, (3.7)

which gives us a sense of the cohesion of the group. As in the one-dimensional Czirók model we see
reduced cohesion when particles pay little attention to each other and are more focussed on their
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own velocities (i.e. α ≫ 1 or r = 0) and larger cohesion when particles are more aware of each
other as a result of either giving more weight to other particles’ velocities (reduced α) or simply
through considering more particles (increased r). The addition of noise to the model again has
the effect of smoothing the transition between ordered and disordered states but means that the
maximum alignment achieved is never as high as the maximum alignment in the noiseless model.

The three-dimensional analogue of this model is given by Czirók and Vicsek (1999) as

vi(t+∆t) = vi(t) +∆t (N(〈v(t)〉) − vi(t)) , (3.8)

where N(v) = v/|v| and the position update rule is as in equation (3.3). If noise were to be
reintroduced to the model we would simply add ∆Q, uniformly distributed noise in a sphere of
radius η, to equation (3.8), where η scales with

√
∆t (in analogy to the one- and two-dimensional

models of Czirók et al. (1999) and Vicsek et al. (1995) respectively).
Chaté et al. (2006, 2008) consider the effect of changing particle interactions and orientations

from polar (i.e. orientation and direction vector pointing in one specific direction) to apolar (ori-
entation vector with no preferred direction). At every time-step each particle moves forwards or
backwards (with equal probability) with a newly calculated orientation. Using this model Chaté
et al. (2008) find that “giant density fluctuations” occur in the ordered phase in contrast to the
original Vicsek model in which high density high order bands occur interspersed with low density
low order bands which do not fluctuate hugely. In the new model only quasi-long-range order is
observed in 2D as opposed to true long-range order in the original model. Chaté et al. (2008) also
suggest and investigate the addition of cohesion to the Vicsek model (see Section 3.6) and the
consideration of the role of the ambient fluid in which the particles are moving. Both additions
serve to make the Vicsek model more biologically realistic.

Peruani et al. (2006) also consider a variation on the Vicsek model in which the particles are
rod-shaped. The rods are assumed to exhibit volume exclusion, but in a “soft” manner which means
that a certain degree of overlap is allowed. This enables the packing fraction to be controlled. They
find that a sufficiently large packing fraction, φ, and aspect ratio of the cells, κ, are necessary for
clustering. They derive a mean field approximation and find an analytical relationship between κ
and φ which characterises the transition from non-clustered to clustered particles. Individual-based
simulations correctly characterised the transition curve in the (φ − κ) parameter space plane as
predicted by the mean field model, when correctly parameterised. This model should be considered
a minimal model for collective phenomena in actively moving rod-shaped cellular entities.

We will focus next on analysing the two-dimensional version of the original polar, point-particle
Vicsek model.

3.2 Analysis of the Vicsek model

? consider a version of the Vicsek model which is amenable to mathematical analysis using ad-
jacency matrices, but which by their own admission can introduce inconsistencies to the model
which the original Vicsek model does not have. Here, by “adjacency matrix”, we refer to a matrix
which has non-zero entries if and only if two particles are sufficiently close to interact or, in graph
theoretic terms, if and only if the two nodes (particles) of the graph representing particle interac-
tions are connected (sufficiently close). Jadbabaie et al. (2003) alter the heading update equation
from equation (3.2) to

θi(t+∆t) =
∆t

ni(t) + 1



θi(t) +
∑

j∈J r
i

θj(t)



 , (3.9)

where, we recall, ni(t) = |J r
i | is the number of particles in the interaction radius of particle i

excluding itself. For example, using this new heading update rule, three mutually and exclusively
interacting particles each with headings, θi = 2π/3 for i = 1, 2, 3, would inexplicably change direc-
tion at the next time-step to have a heading of zero instead of retaining their original heading, as
would be expected. Generally this type of behaviour is unrealistic, but in the limit of large particle
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numbers we will assume this effect diminishes as the occurrences of events like that described above
becomes less likely.

Jadbabaie et al. (2003) analyse the relationships between neighbours using a simple, undirected,
time-dependent graph with vertex set {1, 2, . . . , N}. An edge connects the vertices corresponding
to particles i and j if and only if i and j are neighbours (using the previous space-dependent
definition of neighbours). The adapted heading update rule of equation (3.9) can be rewritten in
the matrix form

θ(t+ 1) = Fpθ(t), (3.10)

where
Fp = (1 +Dp)−1(Ap + I). (3.11)

Here, Ap is the symmetric adjacency matrix of the undirected graph Gp describing interactions
between the particles and Dp is the diagonal matrix whose ith diagonal element corresponds to the
degree of vertex i. The subscript p is a member of P, a suitably defined indexing set of all possible
simple graphs G on N vertices. The heading state vector θ is given by [θ1, θ2, . . . , θN ]′. Clearly the
adjacency matrix, Ap, of graph Gp ∈ G, representing the neighbour relationships of each agent,
changes over time and, as such, a complete description would include a model of how the index p(t)
varies with time as a function of the positions of the N agents. Such a model, while essential for
simulation purposes, can be difficult to account for when investigating convergence and, as such,
can be bypassed by assuming that the indices p(t) all come from a suitably defined subset (of P)
of interest.

Jadbabaie et al. (2003) point out that naturally there will be situations for which the headings
of the N agents will not converge to a common heading, but attempt to demonstrate that for a
certain class of indices, given appropriate initial conditions (i.e. agents are not too spread out and
interaction radii are not too small), convergence to a common heading, θss, such that limt→∞ θ(t) =
θss1, will occur. Here 1 = [1, 1, . . . , 1]′ denotes the 1 ×N column vector of ones. A trivial case for
which this is true is r ≫ 1. In this case we can assume that all agents will remain neighbours of
all others for all time and hence that index p(t) will remain on a fixed trajectory in P such that
Gp is always a complete graph. In this case convergence to a common heading is easy to establish
as the heading update equation (3.9) reduces to a linear, time-invariant, discrete system.

Jadbabaie et al. (2003) prove a central theorem relating to the convergence of the more in-
teresting case of an intermediate value of the interaction radius, r, which is neither too small to
inhibit convergence, nor too large to ensure it with certainty. In this case Gp(t) is not necessarily
complete or even connected for any single time t ≥ 0, but at the same time no proper set of vertices
of Gp(t) is isolated from the rest for all time. A set of graphs is said to be jointly connected if the
(graph theoretic) union of its members is connected. Consequently a set of consecutive graphs
(each representing the adjacency of the particle system at a time point in the interval [t, τ ], where
t < τ ) are said to be linked together across that interval if they are jointly connected.

Jadbabaie’s central theorem states that, when all agents are linked together over contiguous
intervals of arbitrary but finite (and uniformly bounded) length, then convergence of the agent’s
headings to a common heading, θss, is guaranteed, where θss depends only on the initial headings
and the intermediate indices p(t).

The proof of eventual convergence of the N -agent system to a common heading under the
specific conditions given is useful in so far as it provides us with insight into the dynamic situation
which will give rise to collective behaviour of the individual agents. However, these results should
be interpreted with caution. Firstly, as we have already mentioned, the model which Jadbabaie
et al. (2003) consider is not the same as the Vicsek model and, due to the possibility of erratic
unpredictable changes in direction, is unlikely to be a realistic or desirable model of either biological
or robotic agents. The second point to make is that, although conditions for convergence are given,
they are dynamic conditions which depend upon the state of the system at each update, which
makes predicting the model behaviour, given only the initial conditions, difficult. It should be noted,
however, that the dynamic conditions outlined above are far more likely to be effectively satisfied
if N is large and we consider individuals on a finite domain with periodic boundary conditions.
On a sufficiently small domain this last condition ensures that no particle will stray too far from
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other members of the group and, hence, that the likelihood of finite sequences of states in which
the corresponding set of adjacency graphs in each sequence are jointly connected increases.

3.3 The Cucker-Smale model

Cucker and Smale (2007) introduce another model for representing the arrival at consensus deci-
sions in the absence of central direction. They discuss their model in the specific context of animal
flocking in physical space R3 although they point out that their approach can be used to model
systems as diverse as the emergence of a common price system in a financial market and of common
languages in primitive societies.

Their main goal when considering the model in the context of flocking is to show that, given
certain types of communication between individuals, the group converges to a state in which all
individuals move with the same velocity. Their analysis enables straightforward identification of
parameter regimes in which this behaviour is a necessary outcome of the model’s evolution. In
other parameter regimes it transpires that Cucker-Smale (CS) convergence to a uniform state or
otherwise is dependent only on the initial state of the system. This is in direct contrast to the strict
dynamic requirements for convergence of the Vicsek model outlined by Jadbabaie et al. (2003).

The CS model is based on the following hypothesis on the individual-level behaviour: each indi-
vidual adjusts its velocity between time-steps by adding to it a weighted average of the differences
between its velocity and those of the other individuals. The weighting function is postulated to
be some non-increasing function of the distance between individuals. The discrete version of the
velocity update rule for individual i at time t, given N individuals, is

vi(t+∆t) = vi(t) +
λ∆t

N

N
∑

j=1

aij(vj(t) − vi(t)), (3.12)

where
aij = ζ(||xi − xj ||2), (3.13)

is the weighting function and ζ : R+ → R
+ describes the distance-dependent weighting function.

λ parameterises the strength of the interactions and ∆t is the time-step between updates of the
position and velocity. Cucker and Smale (2007) choose

ζ(y) =
K

(σ2 + y)β
, (3.14)

for K > 0 and β ≥ 0, and incorporate the individual pair weightings {aij} into an adjacency
matrix, A.

Cucker and Smale (2007) also consider the continuum limit of their model. Let D be the N ×N

diagonal matrix, D = diag(d1, d2, . . . , dN ) such that di =
∑N

j=1 aij is the sum of all the weights
corresponding to individual i. Defining the graph Laplacian L = D−A to be the difference between
the two matrices, the velocity update rule for particle i is reformulated more succinctly as

vi(t+∆t) = vi(t) −∆t[Lv(t)]i, (3.15)

and the corresponding position update rule is as in equation (3.2). The continuous time version of
the model is formulated naturally in the limit, as ∆t → 0, as a system of differential equations.

x′ = v, (3.16)

v′ = −Lv. (3.17)

For β < 1/2 decay of the function ζ is relatively slow, which guarantees convergence of the
discrete model independent of initial conditions. Cucker and Smale (2007) show that this uncondi-
tional flocking behaviour occurs exponentially quickly. However, in the β ≥ 1/2 case the decay of
ζ is moderately fast and convergence is only guaranteed under specific initial conditions (Cucker
and Smale, 2007). In the continuum model a similar convergence result is achieved.
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In order to prove the above, the authors make use of some properties of the graph Laplacian,
L, of the dynamic network. They decompose the state space (R3)N into two subspaces ∆ and its
orthogonal complement ∆⊥ defined by the action of L i.e. L(∆) = 0 and L(∆⊥) ⊆ ∆⊥ where

∆ = {(u,u, . . . ,u)|u ∈ R
3}. (3.18)

Each point x ∈ (R3)N decomposes in a unique manner as x∆ + x⊥ where x∆ ∈ ∆ and x⊥ ∈ ∆⊥.
The velocities u can be decomposed in a similar manner. Denote the mean velocity of the flock by

v̄ =
1
N

N
∑

i=1

vi. (3.19)

Then v∆ = (v̄, v̄, . . . , v̄) and, necessarily, v⊥ = (v1 − v̄,v2 − v̄, . . . ,vN − v̄). Using this decompo-
sition we can view the evolution of the particles’ velocities as the evolution of their mean velocity,
v∆ = v̄(t), and the evolution of the differences between individuals’ velocities and the mean ve-
locity, v⊥ = (v1 − v̄,v2 − v̄, . . . ,vN − v̄). Cucker and Smale (2007) are able to show that the
projections over ∆⊥ of the solutions of equations (3.15) and (3.2) are the solutions of the restric-
tion of (3.15) and (3.2) to ∆⊥, respectively. This is of crucial importance since it is the relative
differences in the positions and the velocities of the individuals xi − xj and vi − vj , respectively,
that we are interested in, rather than the difference in their positions from a fixed point in space
or an arbitrarily chosen velocity. Clearly, convergence to a common velocity is a feature of the
evolution of v⊥ only. Hence, Cucker and Smale (2007) study the two quantities

Γ =
1
2

∑

i 6=j

||xi − xj ||2, (3.20)

and
Λ =

1
2

∑

i 6=j

||vi − vj ||2, (3.21)

and attempt to bound Λ and hence demonstrate the decay of Γ to zero.
Through a series of intricate propositions Cucker and Smale (2007) prove convergence of the

velocities through the decay of Γ (t) as t → ∞, and demonstrate boundedness of the differences in
positions such that Λ(t) ≤ B0 ∀ t ∈ R+. In some parameter regimes convergence is found to be
unconditional, but in others there are possible dependencies on the initial conditions.

Cucker and Smale (2007) achieve the remarkable result of exponentially fast convergence in
time to the equilibrium dynamics in the absence of any restrictions on the initial conditions in the
case β < 1/2. Even in the case β ≥ 1/2, exponentially fast convergence is proved given that certain
conditions on the initial state of the system are satisfied.

3.4 Further analysis of the Cucker-Smale model

Ha and Tadmor (2008) analyse a Vlasov-type3 kinetic version of the CS model. They use this
model to demonstrate the existence of time-asymptotic flocking behaviour for arbitrary initial
data of compact support. They also derive a hydrodynamic description of flocking based on their
adapted CS Vlasov-type kinetic model and again prove flocking behaviour. They are only able to
show that the fluctuations in the energy of the system decay in sub-exponentially fast time. They
also require stronger long-range interactions in order to achieve unconditional flocking in their
continuum model than were necessary for the analysis of the original discrete CS model.

Carrillo et al. (2009) build on the results of Ha and Tadmor (2008). They motivate their
continuum description by arguing that instead of simulating the behaviour of a large number of
individuals, which may be computationally expensive since all individuals interact at each time-
step, a mesoscopic partial differential equation (PDE) could be employed to describe the collective

3 A Vlasov system is a system of non-linear integro-differential equations usually used to describe the
dynamics of plasma consisting of charged particles with long-range interaction.
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behaviour of the flock in terms of its density, f = f(x,v, t), at position x ∈ R
d, with velocity v ∈ R

d

at time t, where d is the number of spatial dimensions under consideration. In the absence of other
effects the change in density depends essentially on velocity changes arising from binary interactions
between individuals. As such, Carrillo et al. (2009) begin by invoking standard ‘collisional kinetic
theory’ to show that their simplified version of the model, for purely binary interactions, leads to
the following Boltzmann-type integro-differential equation (IDE):

(

∂f

∂t
+ v · ∇xf

)

(x,v, t) = P (f, f)(x,v, t), (3.22)

where, as is usual with Boltzmann-type equations, the function P represents the change in particle
density due to collisions. In the absence of collisions this term is zero. Carrillo et al. (2009) use
a modified version of the Boltzmann collision operator first postulated by Povzner (1962) which
considers a so-called ‘smearing process’ for pairwise collisions:

P (f, f)(x,v) =
∫

R3

∫

R3

B(x − y,v − w)(f(x,v∗)f(y,w∗)

−f(x,v)f(y,w))dwdy, (3.23)

where v∗ and w∗ are shorthand for v(t + ∆t) and w(t + ∆t), respectively, and the function B is
known as the collision kernel.

Although the Boltzmann equation (3.22) describes in detail the time evolution of the population
density of the flock, a useful description of the phenomenology of flocking is typically given by
considering the asymptotically large-time behaviour of the solution. Carrillo et al. (2009) consider
what is known as the ‘grazing collision’ limit, in which the strength of the binary interactions,
γ, is small. In order that the effect of the collision integral, P , (given by equation (3.23)) is
not diminished when γ ≪ 1 it is imposed that the collision frequency, σ, is increased so that the
product σγ remains constant. This is the embodiment of the grazing collision limit. In this limit the
Boltzmann collision operator, P , can be approximated by a dissipative divergence operator, which
is easier to analyse. Whereas Ha and Tadmor (2008) show that the fluctuations in energy are a
Lyapunov functional vanishing in sub-exponentially fast time, using this approximated Boltzmann
equation Carrillo et al. (2009) are able to show that kinetic energy for the continuum interpretation
of the CS model vanishes at an exponential rate. This enables them to provide an unconditional
flocking theorem for the continuum model with interaction strength estimates that are valid for
particle models.

In contrast to the Vicsek model, the CS model is formulated inherently without noise. In a
follow up paper Cucker and Mordecki (2007) introduce noise to the CS model. They are able
to show, using similar arguments to those given in the deterministic formulation of the model,
that flocking occurs in a finite time with a certain confidence. As in Cucker and Smale (2007)
they demonstrate that convergence can be established conditional on the initial conditions only
and that for some parameter regimes, even these restrictions are unnecessary. The assumption on
the initial conditions (when necessary) can be stated informally as the positions and velocities
of the flock not being too dissimilar. Due to the noise in the model, when the velocities of the
particles become sufficiently similar, the contribution to the velocity update equation from the
noise term will be of approximately the same order as that from a particle’s neighbours and, as
such, perfect alignment is not possible. By convergence Cucker and Mordecki (2007) refer to a
property called ‘nearly alignment’ which they define to be a formal measure of (dis)similarity. The
dissimilarity of position and velocity are the quantities previously defined as Γ and Λ, respectively.
The dissimilarity of x ∈ (R3)N is in some sense a measure of the dispersion of the group related to
the concept of the group’s ‘diameter’. The flock is said to be ‘nearly-aligned’ or ‘ν-nearly-aligned’
when Λ ≤ ν for ν ≥ 0. Cucker and Mordecki (2007) demonstrate that ν-nearly-alignment is reached
quickly with a certain probability (a lower bound which is given in terms of the initial similarity
of positions, velocities, the variance of the distribution from which the noise is drawn and other
parameters of the model).
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3.5 Attraction-repulsion models

Purely alignment-based models such as those of Czirók and Vicsek can never maintain true co-
hesion of their individual constituents in the absence of biologically unrealistic periodic boundary
conditions. In an infinite domain, particles evolving under these types of models will eventually
fly apart (Chaté et al., 2008). To avoid this it is necessary to add some sort of cohesion or mutual
attraction between particles, the magnitude of which is often a function of the distance separating
two particles. In order to avoid collapse of the particles to a point due to mutual attraction it is
also often necessary to include a mutual repulsion between particles of a different range, size and,
of course, acting in the opposite direction to the mutual attraction.

Attraction and repulsion forces corresponding to collective motion have been observed in nature
(Conder, 1949; Crook, 1961; Emlen, 1952; Partridge and Pitcher, 1980) and one of the earliest
mathematical models was formulated by Breder (1954). By considering a Lagrangian approach,
ignoring the overall motion of the group in preference for a detailed consideration of the spacing
of individuals, Mogilner et al. (2003) investigate the effect of attraction/repulsion parameters on
inter-individual distances. They give conditions on the relative strength and range of the repulsion
and attraction forces showing that unless the range of attraction is larger than that of repulsion
and the strength of repulsion is stronger than the strength of attraction a stable, well-spaced
group cannot form. They also demonstrate that isolated pairwise considerations are not sufficient
to determine the magnitude of the spacing between individuals in a large, stable group, which is,
in fact, smaller than in the isolated case.

Further work on the study of attraction-repulsion IBMs has been carried out by Gazi and
Passino (2003, 2002, 2004a,b). Their work focusses on an individual-based continuum model (in
both space and time) with long range attraction and short range repulsion. The update rule for
the velocity of particle i in Rn is

vi =
N
∑

j=1,j 6=i

g(xi − xj), (3.24)

where N is the total number of particles in the system and g(y) is some attraction-repulsion
function dependent on the distance between particles, y = xi − xj . The odd attraction-repulsion
function, g, can be broken down into its component parts, ga (corresponding to attraction) and gr

(corresponding to repulsion) and takes the general form

g(y) = −y[ga(||y||) − gr(||y||)]. (3.25)

The position update rule is the standard one given by equation (3.16) for the continuous time
Cucker-Smale model.

Using this model Gazi and Passino (2003) show that if members of the swarm are sufficiently far
away from other individuals they do not feel any repulsion force, only attraction, and correspond-
ingly move towards the centre of mass of the group. They further formalise this idea by bounding
the members of the swarm in an n-dimensional hyperball and giving an upper bound on the radius
in terms of the parameters of the model. This upper bound increases as the range and strength of
repulsion increases but decreases as the strength of attraction increases, as expected. This model
predicts that, for large N , as N increases the size of the group remains bounded, implying that
the density of the group increases, which is biologically unrealistic.

Gazi and Passino (2004a) improve on their original model by considering a larger general class
of interaction attraction-repulsion forces. They allow the repulsion force to become unbounded so
that two particles do not occupy the same position. This addition, in combination with a “safe
distance” for each particle in which the repulsion force becomes unbounded (to account for the
finite, non-infinitesimal, size of individuals, leads to swarm expansion with constant density as the
number of individuals increases.

Gazi and Passino (2004b) combine their IBM with an attractant-repellant gradient, which, in
general, individuals attempt to climb down. Their models illustrate a basic foraging principle: the
existence of a balance between the desire to stay with the swarm and the desire to interact with
the environment.
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3.6 Models with multiple interaction radii

Although some steps have been taken to ensure they are biologically relevant, the models discussed
in the previous sections (Sections 3.3-3.5) allow global interaction, which is, of course, unrealistic
in large groups. A more realistic model would take into account the finite size of an individual’s
senses and build in a finite interaction zone for each individual. The concept of multiple interaction
radii has been considered by a number of authors (Aoki, 1982; Couzin et al., 2002; Huth and
Wissel, 1992; Reynolds, 1987). Within each interaction radius, or shell, individuals respond to each
other differently. The inner-most region is usually reserved for repulsive reactions, corresponding
to the idea that individuals dislike overcrowding and the associated problems it causes (reduced
perception of the surroundings, for example, in a biological context). The radius of repulsion can
also represent the exclusion principle, assuming that particles have solid physical volumes. The
next shell usually corresponds to the zone in which individuals tend to align with one another and
the outer shell (or possibly the whole of space outside the inner two regions) corresponds to the
region of attraction between individuals which ensures that they do not disperse too widely, given
that the inner-most region will cause them, in general, to disperse. The order of these shells is not
necessarily as described above, nor are the shells necessarily mutually exclusive. A schematic view
of the nature of the interactions in each zone is given in Fig. 8.

(a) (b) (c)

Fig. 8: Schematic views of the nature of the interactions in each of the three interaction radii used in
the models of Aoki (1982), Reynolds (1987), Huth and Wissel (1992) and Couzin et al. (2002). Panel (a)
demonstrates the mutual repulsion at close range found in the inner-most shell with ‘radius of repulsion’,
rr. In the majority of models if there are particles within the zone of repulsion then this interaction occurs
to the exclusion of the other two. Panel (b) shows the central particle aligning itself with the other particles
inside the ‘zone of orientation’ with radius ro. Panel (c) exhibits the mutual attraction of the particles
in the outermost shell with ‘radius of attraction’, ra. In panels (a) and (c) the thicker arrow emanating
from the central particle indicates its desired direction of motion. In panel (b) the central particle’s desired
realignment is indicated via the curved, dashed arrow. For the purposes of clarity in (b) and (c) it has
been assumed that the inner radii are of zero size. In reality, these interaction zones will look more like
concentric shells.

Multiple interaction radii models bring biological realism to SPP models that single interaction
radius models (Czirók et al., 1999; Vicsek et al., 1995) lack. For example, in the most simple
models, particles neither avoid collisions nor exhibit attraction towards other particles, which
makes the formation of stable, bounded groups in the presence of noise impossible. These simple
models cannot therefore replicate the well-defined animal groups seen in nature. Importantly, these
revised models show cohesive collective behaviour and group formation in the absence of periodic
boundary conditions which are necessary for group formation and alignment in simpler models.
Recently, experimental evidence for such multiple interaction radii models has been discovered. Tien
et al. (2004) studied the movements of individual fish ‘in the field’ in both normal unperturbed
situations and in the presence of a simulated predator. In the neutral situation both attraction
and repulsion zones are evident and in the case of increased fear levels of the fish, induced by the
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presence of a ‘predator’, the nearest neighbour distance and the size of these interaction zones were
found to decrease.

The most widely used multiple interaction radii model, in the context of animal migration and
collective motion, is that of Couzin et al. (2002). They assume that the behaviour of individuals re-
sults from local repulsion, alignment and attraction based upon the relative position and alignment
of individuals with each other. Time is discretised and the position update rule is as in equation
(3.3) for the Vicsek model. The velocity update rule is more complicated owing to the increased
complexity of interactions considered between individuals.

An individual’s highest priority is chosen to be the avoidance of all other individuals, which
simulates desire to maintain personal space as well as reducing the probability that two particles
are at the same position at the same time (Krause and Ruxton, 2002). Particle i, therefore, turns
away from neighbours, j, within the inner-most interaction radius, rr, (see Fig. 8 (a) and Fig. 9
(a)) choosing its desired direction of motion at the next time-step, ui(t+∆t), as follows,

ur
i (t+ 1) = −

∑

j∈J
rr
i

xj(t) − xi(t)
|xj(t) − xi(t)|

. (3.26)

(a) (b)

Fig. 9: Schematic views of interaction zones in two dimensions used in the models of Aoki (1982); Couzin
et al. (2002); Huth and Wissel (1992); Reynolds (1987), amongst others. Panel (a) demonstrates the idea
of three mutually exclusive interaction radii. The circle defined by rr represents the zone of repulsion.
The shell defined by ro represents the zone of orientation and that defined by ra the zone of attraction.
Although the zone of repulsion is generally taken to be the most important, this is not always necessarily the
case. Neither are the zones necessarily mutually exclusive or ordered in this manner. Panel (b) represents
the actual implementation of the interaction zones. To represent the blind spot exhibited in some species
a segment of the outer interaction radii to the rear of the individual (in the opposite direction to an
individual’s velocity for forward facing individuals) is removed. In practise animals do not always have
blind spots or are able to sense movement in a visual blind-spot using sense organs other than sight. For
this reason the radius of repulsion, rr, (often modelling the volume exclusion principle) is rarely modelled
with a blind-spot.

If no neighbours are detected within the inner region then individuals tend to be attracted
towards each other (in order to avoid isolation) and to align themselves with neighbouring individ-
uals (Partridge, 1982; Partridge and Pitcher, 1980). In two dimensions these zones of interaction
are circular with the possible exception of a ‘blind zone’ behind each individual in which neigh-
bours and other external stimuli are undetectable. The blind zone is, in two dimensions, a sector
of the circle with interior angle 2π − ψ radians, where ψ is known as the viewing angle (see Fig.
9 (b)). Analogously in three dimensions the interaction radii are spheres and the blind zone is
represented by a cone with the same interior angle, ψ. Whether the zones of interaction have blind
zones depends on the situation the model is designed to simulate. In some biological situations,
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such as modelling fish schooling, a blind zone is appropriate (Wood and Ackland, 2007) but often
full circles/spheres are used since physical interactions can be detected independently of visual
interactions4.

Letting J ro

i denote the set of neighbours of particle i in the zone of orientation (rr ≤ |xj −xi| ≤
ro), the models suppose individual i attempts to align its heading with these neighbours,

uo
i (t+ 1) =

∑

j∈J
ro
i

uj

|uj | , (3.27)

and attempts to reposition itself towards particles j ∈ J ra

i , its neighbours in the zone of attraction

ua
i (t+ 1) =

∑

j∈J
ra
i

xj(t) − xi(t)
|xj(t) − xi(t)|

. (3.28)

If neighbours are found in only one of the two outer zones of interaction then the desired direction
of movement is given by

ui(t+ 1) = u
o,a
i (t+ 1), (3.29)

depending in which zone neighbours are found Couzin et al. (2002). If neighbours are found in
both orientation and interaction zones then the desired direction of movement is an average of the
two preferred directions,

ui(t+ 1) =
1
2

[uo
i (t+ 1) + ua

i (t+ 1)]. (3.30)

If no neighbours are detected or social forces result in a zero desired direction vector then the
particle continues with its original direction Couzin et al. (2002).

In order to simulate the effects of a noisy environment and the fact that decision making in
animals is subject to stochastic effects, a random number drawn from a (spherically wrapped
in three dimensions) Gaussian distribution with standard deviation σ is added to the desired
direction vector. The particles simultaneously turn as far towards their desired direction vector
as is permitted by their predefined ‘maximum turning angle’, φ∆t, (where the value of φ is often
motivated by experimentally observed turning rates) and move in this direction, ui, as in equation
(3.3). A time-step independent reformulation of this model is possible, but technical, and hence
we omit it.

Couzin et al. (2002) showed this model to be capable of producing some complex and, at
least qualitatively, biologically realistic behaviour. Four distinct behaviours were discovered to be
inherent to the model in different parameter regimes. Two important parameters which seemed to
correspond to alterations in the qualitative behaviour were variation in the radius of orientation,
∆ro, and variation in the radius of attraction, ∆ra. For low values of these variational parameters
group cohesion was low and individuals tended to disperse more often than forming groups. For
low ∆ro but high ∆ra a ‘swarming’ behaviour was exhibited with good group cohesion, but low
alignment and low angular momentum about the group’s centroid. For slightly larger values of ∆ro

a ‘torus’ behaviour was exhibited in which angular momentum was high, but overall alignment was
low as the individuals rotate perpetually around a hollow core. This behaviour is reminiscent of
natural schools of fish (Pitcher, 1993). A third behaviour type exhibited for intermediate values of
∆ro was the ‘dynamic parallel’ group, whose alignment was high but whose angular momentum
was low. Individuals are easily able to interchange positions, allowing the density and form of the
group to fluctuate, presenting behaviour similar to that of flocks of birds or schools of fish. A fourth
behavioural type is exhibited when ∆ro and ∆ra are both large. The group is highly aligned and
interchanges of positions between individuals are infrequent leading to consistent group density
and shape.

4 Eftimie et al. (2007a) introduce an adaptation of the traditional IBM in which the relative orientation
of individuals has an effect on how they receive and transmit information to each other. They present
five different one-dimensional submodels in which individuals receive different information about attrac-
tion/repulsion or alignment depending on their orientation and the orientation of their near neighbours.
These sub-models are then related to hyperbolic PDEs which are solved with periodic boundary condi-
tions. Several of the emergent patterns from these models are novel and relate to previously unmodelled
collective behaviour in animals.
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4 Models with leaders

The concept of leadership in IBMs can be interpreted in a variety of different ways. Some models
take it to be a strict hierarchical ordering of individuals, as in a military situation, where lower-
ranked individuals take their lead from higher-ranked individuals who, in turn, follow the behaviour
of even higher-ranked individuals. The ordering culminates with a single individual who is the
overall leader. This type of leadership is more usually associated with active or intrinsic leadership
exhibited by governmental and military hierarchies or social animals such as bees (Couzin et al.,
2005; Shen, 2008; Sumpter, 2006), for example, where leadership structures can clearly be identified
and are known to all individuals. Another type of leadership is passive or transient leadership, such
as that exhibited in disturbed bird flocks or traffic jams, when individuals tend to react mainly to
near neighbours irrespective of their putative leadership qualities. For example, if a bird senses the
approach of a predator, by taking flight or calling to other birds who may mimic this behaviour,
the first bird becomes a virtual leader with a transient leadership structure developing rapidly as
the call or movement spreads throughout the flock. There is nothing preordained or distinguishing
about this virtual leader other than that it was the first to spot the potential predator. In dynamic,
crowded situations the range over which an individual can sense is reduced and individuals may
lose the capacity for individual recognition (Couzin and Krause, 2003; Krause and Ruxton, 2002).
In these situations the effectiveness of a hierarchical leadership system will be vastly reduced and
passive leadership may become more appropriate.
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Fig. 10: Panel (a) shows a typical realisation of particle positions over 1000 time-steps (∆t = 1) using
the Czirók model in the presence of a single leader. The leader (red crosses) ignores all other particles and
does not deviate from his chosen direction. The leader is capable of changing the direction of small groups
of particles (see t ≈ 300) or changing the direction of a small number of particles in larger well established
groups (see t ≈ 750) but will very rarely cause the direction of a large well established group to change by
passing though it (see t ≈ 900). Parameter values are as follows: number of individuals, N = 100; uniform
size of interaction radius, r = 0.005; normalised domain length, L = 1; particle speed, v0 = 0.001 and noise
parameter, η = 2. Panel (b) shows a typical snapshot of the Vicsek model in the presence of a leader after
200 time-steps. The particles have had time to ‘warm up’ and are all roughly aligned with the direction
of the leader (large arrow positioned at approximately (0.4, 0.4)). Parameter values are as follows: number
of individuals, N = 100; uniform size of interaction radius, r = 0.5; normalised domain length, L = 1;
particle speed, v0 = 0.01 and noise parameter, η = 1.

4.1 Leadership in the Vicsek Model

Jadbabaie et al. (2003) introduce the concept of a transient leader particle as an individual labelled
with index 0 in a group of N other identical individuals. The leader differs from the others in that it
has a constant heading, θ0. The leader moves with the same speed as the other particles but ignores
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them completely, never wavering from its predefined heading. The other individuals in the model
update their headings as before (see equation (3.1) for Vicsek’s update rule and equation (3.9)
for the rule which Jadbabaie et al. (2003) use to prove convergence in their analysis) considering
the leader particle as any other in their cohort. This leads to the revised heading update rule for
particles i = 1, 2, . . . , N :

θi(t+ 1) =
1

ni(t) + 1 + bi(t)



θi(t) + bi(t)θ0 +
∑

j∈J r
i

θj(t)



 , (4.1)

where bi(t) is defined to be one whenever the leader particle is in the neighbourhood of particle i
and zero otherwise. Using similar notation as in Section 3.2 (where the leaderless Vicsek model was
analysed) we can vectorise equation (4.1) (in analogy to equation (3.10) for the leaderless model)
as follows:

θ(t+ 1) = (I +Dp +Bp)−1(I +Ap)θ(t) +Bp1θ0, (4.2)

where p is the index of the graph G̃p ∈ G̃ (representing the neighbour relationships between all
N+1 particles) drawn from a suitable set of indices, P̃ , of all the possible graphs on N+1 vertices.
Bp is the N × N diagonal matrix whose ith diagonal element is one if node i is connected to the
leader and zero otherwise. G̃ is the set of all possible graphs on N + 1 nodes.

The analysis carried out by Jadbabaie et al. (2003) proceeds in a similar manner to the anal-
ysis in the leaderless case. However, in order to show that the alignments of the particles in the
group tend towards the leader’s alignment, it is necessary that each particle is linked to the leader
sufficiently frequently rather than that the particles are simply linked together as was previously
required for convergence to a common heading. Clearly if the particles are to converge to a common
heading they must be linked together, but we say the N agents are linked to the leader across a finite
time interval [t, τ ], (where, as before, t < τ ) if the collection of graphs {G̃p(t), G̃p(t+∆t), . . . , G̃p(τ)}
encountered along the interval is jointly connected. In other words, the N non-leader agents are
leader-linked across a time interval when the (N+1)-member group (including the leader) is linked
together across the time interval. It should be noted that for the N -particle group to be leader-
linked it does not necessarily have to be linked together and neither does the N -member group
being linked together imply that the individuals are linked to the leader.

Jadbabaie et al. (2003) use properties of stochasticity of the heading update matrix and sub-
multiplicativity of the induced infinity norm on non-negative square matrices, amongst other useful
properties, as well as arguments similar to those used to prove the convergence to a common heading
in the leaderless case, to prove the following remarkable result: if there exists an infinite sequence
of contiguous, non-empty, bounded time intervals [ti, ti+1), i ≥ 0, starting at t0 = 0, with the
property that across each such interval, the N -particle group of ‘followers’ is linked to the leader,
then

lim
t→∞

θ(t) = θ01, (4.3)

where θ0 is the constant heading of the leader particle (see Fig. 10 (b) for an example of the particle
alignments of the Vicsek model in the presence of a leader after a relatively short amount of time).

In order to prove this Jadbabaie et al. (2003) rewrite the system in terms of ε(t) = θ(t) − θ01

so that the update equation (4.2) can be restated as

ε(t+ 1) = Fpε(t), (4.4)

for
Fp = (I +Dp +Bp)−1(I +Ap). (4.5)

They are then able to show that the property of the group being leader-linked over each contiguous
interval [ti, ti+1) implies that the matrix infinity norm of the product of the update matrices,
||Fp(ti+1)Fp(ti+1−∆t) . . . Fp(ti)||, encountered during that interval is bounded by a constant λ < 1.
As such, it is possible to show that the product of infinitely many update matrices Fp(t) satisfying
the above conditions will tend to zero and hence ε(t) → 0 proving convergence of all the ‘follower’
particles’ headings to that of the leader.
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4.2 Hierarchical leadership in the Cucker-Smale model

Shen (2008) studies the CS model in the context of hierarchical leadership (HL) and aims to prove
similar convergence results about the flock given specific parameter values and possible restrictions
on the initial conditions of the flock. A flock of size N + 1 with adjacency matrix, A = (aij), (as
previously defined) is said to be under HL if the agents can be labelled 0, . . . , N such that the
following two properties hold:

1. aij 6= 0 implies that agent i is led by agent j and this is only the case if j < i;
2. if the leader set of each agent i is defined as

L(i) = {j|aij > 0}, (4.6)

then for any i > 0 the leader set, L(i), is non-empty.

Condition 1 implies that the adjacency matrix of the flock is lower triangular. Shen (2008) goes
further than this by proving that a flock of size N+1 is under HL if and only if, after some ordered
labelling, the adjacency matrix is lower triangular and for any row i > 0, there exists at least
one positive off-diagonal entry. Fig. 11 shows the leadership structures of four simple flocks. Two
are HL flocks and two are non-HL flocks, each violating a different condition of the definition of
hierarchical leadership.

(a) (b) (c) (d)

Fig. 11: The arrows i → j indicate that agent i is led by agent j. (a) and (b) are examples of HL flocks,
whereas (c) and (d) are non-HL flocks. Flock (c) violates condition 1 of the above definition of HL in that
a23 6= 0. Flock (d) violates condition 2 in that the leader set of agent 2 is empty.

The framework for the proof of convergence of the leaderless CS model (Cucker and Smale,
2007) relies heavily on the existence of a special inner product 〈·, ·〉Q, which in turn relies on the
symmetry assumption of the CS model. Shen (2008) proves that such inner products could fail to
exist for non-symmetric systems such as HL-flocks. Even when such inner products exist in non-
symmetric systems it is likely that they are time-dependent and therefore unsuitable for proving a
priori convergence results.

Despite this general lack of compatible inner products for an HL flock, Shen (2008) shows that,
under a set of conditions similar to those given by Cucker and Smale (2007), for an HL flock of
size N + 1 with sufficiently small discrete time-step, ∆t, between updates of position and velocity,
the velocities of the flock converge at rate O(ρt

∆tt
N−1) where ρ∆t ∈ (0, 1) depends on ∆t, system

parameters and the initial configuration of the flock. The CS-type conditions are such that whether
or not convergence of the system is dependent on initial conditions depends on the magnitude of
the parameter β, where β is the exponent of the denominator of the interaction weighting function
ζ (see equation (3.14)). Specifically, if β < βc then the convergence is independent of initial
conditions, where instead of βc = 1/2, as in the CS model, βc = 1/(2N). Shen (2008) also proves
a result for CS-type flocks under HL in continuous time; for β < 1/2 there exists some B > 0
such that the velocities of the flock converge at an exponential rate O(e−Bt), where the constant
B depends on the system parameters and initial conditions of the flock.
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4.3 Inherent leadership

Animals such as locusts, fish or birds often move in groups which are densely crowded. This limits
the range over which individuals can sense each other and reduces their capacity for individual
recognition. As such, it is often realistic, when modelling biological individuals, to allow the alter-
ation of an individual’s behaviour based only on the behaviour of its neighbours and to implement
‘leader’ individuals with no external characteristics different from those of the ‘followers’. The only
difference between leader particles and followers should be in the preferential movement of the
leaders in a predefined direction.

Couzin et al. (2005) adapt their original model (Couzin et al., 2002) in order to deal effectively
with biologically motivated model systems incorporating informed individuals. In the new model
the two outer interaction radii, corresponding to orientation and alignment zones, are incorporated
into one radius and, as such, the contribution to the desired direction ui from the individuals in
this radius, providing there are no neighbours in the zone of repulsion, is the summation of the
terms, uo

i (t+∆t) and ua
i (t+∆t), respectively, relating to attraction and orientation (see Section

3.6). In either case the resultant direction vector, ui(t + ∆t), from interactions is subsequently
normalised, ûi(t+∆t) = ui(t+∆t)/|ui(t+∆t)|. In a further alteration to the original model no
‘blind zone’ is considered.

The influence of informed individuals is naturally incorporated into the model by further alter-
ing the desired direction vector of a predefined proportion of the individuals, p, so that they tend
to follow a preferred direction, gi, for individual i. The degree to which the individuals adhere
to this direction as opposed to simply following the desired direction of movement ûi(t + ∆t) is
altered using the weighting parameter, ω:

u′
i(t+∆t) =

ûi(t+∆t) + ωgi

|̂ui(t+∆t) + ωgi|
, (4.7)

where u′
i(t+∆t) becomes the desired direction vector of the informed particle.

Couzin et al. (2005) measured how well the group followed the preferred direction of migration of
the informed individuals. They found that the accuracy increased asymptotically as the proportion
of individuals increased, and that for larger groups a smaller proportion of individuals was needed
to guide the group to the same level of accuracy.

The authors simulate the possibility that there exists more than one group of informed in-
dividuals with differing preferential directions. They found that, when the numbers of informed
individuals in the two groups were equal, an average direction is taken by the group until the
angle between the preferential directions is increased beyond a certain limit, after which the group
randomly selected one of the two preferred directions with equal probability. When the size of one
of the informed sets is even marginally larger than that of the other set, the group selects the
preferred direction of the larger informed set (provided there existed an appropriate difference in
the preferences).

Positive feedback on the weighting parameter, ω, which causes it to increase for those indi-
viduals following their preferred direction to a good degree of accuracy and decrease otherwise, is
introduced. This reduces the necessary difference in preferred direction of the two groups above
which the average direction is abandoned and a consensus decision on which of the two preferred
directions to follow is reached. Using feedback on the weighting parameter, Couzin et al. (2005)
were able to tune the necessary difference in preferred direction for a consensus decision to be made.
This feedback mechanism also makes it possible for a group to discriminate between the quality of
information of two sets of informed individuals. Individuals in the set with (even slightly) poorer
quality of information are less likely to head in their preferred direction and hence the weighting
given to their preferred direction will be decreased as part of the feedback loop, until the set of
poorly informed individuals give no weight to their preferred direction and are in effect uninformed.
A consensus decision is easily reached in this case.
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5 Evolutionary self-propelled particle models

The evolution of collective behaviour is becoming an increasingly important area of research.
Several advantages and disadvantages have been postulated and argued for qualitatively as the
evolutionary basis of group formation. In order for collective behaviour to evolve the advantages
to group formation must outweigh the disadvantages. Group behaviour often provides advantages
that individuals could not hope to achieve acting alone: it can often mean the difference between
life and death for the individuals involved. For example, warm-blooded animals such as emperor
penguins huddle together in groups sharing body heat and reducing the need for energy expenditure
(Prévost, 1961). On a less dramatic scale, schooling fish and flocking birds are thought to gain a
dynamic or hydrodynamic advantage by moving together in a group (Belyayev and Zuyev, 1969;
Breder, 1965; Weihs, 1973). Their collective motion reduces the average resistance force on each
animal which therefore leads to a smaller expenditure of energy for each individual. By swarming,
groups of animals, such as locusts, act as a multicellular organism, increasing their collective zone
of awareness in comparison to that of an individual allowing them to forage more efficiently.

The disadvantages of group formation can, however, be severe. Disease spreads quickly in
crowded environments, often debilitating every member of the group. Despite the foraging ability
of the group increasing, competition for the available resources also increases meaning that some
individuals may, in fact, find it harder to obtain enough food (Krebs et al., 1993).

Even the validity of these simple pros and cons have been much debated (Abrahams and
Colgan, 1987; Partridge and Pitcher, 1979), even more so their importance in an evolutionary
scenario. However, since groups are evident in many animal species it is clear that, whatever the
advantages of the formation of these groups, they outweigh the disadvantages.

In recent years it has become easier to conduct increasingly complex computational evolutionary
simulations on relatively modest hardware. This has led to an increase in algorithms designed
to simulate various evolutionary scenarios testing quantitatively the possible hypotheses on the
advantages and disadvantages of group formation.

Spector et al. (2005) describe numerical experiments on the emergence of collective behaviour
in populations of flying agents incorporating multiple species and goal orientation as evolutionary
factors. They find the emergence of collective behaviour akin to that of multicellular organisms.
In a second set of experiments the behaviour of the agents was observed to exhibit altruistic
food-sharing behaviours.

Wood and Ackland (2007) introduced the first multi-parameter SPP evolution algorithms. The
model they consider is based on a two-dimensional version of the models described by Couzin et al.
(2002), given in Section 3.6. The parameters of the flock are allowed to evolve via a caricature of
natural selection, with each individual in the new generation having different characteristics to each
other, but sharing similar characteristics to a single haploid parent in the previous generation (i.e.
asexual reproduction with mutation). Wood and Ackland’s model imposes two additional restric-
tions on the parameter regimes over the Couzin model. These restrictions ensure that all possible
parameter values are not simply maximised. Indeed parameters such as speed and maximum al-
lowed turning angle are traded off against each other. Sighting area parameter, As = ψr2

a (where
ψ, as before, is the viewing angle) is kept constant to simulate a trade-off between long-range and
peripheral vision. Similarly the possible movement ‘area’ parameter, Am = 2θv2

i , is kept constant
to simulate faster moving individuals being less free to change their direction5.

In addition to the Couzin model, Wood and Ackland (2007) introduce stimuli such as a food
source or a predator. The response to these stimuli in each generation of individuals is a basis
for the fitness upon which the individuals are selected to pass on their characteristics to the next
generation. Therefore, in addition to the desired direction of movement due to social interactions,
ui, a stimulus-related movement vector, Ωiv̂, is added into an individual’s velocity vector, where
the script letters f and p relate to stimuli in response to food or predation and v̂ is the unit vector
towards food or away from the predator, respectively. Ωi is an evolvable weighting parameter
which determines to what degree individuals attempt to attain the goals of predator avoidance or

5 We suggest that, in order to keep the model time-step independent, the movement ‘area’ be formulated
with the units of area: Am = 2θ(vi∆t)2.
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food retrieval. Other evolvable parameters of the model are the orientation radius, ro, such that
rr < ro < ra and the magnitude of the noise for each particle, ηi.

In the terminology of Wood and Ackland (2007) one run of the algorithm is the simulation
of a predefined number of generations or instances. Between each instance a new generation of
individuals is generated. The new generation is largely dependent on the previous generation, with
the fitter individuals of the previous generation having a higher probability of passing on their
characteristics to the next generation. Mutation is also implemented by adding a random number,
chosen from a uniform distribution in the range [−m,m], to the magnitude of the interaction radii
of each particle in the new generation. Here m is a fixed value and precautions are taken to ensure
parameters do not take unrealistic values (i.e. negative interaction radii etc).

After evolving their individuals for sufficiently many generations Wood and Ackland (2007)
found that very different flocks evolved given different types of stimuli. The predation stimulus ne-
cessitated group formation, whereas food searching did not, although group formation was possible.
In almost all cases a small viewing angle was strongly selected for.

Two sub-types of behaviour emerged from the predation model: slow moving, milling behaviour
and fast moving, dynamic groups. The milling behaviour allows individuals to interact strongly with
each other and to respond rapidly to the presence of a predator. These types of groups evolve when
the mutation rate is high and the viewing angle of the predator is high (a smaller more compact
group does not allow the predator to take advantage of his large viewing angle). Alternatively, with
low mutation rates and predators with a small viewing angle, fast moving dynamic groups evolve.
Their response to a predator is to fan out and take advantage of the predator’s low viewing angle.

In flocks selected for their ability to forage, group evolution was highly dependent on the type
of food stimulus on offer. Foraging seemed also to promote strong selection on the speed and the
attraction radius (and hence demote turning efficiency and viewing angle), but not necessarily on
the orientation radius. The distribution of single food packets did not lead to group formation.
The first individual to arrive ate the whole packet and there was no advantage to group foraging.
However, when multiple food packets were distributed, group behaviour became more efficient as
the group was more likely to find food than a lone individual with a small viewing angle. Several
of the behaviours to which the system evolved in the models of Wood and Ackland (2007) are
reminiscent of those found in nature (Benkman, 1988; Inada and Kawachi, 2002; Krebs, 1978).

5.1 Evolution of interaction radii for particles following a leader

In groups of birds, fish and insects crowding is thought to restrict an animal’s capacity for individual
recognition as well as its field of vision and other external signal sensing abilities (Couzin and
Krause, 2003; Krause and Ruxton, 2002). Hence an individual’s foraging efficiency and ability
to avoid predation are likely to depend on its ability to follow an individual informed about the
location of food or the appearance of a predator. Here we combine the ideas of intrinsic leadership
and evolution in order to evolve a single characteristic of the individuals in Czirók-type (one
dimension) and Vicsek-type (two dimensions) models. Instead of basing the relative fitness of a
particle on its ability to forage or avoid predation (which, in a crowded environment, is often a
random process depending on the position of the food source, appearance of the predator and the
position of the individual in the group) we focus on the ability of individuals to follow an informed
leader particle. We assume that a leader particle has seen a stimulus and, ignoring the influence of
its neighbours, heads directly towards the food source or away from the predator. This is equivalent
to the implementation of informed individuals by Jadbabaie et al. (2003) or by Couzin et al. (2005)
where the weighting parameter, ω, has been allowed to tend to infinity (see equation (4.7)).

We largely follow the evolution algorithm of Wood and Ackland (2007), with a few subtle
exceptions. Since we now base fitness of the individuals on their ability to follow an unmarked, but
informed individual, we must alter the way in which the fitness is calculated. We find an auxiliary
vector, e, such that

ei = |Xi −X0| for i = 1 . . . N, (5.1)
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where Xi represents the distance travelled by the ith particle over the period (j = J0, . . . , Tfinal)
and, as before, 0 is the index of the leader particle. In one dimension this can be written simply as

ei =

∣

∣

∣

∣

∣

∣

Tfinal
∑

j=J0

(vi(tj) − v0(tj))

∣

∣

∣

∣

∣

∣

. (5.2)

In two dimensions the formulation is slightly more complicated:

ei =

∣

∣

∣

∣

∣

∣

Tfinal
∑

j=J0

(exp(iθi(tj)) − exp(iθ0(tj)))

∣

∣

∣

∣

∣

∣

. (5.3)

We use e to calculate the fitness vector, f ,

fi = max
j=1,...,N

{ej} − ei, for i = 1 . . .N. (5.4)

We also normalise the fitness vector to find the probability vector, p, that each individual will pass
on its characteristics to an individual in the next generation in a slightly different manner to Wood
and Ackland (2007):

p =
1 − κ+ κf

N(1 − κ) + κ

N
∑

i=1

fi

, (5.5)

where κ ∈ [0, 1] represents the weighting given to the fitness. Clearly κ = 1 represents strong
selection and κ ≪ 1 represents weak selection. Here we choose κ = 1 as we have found that
weaker selection gives similar results, but requires more generations to achieve a quasi-steady-state
distribution.

We choose to evolve a single characteristic of the individuals between generations so as to see
clearly the effect of evolution based on fitnesses corresponding to an individual’s ability to follow
the leader in the absence of variation of other characteristics. We are interested in the evolution
of the interaction radius. Between generations we assess the fitness of each individual and pass
the interaction radius of individual i to each member of the new generation with probability
pi, for i = 1, . . . , N . Once individual i, in the new generation, is assigned a value, ri, for its
interaction radius (from those in the previous generation) a random number, ξi, drawn from a
uniform distribution in [−m,m], is used to mutate the interaction radius as follows:

ri =







0, for ri + ξi < 0;
0.5, for ri + ξi > 0.5;

ri + ξi, otherwise,

which ensures the interaction radius does not become unrealistically large or small.
In order to implement this evolutionary method all particles are initialised with random po-

sitions, velocities and interaction radii (between 0 and 0.5) and are allowed to move for Tfinal

time-steps. This is known as one ‘run’. At the end of this run, fitnesses are calculated and a new
generation of individuals evolved. This evolutionary process occurs for M generations. This is
known as one ‘simulation’. We repeat the simulations K times and take an average of the final
evolved radii.

Fig. 12 shows the results of implementing the above evolution algorithm in order to evolve
the interaction radii for the one-dimensional Czirók and the two-dimensional Vicsek models. In
Fig. 12 (a) a larger noise value tends to lead to the evolution of a smaller interaction radius,
especially for large numbers of particles. The opposite is seen in Fig. 12 (b). This suggests that,
in two dimensions, increased noise necessitates a larger interaction radius to be evolved, since a
set of particles with smaller interaction radii will not be able to form as coherent a group as a set
with larger interaction radii and will hence be impeded when following the leader. The fact that a
smaller interaction radius is evolved in low noise conditions hints that there is a cost to evolving a
large interaction radius. It could be that, in a group of particles with only moderately large or very
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Fig. 12: Panel (a) exhibits the results of evolving a set of N SPPs in one dimension in the presence of an
informed individual using the Czirók model and the evolution algorithm described above for varying values
of the noise parameter η. Panel (b) exhibits similar evolution results for a set of N SPPs which move
according to the Vicsek model in two dimensions. For both models the number of particles, excluding the
leader particle, ranges from N = 5, 10, . . . , 100 and the noise parameter takes the values η = 0, 0.5, . . . , 2.
Evolutionary parameter values were as follows: number of time-steps in one run, Tfinal = 1000, number
of generations per simulation, M = 100, number of repeats per simulation, K = 50, and mutation rate,
m = 0.005. The parameters for each run were, L = 1, ∆t = 1 and v0 = 0.1 for both the Czirók and Vicsek
models. In both cases we have allowed the particles to ‘warm up’ and calculated fitnesses based on how well
the particles followed the leader in the second half of the simulation (i.e. J0 = 501 in equations (5.2) and
(5.3)).

large interaction radii, all individuals benefit from forming a group heading in the direction of the
leader, but individuals with only moderately large interaction radii see fewer non-leader particles
in their interaction zones and hence follow the leader to a greater degree when the leader is in
their interaction zone, allowing them to gain an advantage. This advantage is only made possible
by low noise conditions. In high noise conditions, unless all particles have large interaction radii,
group formation may be affected and those particles with very large interaction radii may gain an
advantage.

The evolutionary algorithm we have implemented above is far from perfect. Facets such as
periodic boundary conditions, homogeneous square domains and a single interaction radius make
the models themselves unrealistic. We therefore hesitate to draw strong conclusions from these
results, but note that the degree to which particles follow a leader is a good candidate for fitness
in evolutionary SPP models.

6 Discussion

The continuing study of emergent collective behaviour in particle models will undoubtedly have a
significant impact on our understanding of biological systems on many levels: from symbiosis in mi-
crobes, through swarming and flocking behaviours in insects and larger animals to the organisation
of human societies. Increasing numbers of processes discovered in microbiology require IBMs in
order to represent them realistically. Biofilm formation and degradation (Kreft et al., 1998, 2001),
wound healing (Cai et al., 2007; Simpson et al., 2009), tumour growth (Drasdo and Hohme, 2003;
Gómez-Mourelo et al., 2008), and other important cell migration problems observed in a variety
of areas of developmental biology (Baker et al., 2010; Othmer and Stevens, 1997), are amenable
to particle-based modelling. On a smaller scale, IBMs are also being used in a subcellular context
to model protein organisation (Fisher et al., 1999), molecular motility and signal transduction
reactions (Takahashi et al., 2005) amongst other processes (Tolle and Le Novere, 2006).

Possible application areas of the IBMs described in this work are not solely restricted to bi-
ological systems. They encompass the robotics of multiagent systems (Mataric, 1995), language
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evolution (Cucker et al., 2004) as well as more unforeseen circumstances such as space-flight control
for the European space agency mission DARWIN (Perea et al., 2009) and the modelling of traffic
flow in both vehicles and humans (Helbing, 2001; Helbing and Tilch, 1998).

In the past, multi-particle systems exhibiting collective behaviour have been modelled almost
exclusively using partial differential equations, deriving mean field descriptions on a macroscopic
scale. These coarse, whole-population representations of multi-agent systems naturally engender a
loss of information, specifically about the individual agents which make up the model. This has
made evolutionary models of multi-agent systems and models incorporating individual leadership
difficult to formulate. With the steady increase in computational power has come the ability to
simulate complex multi-agent systems on even modest desktop machines and with it the rise in
verifiable IBMs for emergent, collective behaviour. Such models have several distinct advantages
over population-based model: (i) they are bottom-up approaches which describe the whole system
by establishing procedural rules which individuals obey. These rules are often drawn from obser-
vations of individuals, rather than inferring individual behaviour from the mean-field model which
best describes the behaviour of the whole group, allowing more realistic modelling assumptions; (ii)
they allow for the introduction of individual variability (leaders for example) and individual-scale
randomness which enables models to mimic the variability of real systems; and (iii) they allow for
the independent evolution of individuals to their environment which implies that group evolution
arises naturally from the dynamics governing the evolution of the individuals. There are, of course,
several disadvantages inherent to multi-agent models: (i) they may lack the clarity of continuum
models and easily become extremely complicated, with large numbers of free parameters, making
their analysis and importantly their communication difficult; (ii) with increased complexity and
variability IBMs quickly erode the advances in computational power made in recent years.

Although in this work we have barely scratched the surface of the huge variety of particulate
models, we have demonstrated that there exists a wide variety of models which are applicable in
many diverse situations. There is work to be done on unifying these IBMs with previously existing
and novel mean field models in order to create a framework which combines the advantages of
the two different types of models. Of course not all models will have a corresponding mean field
description in all cases but the advantage of finding such a connection where it exists will be
tangible.
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