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A planar bistable liquid crystal device, reported in Tsakonas et al., is modelled within the Landau-
de Gennes theory for nematic liquid crystals. This planar device consists of an array of square
micron-sized wells. We obtain six different classes of equilibrium profiles and these profiles are
classified as diagonal or rotated solutions. In the strong anchoring case, we propose a Dirichlet
boundary condition that mimics the experimentally imposed tangent boundary conditions. In the
weak anchoring case, we present a suitable surface energy and study the multiplicity of solutions
as a function of the anchoring strength. We find that diagonal solutions exist for all values of the
anchoring strength W ≥ 0 while rotated solutions only exist for W ≥Wc > 0, where Wc is a critical
anchoring strength that has been computed numerically. We propose a dynamic model for the
switching mechanisms based on only dielectric effects. For sufficiently strong external electric fields,
we numerically demonstrate diagonal to rotated and rotated to diagonal switching by allowing for
variable anchoring strength across the domain boundary.

I. INTRODUCTION

Liquid crystal science has grown tremendously over the last four decades for fundamental scientific reasons and
for widespread liquid crystalline applications in modern industry and technology e.g. in display devices [1], in novel
functional materials and in biological sensors [2]. The simplest liquid crystal phase is the nematic phase wherein
the constituent rod-like molecules have a degree of long-range orientational ordering and hence, tend to align along
certain locally preferred directions [3]. The existence of such distinguished directions in nematic liquid crystals and
their resulting anisotropic optical properties make nematics suitable working materials for optical devices such as
displays. Recently, there has been considerable interest in the development of bistable liquid crystal displays [4, 5].
Bistable displays can support two or more stable optically contrasting liquid crystal states, so that power is only
required to switch between the optically contrasting states but not to maintain a static image. Thus, bistable displays
offer the promise of a new generation of larger, economical and high-resolution displays that are very lucrative for
industry.

Bistable displays typically use a combination of complex surface morphologies and surface treatments to stabilize
multiple liquid crystal states [4–6]. Examples of bistable displays include the two-dimensional Zenithally Bistable
Nematic (ZBD) device [6] and the three-dimensional Post Aligned Bistable Nematic (PABN) device [5]. The ZBD
device consists of a liquid crystal layer sandwiched between two solid surfaces where the bottom surface is featured by
a complex wedge-shaped grating. Both surfaces are treated to induce homeotropic (normal) boundary conditions and
the ZBD cell supports two static stable states: the defect-free Vertically Aligned Nematic (VAN) state and the Hybrid
Aligned Nematic (HAN) state which is distinguished by defects near the wedge-shaped grating [6]. The PABN cell
has a three-dimensional structure with a liquid crystal layer sandwiched between two solid substrates and the bottom
substrate is featured by an array of microscopic posts. Unlike the ZBD cell, the boundary conditions for the PABN
cell are of a mixed type. The top substrate is treated to induce homeotropic boundary conditions whilst the bottom
substrate and the post surfaces are treated to have tangent (planar) boundary conditions. Experimental observations
and optical modelling suggest that there are at least two competing static stable states: the opaque tilted state and
the transparent planar state [5].

In this paper, we focus on the two-dimensional bistable liquid crystal device investigated both experimentally and
numerically by Tsakonas et al. [7]. This device consists of an array of square wells filled with nematic liquid crystal
material. The well surfaces are treated to induce tangent boundary conditions i.e. the liquid crystal molecules in
contact with the well surfaces are constrained to be in the plane of the surfaces. When viewed between crossed
polarizers, the authors observe two classes of stable equilibria in this geometry: diagonal states where the liquid
crystal molecules align along the square diagonals and rotated states where the direction of alignment rotates by π
across the width of the cell. The experimental results are also accompanied by modelling in the Landau-de Gennes
framework [7].

We build on the results in [7] within the Landau-de Gennes framework [3] and model the device on a two-dimensional
square or rectangular domain. This is equivalent to neglecting structural variations across the height of the cell and
focussing on the structural variations across the square cross-section. We first formulate the modelling problem in
terms of a Dirichlet boundary-value problem and introduce the concept of an optimal Dirichlet boundary condition.
There are multiple choices of Dirichlet boundary conditions consistent with the experimentally imposed tangent
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boundary conditions and we formulate the optimal Dirichlet boundary condition as the solution of a variational
problem. We then consider the more physically realistic weak anchoring situation where we relax the Dirichlet
boundary condition and impose an appropriate surface energy characterized by an anchoring strength W . The
resulting mathematical problem is well-posed, yields physically realistic equilibria for all values of the anchoring
strength W > 0 and the weak anchoring equilibria converge to the strong anchoring equilibria in the limit of infinite
anchoring. We numerically compute bifurcation diagrams for the equilibria in the weak anchoring case and study the
multiplicity of stable equilibria as a function of the anchoring strength. We numerically find six different classes of
solutions, two of which are labelled as diagonal and four of which are labelled as rotated based on their alignment
structures. The diagonal solutions exist for all W ≥ 0, whereas the rotated solutions only exist for anchoring strengths
above a certain critical value Wc > 0. We estimate this critical anchoring strength in terms of the material parameters
and find that the system is bistable/multistable for W ≥Wc.

We propose a simple dynamic model based on the gradient flow approach for the switching characteristics of this
device. This model only relies on dielectric effects and we do not need to incorporate flexoelectricity unlike other
models in the existing literature [8]. Our dynamic model does not account for viscous dissipation or fluid-flow effects
but simply gives a qualitative description of the mechanisms that drive the switching procedure. To achieve switching
from diagonal to rotated and vice-versa, we make the anchoring strength on one of the square edges much weaker
than that on the remaining three square edges and we apply a uniform electric field along the square diagonals.

The paper is organized as follows. In section II, we review the Landau-de Gennes Q-tensor theory for liquid
crystals. In section III, we study the strong anchoring problem. In section IV, we study the weak anchoring problem
and present bifurcation diagrams for the corresponding equilibria as a function of the anchoring strength. In section
V, we demonstrate a switching mechanism between the competing stable states under the action of an external electric
field. Finally, in Appendix, we elaborate on the numerical methods.

II. TWO-DIMENSIONAL (2D) LANDAU-DE GENNES THEORY

The Oseen-Frank theory is the simplest continuum theory for nematic liquid crystals, based on the assumption
of strict uniaxiality (a single distinguished direction of molecular alignment) and a constant degree of orientational
ordering [9]. In the Oseen-Frank framework, the liquid crystal configuration is modelled by a unit-vector field n
(often referred to as director because of the n → −n symmetry), which represents the locally preferred direction of
molecular alignment. The Oseen-Frank theory assigns a free energy to every admissible n and working in the simplest
one-constant approximation, the Oseen-Frank energy reduces to the well-known Dirichlet energy below [10]

EOF [n] :=
∫

Ω

1
2
K|∇n|2 dA, (1)

where Ω ⊂ R2 is the physical domain, dA is the corresponding area element and K > 0 is an elastic constant. To have
finite Oseen-Frank energy (1), the admissible n must belong to the Sobolev space H1(Ω, S1), the space of unit-vector
fields with square-integrable first derivatives [11].

However, the Oseen-Frank theory is not well-suited to model the planar square (or rectangular) bistable device
reported in Tsakonas et al. [7]. As stated in the previous section, the tangent boundary conditions constrain the
liquid crystal molecules in contact with the well surfaces to be in the plane of the well surfaces [12]. Taking the
modelling domain to be a square or a rectangle and working in the Oseen-Frank framework, this implies that the
unit-vector field n is constrained to be tangent to the square/rectangle edges i.e. n is aligned horizontally on the
horizontal edges and vertically on the vertical edges. Thus, n is necessarily discontinuous at the vertices where two
or more edges meet. However, it has been shown in [13] that unit-vector fields with jump discontinuous Dirichlet
boundary condition do not belong to H1(Ω) for Ω ∈ R2, and hence have infinite Oseen-Frank energy (1). This
difficulty can be resolved by introducing an order parameter that can vanish at defect locations i.e. we need to relax
the assumption of constant orientational ordering in the Oseen-Frank framework.

We model the planar bistable device by a rectangular domain

Ω =
{

(x, y) ∈ R2 : x ∈ [0, L] , y ∈ [0, ar × L]
}
, (2)

where L is the width of the rectangle and ar is the aspect ratio. We work within the Landau-de Gennes framework
[3, 14, 15], whereby the liquid crystal configuration is modelled by a symmetric traceless tensor Q. In the 2D case,
the Q-tensor can be written as

Q = s(2n⊗ n− I), (3)
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where n = n(x, y) is an eigenvector, s = s(x, y) is a scalar order parameter that measures the degree of orientational
ordering about n and I is the 2× 2 identity matrix [10]. Unlike the Oseen-Frank theory, the order parameter s in the
Q-tensor model varies across the modelling domain and in particular, vanishes at the vertices as required.

TheQ-tensor is invariant under the transformation n→ −n and preserves the head-to-tail symmetry of the nematic
molecules [16]. Since Q is symmetric and traceless, we can write it in the following matrix form

Q =
(
Q11 Q12

Q12 −Q11

)
. (4)

Any 2D unit-vector field n can be written in terms of an angle θ in the (x, y)-plane as shown below

n(x, y) = (cos θ(x, y), sin θ(x, y)). (5)

Then one can readily check that

Q11 =s cos(2θ), (6)
Q12 =s sin(2θ). (7)

Also, we have

tr(Q) =tr(Q3) = 0, (8)

trQ2 =2s2. (9)

In the absence of external fields and surface effects, the Landau-de Gennes energy functional is given by

ELDG = Eel + EB , (10)

where Eel is an elastic energy and EB is the bulk energy [15, 16]. In the simplest case, the elastic energy is given by

Eel[Q] :=
∫

Ω

Lel
2
|∇Q|2 dA, (11)

where Lel > 0 is an elastic constant [3, 16]. The bulk energy is given by

EB [Q] :=
∫

Ω

α(T )trQ2 − b2

3
trQ3 +

c2

4
(trQ2)2 dA, (12)

where α(T ) = γ(T − T ∗) with γ > 0, T denotes the absolute temperature and T ∗ is a characteristic temperature
below which the disordered isotropic phase loses its stability [16]. Further, b2 and c2 are positive material-dependent
constants [3, 15]. We work in the low-temperature regime and in this case, for a fixed temperature T < T ∗, we can
write the bulk energy as -

EB [Q] =
∫

Ω

−α
2

2
trQ2 − b2

3
trQ3 +

c2

4
(trQ2)2 dA, (13)

where α2 > 0 is a temperature-dependent and material-dependent constant. In 2D, one can directly verify that

Eel[Q] =
∫

Ω

Lel
(
|∇Q11|2 + |∇Q12|2

)
dA, (14)

and

EB [Q] =
∫

Ω

c2s4 − α2s2 dA. (15)

The bulk energy EB achieves its minimum at

s ≡ s0 =

√
α2

2c2
. (16)

We define

ε2 :=
1
c2
, (17)
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then EB can be rewritten as

EB [Q] =
∫

Ω

1
ε2

(s2 − s2
0)2 − s4

0

ε2
dA. (18)

Therefore up to an additive constant, the Landau-de Gennes energy is given by

ELDG[Q] =
∫

Ω

Lel
(
|∇Q11|2 + |∇Q12|2

)
+

1
ε2

(Q2
11 +Q2

12 − s2
0)2 dA. (19)

In the strong anchoring case, the eigenvector n in (3) is constrained to be strictly tangent to the edges of the
rectangular domain i.e. n = ±ex on the horizontal edges and n = ±ey on the vertical edges where ex and ey are the
unit-vectors in the x and y-coordinate directions respectively. These boundary conditions are encoded by a Dirichlet
boundary condition (Q11, Q12) = g, for some Lipschitz continuous g and we will prescribe an appropriate form of g
in the next section.

In the weak anchoring case, the Dirichlet boundary condition (Q11, Q12) = g is replaced by a surface anchoring
energy which favours the tangent boundary conditions. We have studied three different candidates for the surface
anchoring energy. The first choice is given by

EA[Q] :=
∫
∂Ω

Wν ·Qν√
Q2

11 +Q2
12

da, (20)

where da is the line element on ∂Ω, ν is the outward unit-normal vector on ∂Ω, and W = W (x, y) is the anchoring
strength on ∂Ω which might take different values across the boundary. We assume W is a constant in most part
of this paper, unless otherwise specified. The energy (20) is equivalent to the widely-used Rapini-Papoular surface
energy ∫

∂Ω

2W sin2(θ − θ0) da, (21)

where θ0 denotes the preferred orientation on the boundary [17]. However, this surface energy has the following
shortcomings (i) the energy density is discontinuous at (Q11, Q12) = (0, 0) and (ii) for large W > 0, we are numerically
unable to compute the corresponding equilibria because of convergence problems. A second choice for the surface
anchoring energy is

EA[Q] :=
∫
∂Ω

Wν ·Qν da, (22)

as has been used in [7]. For a fixed ε > 0, the order parameter s becomes unbounded in the limit W → ∞, leading
to non-physical solutions. The third and the most suitable choice is the following surface anchoring energy proposed
in [16]

EA[Q] :=
∫
∂Ω

W |(Q11, Q12)− g|2 da, (23)

where g is the Dirichlet boundary condition for the strong anchoring problem. For a suitable choice of g, this surface
energy enjoys the following advantages as will be demonstrated in the subsequent numerical results: (i) we can find
equilibrium solutions for arbitrarily large W > 0, (ii) the order parameters s are bounded in the limit W → ∞ and
(iii) as W →∞, the weak anchoring solutions converge to the corresponding strong anchoring solutions in H1(Ω,R2).
The properties of the three different surface anchoring energies (20), (22) and (23) are summarized in Table I.

Model Existence Boundedness Convergence

for large W of s to strong anchoring

(20) 7 X 7

(22) X 7 7

(23) X X X

TABLE I: Comparison of the different surface energies (20), (22) and (23).
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To model the switching dynamics of this bistable device, an external electric field must be included into the
formulation. In the Landau-de Gennes framework, the electrostatic energy is given by

EE [Q] :=
∫

Ω

−1
2
ε0(εE) ·E − P s ·E dA, (24)

where E is the electric field vector, P s is the spontaneous polarization vector, ε is the dielectric tensor and can be
approximated by ε = 4ε∗Q + ε̄I, and ε0, 4ε∗, and ε̄ are material-dependent constants [16]. In particular, 4ε∗ is
the dielectric anisotropy and we work with materials that have positive dielectric anisotropy in what follows. For
symmetric rod-like liquid crystal molecules, we can neglect flexoelectricity (or Ps) and the electrostatic energy then
simplifies to

EE [Q] =
∫

Ω

−C0(QE) ·E dA, (25)

with C0 = 1
2ε04ε

∗. Let E = |E|(cos θE , sin θE) for some angle θE . Substituting into (25), we find that

EE [Q] =
∫

Ω

−C0|E|2(Q11 cos(2θE) +Q12 sin(2θE)) dA. (26)

The total energy is the sum of the elastic energy Eel, the bulk energy EB , the surface anchoring energy EA and the
electrostatic energy EE as shown below -

E [Q] =
∫

Ω

Lel
(
|∇Q11|2 + |∇Q12|2

)
+

1
ε2

(Q2
11 +Q2

12 − s2
0)2 dA

+
∫
∂Ω

W |(Q11, Q12)− g|2 da

+
∫

Ω

−C0|E|2(Q11 cos(2θE) +Q12 sin(2θE)) dA.

(27)

Before we proceed with the analysis and numerical computations, we non-dimensionalize the system as follows.
Take the reference domain to be Ω̃ = [0, 1]× [0, ar] and let x̃ = x/L, ỹ = y/L. Define new variables

(Q̃11, Q̃12) :=(Q11, Q12)/s0, (28)
g̃ :=g/s0, (29)

and

ε̃ :=
ε
√
Lel
L

, (30)

W̃ :=
WL

Lel
, (31)

Ẽ :=
L|E|
s0

√
|C0|
Lel

. (32)

Then the total energy E can be written in terms of these dimensionless variables -

1
s2

0Lel
E [Q] =

∫
Ω̃

(
|∇Q̃11|2 + |∇Q̃12|2

)
+

1
ε̃2

(Q̃2
11 + Q̃2

12 − 1)2 dÃ

+
∫
∂Ω̃

W̃
∣∣∣(Q̃11, Q̃12)− g̃

∣∣∣2 dã

+
∫

Ω̃

−sgn(C0)Ẽ2(Q̃11 cos(2θE) + Q̃12 sin(2θE)) dÃ,

(33)

where dÃ and dã are the area element in Ω̃ and the line element on ∂Ω̃ respectively. In what follows, we work with
the dimensionless energy Ẽ := E/(s2

0Lel).
Some typical values of the physical parameters are 1/ε2 = 1×106 N m−1, Lel = 10−11 Nm, s0 = 0.6, L = 8×10−5 m

and W = 2× 10−3N, as given in [7]. By (30), the dimensionless parameter ε̃ is about 6.6× 10−5. Since ε̃ is so small,
we can view the bulk energy density 1

ε̃2 (Q̃2
11 + Q̃2

12 − 1)2 as a penalty term that enforces Q̃2
11 + Q̃2

12 = 1 a.e. in Ω̃.
For simplicity, we remove the tilde’s in the following sections and all the variables and parameters are dimensionless
unless otherwise specified.



6

III. STRONG ANCHORING

In the strong anchoring case, the dimensionless energy functional is

E [Q] =
∫

Ω

(
|∇Q11|2 + |∇Q12|2

)
+

1
ε2

(Q2
11 +Q2

12 − 1)2 dA (34)

accompanied by a Dirichlet boundary condition (Q11, Q12) = g. We note that (34) is precisely the Ginzburg-Landau
energy functional for superconductors, which has been extensively studied in the literature [10, 18].

The boundary condition g has to be carefully chosen as we now describe. In the strong in-plane anchoring situation,
the eigenvector n in (3) is constrained to be strictly tangent to the boundary. On the top and bottom edges, θ = 0
or π and hence by (6) and (7) we have

Q11 =s, (35)
Q12 =0, (36)

where s2 = Q2
11 +Q2

12. On the left and right edges, θ = π/2 or −π/2 and thus

Q11 =− s, (37)
Q12 =0. (38)

We take s to be strictly non-negative on the boundary. Therefore, solutions of the strong anchoring problem satisfy
the following conditions:

Q11 ≥ 0 on horizontal edges, (39)
Q11 ≤ 0 on vertical edges and, (40)
Q12 = 0 on ∂Ω. (41)

Any Lipschitz continuous function g : ∂Ω → R2 that satisfies the conditions (39)-(41) results in a well-posed energy
minimization problem. For any Lipschitz continuous g, the admissible space

Ag = {u ∈ H1(Ω,R2) : u = g on ∂Ω} (42)

is non-empty [19]. Furthermore, since the energy functional (34) is coercive and convex in ∇Q, we are guaranteed the
existence of a global energy minimizer in Ag [20].

For any fixed Dirichlet boundary condition g, we can use standard tools in the calculus of variations to show that
local minimizers (Q11, Q12) of the energy functional (34) in the admissible set Ag are solutions of the following integral
equations -

0 =
∫

Ω

∇Q11∇v11 +
2
ε2

(
Q2

11 +Q2
12 − 1

)
Q11v11 dA ∀v11 ∈ H1

0 (Ω) (43)

0 =
∫

Ω

∇Q12∇v12 +
2
ε2

(
Q2

11 +Q2
12 − 1

)
Q12v12 dA ∀v12 ∈ H1

0 (Ω). (44)

We discretize the system and solve it using finite element methods [21]. The details of the numerical methods can be
found in Appendix.

We find that for each fixed Lipschitz continuous g, there are typically six distinct equilibrium solutions. We
categorize these six solutions as either diagonal or rotated, according to their director profiles. There are two diagonal
solutions, which we label as D1 and D2 respectively, and four rotated solutions, which we label as R1, R2, R3 and R4
respectively. The director profiles of these six solutions are shown in Figure 1. We find that amongst the six solutions,
the two diagonal solutions are energetically degenerate whilst the four rotated solutions are energetically degenerate.
However, the rotated solutions have slightly higher energies than those of the corresponding diagonal solutions.

In what follows, we choose an appropriate Lipschitz continuous g as the fixed boundary condition for the Dirichlet
problem to be studied in this paper. For each fixed ε, a different choice of the Dirichlet boundary condition g yields
a different set of diagonal and rotated solutions. There is an optimal Dirichlet boundary condition gD1 whose D1-
diagonal solution has the minimum energy in the space of all D1-type diagonal solutions. Similarly, there is an optimal
Dirichlet boundary condition for each of the other five solution types too. Let (Q11, Q12) be a local minimizer of (34)
in the admissible space

A = {(u1, u2) ∈ H1(Ω,R2) : u2 = 0 on ∂Ω}. (45)
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(a)D1 (b)D2

(c)R1 (d)R2

(e)R3 (f)R4

FIG. 1: The six types of solutions of (43) –(44).
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Then (Q11, Q12) satisfies the following integral equations

0 =
∫

Ω

∇Q11∇v11 +
2
ε2

(
Q2

11 +Q2
12 − 1

)
Q11v11 dA ∀v11 ∈ H1(Ω) (46)

0 =
∫

Ω

∇Q12∇v12 +
2
ε2

(
Q2

11 +Q2
12 − 1

)
Q12v12 dA ∀v12 ∈ H1

0 (Ω). (47)

Solutions of (46)-(47) are defined to be optimal solutions, and the corresponding traces on ∂Ω are labelled as optimal
boundary conditions. Although the optimal solutions are computed with the constraint (41), numerical results show
that the optimal diagonal and rotated solutions satisfy the constraints (39) and (40) too.

In Figure 2, we plot the scaled order parameter s for the optimal D1 and R2-solutions. The scaled order parameter
s is defined to be s :=

√
Q2

11 +Q2
12, where the scaled parameters Q11 and Q12 are given by (28) (with tildes removed).

We can see that s achieves its minimum at the four corners, and this minimum is zero for the diagonal D1-solution
and non-zero (about 0.02) for the rotated R2-solution.

(a)The order parameter of the
optimal D1-solution.

(b)The order parameter of the
optimal R2-solution.

FIG. 2: (Color online) Plot of the scaled order parameter s for the optimal solutions. Parameters: ε = 0.02, mesh size N = 128
and ar = 1.

We comment briefly on the notion of an optimal boundary condition. For small ε, the optimal boundary conditions
enforce s = 1 almost everywhere on the square/rectangle boundary except for at the vertices where s = 0. The optimal
boundary condition prescribes the optimal interpolation between s = 0 to s = 1 on the edges i.e. the interpolation
with the minimum associated energy cost. The optimal boundary conditions depend on ε and numerical results
show that for each ε > 0, there are six optimal Dirichlet boundary conditions : gD1, gD2, gR1, gR2, gR3, gR4 with
gD1 = gD2, gR1 = gR2, and gR3 = gR4. However, gD1 6= gR1 6= gR3. On the one hand, we find that gD1 is very close
to the average (gR1 + gR3)/2 and their maximum difference is proportional to ε4, as shown in Figure 3. On the other
hand, the maximum differences |gD1 − gR1| and |gR1 − gR3| are proportional to ε2, as shown in Figure 4. Therefore,
the differences between the optimal boundary conditions tend to zero as ε tends to zero.

In the following sections, we fix the Dirichlet boundary condition to be g = gD1, which is the optimal boundary
condition for the D1-solutions, and use this to define an appropriate surface energy in the next section.

IV. WEAK ANCHORING

In this section, we study the weak anchoring situation and replace the Dirichlet boundary condition with the surface
anchoring energy (23). The total dimensionless energy is given by

E [Q] =
∫

Ω

|∇Q11|2 + |∇Q12|2 +
1
ε2

(Q2
11 +Q2

12 − 1)2 dA

+
∫
∂Ω

W |(Q11, Q12)− g|2 da,
(48)
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FIG. 3: Plot of Y := log10 |gD1 − (gR1 + gR3)/2| versus X := log10ε. The fitted equation is Y = 2.56 + 4.08X. Parameters:
mesh size N = 256 and ar = 1.
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FIG. 4: Plot of Y1 := log10 |gD1−gR1| and Y2 := log10 |gR3−gR1| versus X := log10 ε. The fitted equations are Y1 = 1.59+1.93X
and Y2 = 1.90 + 1.93X. Parameters: mesh size N = 256 and ar = 1.

where g = gD1 is the Dirichlet boundary condition for the strong anchoring problem studied in Section III. This
Dirichlet boundary condition depends on the choice of ε as explained in the previous section. The admissible space
for (Q11, Q12) is simply the Sobolev space H1(Ω,R2).

By calculus of variations, local energy minimizers of (48) satisfy the following integral equations

0 =
∫

Ω

∇Q11∇v11 +
2
ε2

(
Q2

11 +Q2
12 − 1

)
Q11v11 dA

+
∫
∂Ω

W (Q11 − g1)v11 da ∀v11 ∈ H1(Ω) (49)

0 =
∫

Ω

∇Q12∇v12 +
2
ε2

(
Q2

11 +Q2
12 − 1

)
Q12v12 dA

+
∫
∂Ω

W (Q12 − g2)v12 da ∀v12 ∈ H1(Ω), (50)

where (g1, g2) = g. Again we discretize these equations and solve using finite element methods; the details can be
found in Appendix.

Figure 5 shows the scaled order parameter s for the D1-diagonal weak anchoring solution. We can see that s
achieves its minimum at the four corners. Unlike the strong anchoring case, the minimal s is non-zero (about 0.3). It
is noteworthy that the scaled order parameters of the weak anchoring solutions are bounded for all W > 0.

For a fixed anchoring strength W > 0, there exist multiple weak anchoring solutions. To see how these solutions
vary with the anchoring strength, we trace the solution branches using pseudo arc-length continuation [22]. The



10

FIG. 5: (Color online) Plot of the scaled order parameter s for the D1-weak anchoring solution. Parameters: ε = 0.02, W = 50,
mesh size N = 128 and ar = 1.

resulting bifurcation diagram for ε = 0.02 and ar = 1 is shown in Figure 6, where the x-axis is the anchoring strength
W and the y-axis is the average of the angles over half of the top edge {(x, 1) : 0 < x < 1

2} (with unit π). We find
that this average is suitable for distinguishing between the different solution profiles and is a better measure than the
average over the whole top edge. For example, in the case of the R3 and R4-solutions, the directors at the top edge
are symmetric about the mid-point of the top edge and thus the average over the entire top edge is around π/2 in both
cases. By plotting typical director profiles from each solution branch, we find that for large enough W > 0, the six
solutions from top to bottom are R4, D2, R2, R1, D1, and R3 respectively (see Figure 1 to recall the corresponding
director profiles). We note that the diagonal solutions, D1 and D2, exist for all W ≥ 0 while the rotated solutions,
R1, R2, R3 and R4, only exist for W ≥ Wc ≈ 2.7. Further, the R1 and R2-solutions are in the same branch while
the R3 and R4-solutions are in the same branch. We find that at W = 0, the D1-solutions degenerate to the constant
solution (Q11, Q12) ≡ (0, 1) (which corresponds to θ ≡ π/4), while the D2-solutions degenerate to the constant solution
(Q11, Q12) ≡ (0,−1) (which corresponds to θ ≡ 3π/4). At W = Wc, although the director profiles show that R1 and
R2-solutions degenerate to a solution with θ ≡ π/2 and the R3 and R4-solutions degenerate to a solution with θ ≡ 0,
these degenerate solutions do not have constant (Q11, Q12) values across the domain. Since g is not constant on ∂Ω,
constant solutions cannot satisfy the equations (49)-(50) at W = Wc > 0. We have produced videos that demonstrate
how the solutions change as we move along the bifurcation diagram and these videos can be found at Supplemental
Online Information (which is temporarily located at http://www.maths.ox.ac.uk/~luo/bswitch.html).
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FIG. 6: The bifurcation diagram. Parameters: ε = 0.02, mesh size N = 32 and ar = 1.

We have studied the stability of the distinct equilibria and have found that all six equilibria in Figure 6 are stable.
The details of the stability analysis can be found in Appendix. As W → ∞, the weak anchoring solutions converge
to their strong anchoring counterparts in H1(Ω), as shown in Figure 7. This is a pre-requisite for any viable surface
anchoring energy.

http://www.maths.ox.ac.uk/~luo/bswitch.html
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FIG. 7: Plot of Y := log10 ‖uW −u‖1 versus X := log10W , where uW is the weak anchoring D1-solution at anchoring strength
W and u is the strong anchoring D1-solution (see section III). The fitted equation is Y = 2.14−0.97X. Parameters: ε = 0.02,
mesh size N = 32 and ar = 1.

Figure 8 illustrates how the critical anchoring strength Wc varies with the parameter ε. Recall that ε is related
to the material parameters by (30). We can see that Wc decreases linearly as ε → 0. The fitted equation is
Wc(ε) = 2.54 + 10.30ε, which suggests that Wc might remain a positive constant in the limit ε → 0. That is, in the
limit ε→ 0, the rotated solutions do not exist unless the anchoring strength is sufficiently strong. This is consistent
with the global energy-minimizing property of the diagonal solutions.
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FIG. 8: Critical anchoring strength Wc versus ε. The fitted equation is Wc(ε) = 2.54 + 10.30ε. Parameters: mesh size N = 256
and ar = 1.

V. SWITCHING UNDER ELECTRIC FIELD

In this section, we model the switching mechanisms between different stable states under the action of an external
electric field, in the weak anchoring set-up.

By gradient flow analysis, the dynamic equations associated with the dimensionless free energy in (33) are given by
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[20]

∂Q11

∂t
=4Q11 −

2
ε2

(
Q2

11 +Q2
12 − 1

)
Q11

− 1
2

sgn(C0)E2 cos(2θE) in Ω,
(51)

∂Q12

∂t
=4Q12 −

2
ε2

(
Q2

11 +Q2
12 − 1

)
Q12

− 1
2

sgn(C0)E2 sin(2θE) in Ω,
(52)

∂Q11

∂t
=− ∂Q11

∂ν
−W (Q11 − g1) on ∂Ω, (53)

∂Q12

∂t
=− ∂Q12

∂ν
−W (Q12 − g2) on ∂Ω, (54)

where (g1, g2) = gD1, as stated in section IV. Here t is dimensionless and can be related to the physical time t̃ by

t =
Lel
γL2

t̃, (55)

and γ is a viscosity coefficient with units N s m−1 [23]. We use the finite difference method [24] to simulate the
dynamics under electric field. We discretize the rectangular domain using uniform N × (N · ar) mesh, approximate
the Laplace operator 4 using five-point stencil, approximate ∂/∂ν using backward difference and approximate ∂/∂t
using forward difference [24].

A typical switching process consists of two steps. In the first step, we switch on the electric field and wait for the
system to reach equilibrium. In the second step, we switch off the electric field and wait for the system to reach
equilibrium again. In the following numerical simulation, the system is regarded to be in the equilibrium state when
the l2-difference [25] between adjacent states is less than τ = 10−3.

We first investigate the situation of constant anchoring strength W on ∂Ω. We find that the rotated to diagonal
switching can be easily achieved by applying uniform electric fields in the diagonal directions. The diagonal to rotated
switching is more difficult to accomplish. We have achieved switching from D1 to R2-solutions using the following
patched electric fields on a square domain

E =


10(cos(π/4), sin(π/4)) y ∈ [0, 1/8)
10(cos(π/2), sin(π/2)) y ∈ [1/8, 7/8]
10(cos(3π/4), sin(3π/4)) y ∈ (7/8, 1]

and by using the following linear electric fields on a rectangular domain with ar = 2

E = 10
y

ar
(cos(3π/4), sin(3π/4)). (56)

However, these non-uniform electric fields are not easy to implement in practice because the physical domain can be
as small as 80µm [7].

Using a non-uniform anchoring strength on the boundary can also facilitate diagonal to rotated switching and this
can be much easier to physically implement than non-uniform electric fields. One possible framework is to make the
anchoring strength on the top edge much weaker than that on the rest of the domain boundary. For example,

W =

{
10 on y = ar,

100 otherwise.
(57)

With the anchoring strength given by (57), the R2 to D1 switching can be achieved using

E = 10(cos(π/4), sin(π/4)),

and the D1 to R2 switching can be achieved using

E = 10(cos(3π/4), sin(3π/4)). (58)
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We can qualitatively understand this switching phenomenon by recalling the D1 and R2-alignment profiles from
Figure 1. The D1-solutions correspond to the boundary conditions, θ(x, 0) = θ(x, ar) = 0 and θ(0, y) = θ(1, y) = π

2 ,
whereas the R2-solutions correspond to the boundary conditions, θ(x, 0) = 0, θ(x, ar) = π, θ(0, y) = θ(1, y) = π

2 .
Hence, the two solution profiles are distinguished by their alignment profile on the top edge. In (57), we have made
the anchoring strength on the top edge ten times smaller than that on the remaining three edges so that the non-
equilibrium configurations in the presence of the uniform diagonal electric field (58) can break the anchoring on the
top edge and then relax into the R2-state once the electric field is removed.

Figure 9 demonstrates the switching mechanism from R2 to D1 while Figure 10 shows the switching mechanism
from D1 to R2. Note that for the same electric field strength, the switching from D1 to R2 is slightly slower than the
switching from R2 to D1. This is possibly because the D1-solution has lower energy than the R2-solution and there
is a higher energy barrier to be overcome before the system can get out of the D1-equilibrium.

(a)t = 0, E on, (b)t = .061, (c)t = .122,

(d)t = .183, (e)t = .244, (f)t = .305, E off,

(g)t = .320, (h)t = .336, (i)t = .351.

FIG. 9: The switching from R2 to D1. Parameters: ε = 0.02, E = 10(cos(π/4), sin(π/4)), mesh size N = 32, time-step
4t = 1/N3, τ = 10−3, and W is given by (57).
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(a)t = 0, E on, (b)t = .076, (c)t = .153,

(d)t = .229, (e)t = .305, (f)t = .381, E off,

(g)t = .430, (h)t = .479, (i)t = .528.

FIG. 10: The switching from D1 to R2. Parameters: ε = 0.02, E = 10(cos(3π/4), sin(3π/4)), mesh size N = 32, time-step
4t = 1/N3, τ = 10−3, and W is given by (57).

VI. CONCLUSIONS

We have mathematically modelled and analysed a planar bistable liquid crystal device with tangent boundary
conditions, as has been reported in [7]. We have modelled the static equilibria and the switching mechanisms in
this device within the Landau-de Gennes theory for nematic liquid crystals. We have introduced the concept of an
optimal Dirichlet boundary condition which, in turn, depends on the material parameters ε, Lel and the device width
L through the dimensionless parameter ε̃. In the weak anchoring case, we have proposed a surface anchoring energy
in terms of an anchoring coefficient W and the optimal Dirichlet boundary condition i.e. the surface anchoring energy
incorporates coupling effects between the surface anchoring strength W and bulk parameters such as ε and Lel. We
have studied the multiplicity and the stability of static equilibria as a function of the anchoring strength W and have
found that the device is bistable/multistable for W ≥ Wc > 0, where the critical anchoring strength Wc depends on
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material parameters through the dimensionless variable ε̃. For W ≥Wc, we have found six competing static equilibria
which mimic the experimentally observed diagonal and rotated profiles in [7]. We have investigated the dependence
of Wc on the parameter ε̃ and numerical investigations indicate a linear scaling.

We proposed a simple dynamic model for the switching characteristics of this device that is based on dielectric effects
and the concept of variable anchoring strength across the domain boundary. The anchoring is weaker on the subset
of the boundary which induces the transition between two stable static equilibria. We have studied the switching
between the D1- and R2-solutions and the same concepts can be applied to study switching between different pairs
of static equilibria.

Appendix: Numerical Methods

In this section, we give some technical details for the numerical methods. We have solved the integral equations (43)–
(44), (46)–(47) and (49)–(50) with finite element methods. Recall that (43)-(44) correspond to the strong anchoring
solutions, (46)–(47) correspond to the optimal solutions and (49)–(50) correspond to the weak anchoring solutions.
We partition the domain Ω = [0, 1] × [0, ar] into a uniform N × (ar · N) triangular mesh and approximate H1(Ω)
using piecewise linear finite elements [21]. After the discretization, the integral equations become a nonlinear system
of equations for the degrees of freedom, (Q11, Q12), and are solved using Newton’s method [24]. Newton’s method
strongly depends on the initial condition and to obtain the six different solutions D1∼R4, we simply use six different
initial conditions.

For a given Dirichlet boundary condition g, we construct the initial conditions for the strong anchoring problem as
follows. Take the D1-solution for example. We first solve the Laplace equation 4θ = 0 on the uniform mesh using
finite difference method with the discontinuous boundary condition: θ(0, y) = θ(1, y) = π

2 and θ(x, 0) = θ(x, ar) = 0.
Next we construct (Q11, Q12) = s(cos 2θ, sin 2θ), where s = 1 at the interior nodes and s = |g| at the boundary nodes.
Then we use the resulting (Q11, Q12) as the initial condition for the strong anchoring D1-solution. In Table II, we
enumerate the boundary conditions for all six types of initial conditions. For a fixed d > 0, we define the vector field

solution x = 0 x = 1 y = 0 y = ar

D1 π/2 π/2 0 0

D2 π/2 π/2 π π

R1 π/2 π/2 π 0

R2 π/2 π/2 0 π

R3 3π/2 π/2 π π

R4 π/2 3π/2 π π

TABLE II: The six different initial conditions for Newton’s method.

gd to be

gd =

{
(Td(x), 0) on y = 0 and y = ar,(
−T d

ar

(
y
ar

)
, 0
)

on x = 0 and x = 1,
(A.1)

where the trapezoidal shape function Td : [0, 1]→ R is given by

Td(t) =


t/d 0 ≤ t ≤ d,
1 d ≤ t ≤ 1− d,
(1− t)/d 1− d ≤ t ≤ 1.

(A.2)

The parameter d is in the range d ∈ (0, 0.5]. To obtain the optimal solutions, we use the strong anchoring solutions
for g = g3ε as the initial conditions. For the weak anchoring solutions with large anchoring strength W > 0, we
use the strong anchoring solutions as initial conditions for Newton’s method. Then we use numerical continuation to
obtain solutions for smaller W .

Once we obtain the solutions with Newton’s method, we compute their energies by numerical integration techniques.
In this paper, all finite element simulations and numerical integrations have been performed using the open-source
package FEniCS [26].

Tables III, IV and V show the numerical errors, energies and their orders of convergence for some typical optimal
solutions, strong anchoring solutions and weak anchoring solutions respectively. We can see that in all cases, we have
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order 2 convergence for the L2-errors and the total energies, and order 1 convergence for the H1-errors. We also
observe that in all cases the diagonal solutions have lower energies than the rotated solutions.

The optimal D1 solution

N L2 err order H1 err order Energy order

16 3.71E-02 2.80E+00 90.803

32 1.15E-02 1.68 1.65E+00 0.76 81.337 1.74

64 3.31E-03 1.80 8.74E-01 0.92 78.500 1.89

128 8.76E-04 1.92 4.43E-01 0.98 77.734 1.96

256 2.23E-04 1.97 2.22E-01 0.99 77.538 1.99

The optimal R2 solution

N L2 err order H1 err order Energy order

16 3.99E-02 2.85E+00 99.878

32 1.19E-02 1.74 1.67E+00 0.77 90.056 1.76

64 3.39E-03 1.81 8.82E-01 0.92 87.153 1.89

128 8.93E-04 1.92 4.47E-01 0.98 86.373 1.97

256 2.27E-04 1.98 2.24E-01 0.99 86.173 1.99

TABLE III: Numerical errors, energies and their orders of convergence for the optimal solutions. Parameters: ε = 0.02 and
ar = 1.

The rotated solution R2

N L2 err order H1 err order Energy order

16 4.04E-02 2.85E+00 99.896

32 1.19E-02 1.77 1.67E+00 0.77 90.056 1.76

64 3.38E-03 1.81 8.82E-01 0.92 87.155 1.89

128 8.90E-04 1.92 4.47E-01 0.98 86.375 1.97

256 2.26E-04 1.98 2.24E-01 0.99 86.175 1.99

The rotated solution R3

N L2 err order H1 err order Energy order

16 4.04E-02 2.85E+00 99.896

32 1.19E-02 1.77 1.67E+00 0.77 90.056 1.76

64 3.38E-03 1.81 8.82E-01 0.92 87.155 1.89

128 8.90E-04 1.92 4.47E-01 0.98 86.375 1.97

256 2.26E-04 1.98 2.24E-01 0.99 86.175 1.99

TABLE IV: Numerical errors, energies and their orders of convergence for the strong anchoring solutions. Parameters: ε = 0.02
and ar = 1.

Next, we give details for the stability analysis in the weak anchoring case. By gradient flow analysis [20], solutions
of the weak anchoring problem satisfy the following dynamic equations

∂Q11

∂t
=4Q11 −

2
ε2

(
Q2

11 +Q2
12 − 1

)
Q11 in Ω, (A.3)

∂Q12

∂t
=4Q12 −

2
ε2

(
Q2

11 +Q2
12 − 1

)
Q12 in Ω, (A.4)

∂Q11

∂t
=− ∂Q11

∂ν
−W (Q11 − g1) on ∂Ω, (A.5)

∂Q12

∂t
=− ∂Q12

∂ν
−W (Q12 − g2) on ∂Ω. (A.6)

We first apply finite difference discretization [24] to the dynamic equations (A.3)-(A.6), approximating ∂
∂t using forward

difference, ∂
∂ν using backward difference, and the Laplacian 4 using five-point stencil on a uniform N × (ar ·N) mesh.

We denote the mesh width as h = 1/N and the time-step size as 4t. After discretization, the dynamic equations can
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The diagonal solution D1

N L2 err order H1 err order Energy order

32 6.63E-03 1.08E+00 64.448

64 1.81E-03 1.88 5.81E-01 0.90 62.928 1.98

128 4.64E-04 1.96 2.96E-01 0.97 62.544 1.99

256 1.17E-04 1.98 1.49E-01 0.99 62.446 1.99

The rotated solution R2

N L2 err order H1 err order Energy order

32 7.25E-03 1.11E+00 73.156

64 1.93E-03 1.91 5.91E-01 0.90 71.579 1.99

128 4.95E-04 1.97 3.02E-01 0.97 71.181 1.99

256 1.25E-04 1.99 1.52E-01 0.99 71.081 1.99

TABLE V: Numerical errors, energies and their orders of convergence for the weak anchoring solutions. Parameters: ε = 0.02,
W = 50 and ar = 1.

be written as a discrete map u(n+1) = f(u(n)), where u(n) is the solution at time-step n. The linear stability of an
equilibrium solution u is then determined by f ′(u) [27]. It is easy to check that f ′(u) = I − γA, where γ = 4t/h2

and A = A(u) is a non-symmetric matrix . In the limit 4t → 0, the asymptotic linear stability of an equilibrium
solution u is then simply determined by the positivity of the smallest eigenvalue λ1 of the matrix A. It turns out
A = DB, where D is a diagonal matrix and B is a symmetric matrix. The diagonal entries of D are either 1 or h,
with the former corresponding to interior nodes and the latter corresponding to edge nodes. The smallest eigenvalue
of A is then computed by applying the ARPACK++ package [28] to the symmetric matrix D1/2BD1/2, which can be
verified to have the same spectrum as the matrix A = DB.
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