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Abstract. We consider the zero-velocity stationary problem of the Navier–Stokes equations of
compressible isentropic flow describing the distribution of the density % of a fluid in a spatial
domain Ω ⊂ RN driven by a time-independent potential external force ~f = OF. We study the
structure of the set of all solutions to the stationary problem having a prescribed mass m > 0
and a prescribed energy. Cardinality of the solution set depends on m and it is either continuum
or at most two. Conditions on m for distinguishing these cases have been found. Uniqueness for
the stationary system is also studied.
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1. Introduction

The Navier–Stokes equations for compressible, isentropic flow in N space dimen-
sions can be written in the form:

∂%

∂t
+ div (%~u) = 0,

∂%~u

∂t
+ div (%~u⊗ ~u)− µ∆~u− (λ + µ)O(div ~u) + Oa%γ = %~f,

where µ, λ are viscosity coefficients, a > 0 and the adiabatic constant γ > 1.
If the density of the driving force ~f = OF is a gradient of a scalar time inde-

pendent potential F = F (x), the problem admits a Lyapunov function, namely,
the energy (note that the potential F and the energy E are defined up to addition
a constant)

E(t) =
∫
Ω

1
2
%(t) |~u(t)|2 +

a

γ − 1
%γ(t)− %(t)F dx.
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Accordingly, it is plausible to anticipate the ω−limit set of global trajectories to
be formed by the solutions of the stationary system aO%γ = %OF. This is indeed
the case and positive results in this direction, even for global weak solutions, can
be found in [5], [8], [9] etc. More specifically, if Ω ⊂ R3 is a bounded Lipschitz
domain and γ ≥ 9

5 , any global finite energy weak solution satisfies

%(t) → ω[%] strongly in Lγ(Ω),
√

%(t)u(t) → 0 strongly in L2(Ω) as t →∞,

where the ω−limit set ω[%] is a compact (in L1-topology) and connected subset of
the set of solutions of the stationary system:

a∂i%
γ = (∂iF )%, i = 1, . . . , N, in D′(Ω),
a ∈ (0,∞), γ ∈ (1,∞), % ≥ 0,

}
(1.1)

∫
Ω

%(x) dx = m, (1.2)

∫
Ω

a

γ − 1
%γ − %F dx = e. (1.3)

Here, the total mass m and the potential energy e = ess limt→∞E(t) are uniquely
determined by the trajectory and thus constant for any function belonging to ω[%]
(see [3], Theorem 13).

Because the ω-limit set is connected, it is of interest to study the topological
structure of the set of all solutions to the problem (1.1)–(1.3). In particular, if we
knew that the stationary problem admits at most finite number of solutions, it
would imply that ω[%] is a singleton, i.e., the density %(t) in the evolution problem
stabilizes for t →∞ to a certain stationary solution.

At first, we will deal with the uniqueness of the stationary system (1.1)–(1.2)
on (not necessarily bounded) domain.

We will show that there exists a critical mass m̃ such that:
(a) The system (1.1)–(1.2) has at most one solution for the mass m ∈ [m̃,∞).
(b) There is continuum of solutions of the system (1.1)–(1.2) for the mass m ∈

(0, m̃).
Later, we will define a critical mass mc such that:

(a) If m ∈ [mc,∞), then the stationary problem (1.1)–(1.3) admits at most two
solutions for each energy e ∈ R.

(b) If m ∈ (0,mc), then there exists an energy e ∈ R such that the system
(1.1)–(1.3) has continuum of solutions.

The stationary system has been studied by many authors (see [1], [2], [4], [6],
[7], [11] etc.). The presented results are generalizing the recent results about the
stationary problem obtained in [4] and [6].
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2. Uniqueness

Theorem 1. Let Ω ⊂ RN be a domain, F : Ω → R be a locally Lipschitz continu-
ous function on Ω and −∞ < infΩ F ≤ supΩ F < ∞. Let us suppose m ∈ (0,∞),
a ∈ (0,∞), γ ∈ (1,∞) and define set B̃ = {k ∈ (−∞, supΩ F ) | k satisfies that the
set {x ∈ Ω;F (x) > k} is not connected}. If we define

K̃ =
{

inf B̃ if B̃ 6= ∅,
supΩ F if B̃ = ∅, (2.1)

m̃ =
∫
Ω

(
γ − 1
aγ

[F (x)− K̃]+
) 1

γ−1

dx, (2.2)

then:
(i) If m ≥ m̃, then there is at most one function % ∈ L∞loc(Ω) satisfying (1.1)

and (1.2).
(ii) If ∞ > m̃ > 0, 0 < m < m̃, then there is continuum of solutions of the

stationary system (1.1) – (1.2) in L∞loc(Ω).

Remark. Theorem 1 is generalizing the results obtained in [4]. In [4] the special
case of m̃ = 0 is studied.

Proof. (i) Let % ∈ L∞loc(Ω) be a function satisfying (1.1), then %γ ∈ L∞loc(Ω) and
also ∂i%

γ ∈ L∞loc(Ω) (it follows from (1.1)). By imbeddings theorems we see that %
is continuous on Ω.

Now we can introduce the following notation:

R = {x ∈ Ω : %(x) > 0}, (2.3)

F [c] = {x ∈ Ω |F (x) > c}, where c ∈ R. (2.4)

Let Θ ⊂ Ω be a maximal connected component of the open set R. Let us
consider a ball B such that B ⊂ Θ, then there are constants %, % such that

0 < % ≤ %(x) ≤ % < ∞ for all x ∈ B.

Then % ∈ W1,p(B) for p ≥ 1 (see [10], Theorem 2.1.11) and we can rewrite equation
(1.1) in the ball B:

∂

∂xi

(
aγ

γ − 1
%γ−1 − F

)
= 0, i = 1, . . . , N, in D′(B).

Thus there exists a constant (see [10], Corollary 2.1.9) kB ∈ R such that

aγ

γ − 1
%γ−1 = F − kB on B.
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Moreover, as %, F are continuous, the constant kB is independent of B, in other
words, there exists kΘ such that

aγ

γ − 1
%γ−1 = F − kΘ on Θ. (2.5)

Hence, Θ ⊂ F [kΘ]. On the other hand,

aγ

γ − 1
%γ−1 = F − kΘ = 0 for all x ∈ ∂Θ ∩ Ω,

hence
∂Θ ∩ F [kΘ] = ∅.

Thus the set Θ is a maximal connected component of the open set F [kΘ] and
(2.5) is fulfilled. By virtue of (2.5), we see

%(x) =
(

γ − 1
aγ

[F (x)− kΘ]+
) 1

γ−1

on Θ. (2.6)

In the previous paragraphs we proved that for each maximal connected com-
ponent Θ of the open set R there exists a constant kΘ such that (2.6) is fulfilled.

Now, we will prove the following lemma:

Lemma 1. Let the assumptions of Theorem 1 are fulfilled and m ≥ m̃. Then for
each maximal connected component Θ of the open set R the constant kΘ fulfills
kΘ ≤ K̃.

Proof of Lemma 1. Let us suppose that there exists a maximal connected compo-
nent Q of the open set R such that kQ > K̃.

We distinguish two cases:
(1) There exists a maximal connected component Θ of the open setR such that

kΘ < K̃. Then by virtue of (2.1), the set F [kΘ] is connected, hence Θ = F [kΘ].
Moreover, Q ⊂ Θ = F [kΘ], which follows from kΘ < K̃ < kQ. In particular, the
solution % is given by the formula (2.6) with the constant kΘ on the set Q.

This is in contradiction to the assumption kQ > kΘ.
(2) For each maximal connected component Θ of the open set R the constant

kΘ fulfills kΘ ≥ K̃.
Then ∫

Ω
% dx =

∫
Ω−Q

%dx +
∫

Q

% dx

≤
∫
Ω−Q

(
γ − 1
aγ

[F (x)−K̃]+
) 1

γ−1

dx+
∫

Q

(
γ − 1
aγ

[F (x)−kQ]+
) 1

γ−1

dx < m̃ ≤ m.
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This is in contradiction to
∫
Ω %(x) dx = m.

Q.E.D. {Lemma 1}

Now, we will continue the proof of Theorem 1. As Lemma 1 is proved, we can
distinguish two cases:

(a) m > m̃. Then, by virtue of Lemma 1, there exists the maximal connected
component Q of the open set R such that kQ < K̃.

Then Q is the maximal connected component of the open set F [kQ], which is,
by virtue of (2.1), connected.

In particular, Q = F [kQ]. As

F [k1] ⊂ F [k2] for k1 > k2, (2.7)

we see that R is connected,
R = F [kQ]

and there exists the unique constant kQ such that

%(x) =
(

γ − 1
aγ

[F (x)− kQ]+
) 1

γ−1

on Ω.

(b) m = m̃. Then, by virtue of Lemma 1 and the case (a), kQ = K̃ for each
maximal connected component Q of the open set R.

In particular,
R = F [K̃]

and

%(x) =
(

γ − 1
aγ

[F (x)− K̃]+
) 1

γ−1

on Ω.

The first part of Theorem 1 has been proved.
(ii) Let 0 < m < m̃ < ∞. We define a function S : [K̃, supΩ F ] → [0, m̃] by

the formula

S(k) =
∫
Ω

(
γ − 1
aγ

[F (x)− k]+
) 1

γ−1

dx.

It is easy to verify that S is a continuous, decreasing function, S(supΩ F ) = 0,
S(K̃) = m̃, thus there exists km ∈ (K̃, supΩ F ) such that S(km) = m.

By virtue of (2.1), there exists a constant l such that

K̃ < l < km & F [l] is not connected.

Then the open set F [l] has at least two components. As m > 0, there exists a
component Θ of the open set F [l] such that

s =
∫
Ω−Θ

(
γ − 1
aγ

[F (x)− km]+
) 1

γ−1

dx > 0.
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Now, we can define a function T : [l, supΩ F ] → [0, m̃) by the formula

T (k) =
∫
Θ

(
γ − 1
aγ

[F (x)− k]+
) 1

γ−1

dx.

Then T is continuous, nonincreasing function, T (l) > T (km) = m − s ≥ 0, thus
there exist constants p and q such that:

l < p < q < km, & m− s

2
> T (p) > T (q) > 0, & T is decreasing on (p, q).

Now, for each c ∈ (p, q) we will find the function %c such that
∫
Ω %c(x) dx = m

and (1.1) holds.
First, we define the function %c by the formula (2.6) with the constant c on Θ.

The function S − T is continuous on [km, supΩ F ] and (S − T )(km) > m− T (c) >
s/2 > 0 = (S − T )(supΩ F ), thus there exists a constant d ∈ (km, supΩ F ) such
that S(d)− T (d) = m− T (c).

Hence, we can define the function %c by the formula (2.6) with the constant d on
Ω−Θ. Then %c ∈ L∞loc(Ω), (1.1) holds and

∫
Ω %c(x) dx = S(d)− T (d) + T (c) = m.

Moreover, the functions %c, c ∈ (p, q), are pairwise distinct.
Q.E.D.

Remark. The hypothesis % ∈ L∞loc(Ω) in part (i) of Theorem 1 may be omitted.
It is sufficient to suppose only %γ ∈ L1

loc(Ω). This hypothesis is necessary for
equation (1.1) to make sense in distributions and, by standard bootstrap argument,
it implies the hypothesis % ∈ L∞loc(Ω) (see [4] for details).

3. On the stationary system with finite number of solutions

We will study the number of solutions of the stationary problem (1.1)–(1.3).
In the following, we will suppose that Ω is a bounded domain, F : Ω → R is

a locally Lipschitz continuous function on Ω and −∞ < infΩ F ≤ supΩ F < ∞,
γ ∈ (1,∞) and a ∈ (0,∞).

For each open set A we can define a function MA : R → R by the formula

MA(c) =
∫

A

(
γ − 1
aγ

[F (x)− c]+
) 1

γ−1

dx. (3.1)

Our goal is to define the critical mass mc such that the stationary problem
(1.1)–(1.3) admits at most two solutions for the mass m ∈ [mc,∞) and for each
energy e ∈ R, and, on the other hand, if m ∈ (0,mc), then there exists an energy
e ∈ R such that the system (1.1)–(1.3) has continuum of solutions.
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Definition. Let Ω be a bounded domain, F : Ω → R be a locally Lipschitz
continuous function on Ω and −∞ < infΩ F ≤ supΩ F < ∞. Putting

B̂ =


k ∈ (−∞, supΩ F ) | k satisfies that there are domains Θ1, Θ2

such that Ω = Θ1 ∪Θ2,Θ1 ∩Θ2 = ∅ and
∀ c ∈ (−∞, k) the set {x ∈ Θi;F (x) > c}
is connected in Θi, i = 1, 2

 ,

we can define the constant K̂ by the formula

K̂ = sup B̂. (3.2)

By virtue of the previous definition, there exist two domains Ω1, Ω2 such that
Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅ and ∀ c ∈ (−∞, K̂) the set {x ∈ Ωi;F (x) > c} is
connected in Ωi, i = 1, 2.

Definition. Let K̂ > K̃, then, for i = 1, 2, we define

B̃i = {k ∈ (−∞, supΩ F ) | k satisfies that the set {x ∈ Ωi;F (x) > k}
is not connected},

K̃i =
{

inf B̃i if B̃i 6= ∅,
supΩ F if B̃i = ∅. (3.3)

The reader can see the picture for better understanding of the previous defini-
tions. The picture is in one dimension, thus the domain Ω is an interval. You can
see the function F : Ω → R and the corresponding constants K̃, K̂, K̃1 and K̃2.

For brevity, we will denote the function MΩi
by the symbol Mi, i = 1, 2, thus

Mi : R → R,

Mi(c) =
∫
Ωi

(
γ − 1
aγ

[F (x)− c]+
) 1

γ−1

dx for i = 1, 2 (3.4)
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(compare with (3.1)).
We also define m̃ by the formula (2.2) and we will use the notation from (2.3)

and (2.4).

Definition. If K̂ = K̃, then we define the critical mass mc = m̃.
If K̂ > K̃, then we define the critical mass mc in the following way (we distin-

guish four possible cases):
If supΩ F = K̃1 = K̃2, then mc = 0.

If K̃1 = supΩ F > K̃2, then mc = M1(K̃) + M2(K̃2).

If K̃1 < supΩ F = K̃2, then mc = M1(K̃1) + M2(K̃).

If supΩ F > K̃1 and supΩ F > K̃2, then
mc = max

{
M1(K̃) + M2(K̃2),M1(K̃1) + M2(K̃)

}
.

Remark. If K̂ > K̃, then we can rewrite the previous definition to the formula

mc = max


(
M1(K̃) + M2(K̃2)

)
· sign

(
supΩ F − K̃2

)
(
M1(K̃1) + M2(K̃)

)
· sign

(
supΩ F − K̃1

)
 . (3.5)

Theorem 2. Let Ω ⊂ RN be a bounded domain, F : Ω → R be a locally Lipschitz
continuous function on Ω and −∞ < infΩ F ≤ supΩ F < ∞. Let m ∈ [mc,∞) and
e ∈ R. Then there exist at most two functions % ∈ L∞loc(Ω) such that (1.1), (1.2)
and (1.3) hold.

Remark. Theorem 2 is generalizing the results obtained in [6]. In [6] the special
case of mc = 0 is studied.

Proof. We proved in Theorem 1 that the stationary system (1.1)–(1.3) has at
most one solution for m ∈ [m̃,∞). Thus it is sufficient to deal only with the case
m̃ > mc ≥ 0 and m ∈ [mc, m̃).

Let us suppose that we have a solution of the problem (1.1)–(1.3) and we will
show the necessary conditions for it.

As in the proof of Theorem 1, the functions satisfying (1.1) are given by the
formula (2.6), in particular, for each component Θ of the open set R there exists
the constant kΘ such that % is given by the formula

%(x) =
(

γ − 1
aγ

[F (x)− kΘ]+
) 1

γ−1

on Θ, (3.6)

moreover, Θ is also the component of the open set F [kΘ].

At first, we will prove the following auxiliary lemma:
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Lemma 2. Let the assumptions of Theorem 2 are fulfilled. Then for each maximal
connected component Θ, Θ ∩ Ω1 6= ∅, of the open set R, the constant kΘ fulfills
kΘ ≤ K̃1.

Proof of Lemma 2. Let us suppose that there exists a maximal connected compo-
nent Q of the open set R such that Q ∩ Ω1 6= ∅ and kQ > K̃1.

We distinguish two cases:
(1) There exists a maximal connected component Θ of the open set R such

that Θ ∩ Ω1 6= ∅ and kΘ < K̃1.
Then by virtue of (3.3), the set {x ∈ Ω1 |F (x) > kΘ} is connected, hence the

solution %(x) is given by the formula (3.6) with the constant kΘ on the whole set
Ω1, in particular, on Q. This is in contradiction to the assumption kQ > K̃1 > kΘ.

(2) For each maximal connected component Θ, Θ∩Ω1 6= ∅, of the open set R,

the constant kΘ fulfills kΘ ≥ K̃1.

Because of kQ > K̃1, we get∫
Ω1

%(x) dx < M1(K̃1). (3.7)

Let E be a maximal connected component of the open set R such that E∩Ω2 6= ∅.
If kE < K̃ then, by virtue of the definition (2.1), the set F [kE ] is connected, hence
the solution %(x) is given by the formula (3.6) with the constant kE on the whole
set Ω, in particular, on Q, which is impossible. Thus we have kE ≥ K̃, hence∫

Ω2

%(x) dx ≤ M2(K̃). (3.8)

Adding up (3.7) and (3.8), we get∫
Ω

%(x) dx < M1(K̃1) + M2(K̃) ≤ mc ≤ m.

This is in contradiction to (1.2).
Q.E.D. {Lemma 2}

Now, we will continue the proof of Theorem 2. Symmetrically to Lemma 2, an
analogous lemma for the domain Ω2 is fulfilled, in particular, for each maximal
connected component Θ, Θ ∩ Ω2 6= ∅, of the open set R, the constant kΘ fulfills
kΘ ≤ K̃2.

By virtue of Lemma 2 and the definition of K̃1, K̃2, we get that one of the
following three cases is satisfied:

(a)

%(x) =
(

γ − 1
aγ

[F (x)− c1]+
) 1

γ−1

for x ∈ Ω1,
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%(x) =
(

γ − 1
aγ

[F (x)− c2]+
) 1

γ−1

for x ∈ Ω2, (3.9)

(b)

%(x) =
(

γ − 1
aγ

[F (x)− c1]+
) 1

γ−1

for x ∈ Ω1 & %(x) = 0 for x ∈ Ω2,

(3.10)
(c)

%(x) = 0 for x ∈ Ω1 & %(x) =
(

γ − 1
aγ

[F (x)− c2]+
) 1

γ−1

for x ∈ Ω2,

(3.11)
where c1 ∈ (−∞, K̃1], c2 ∈ (−∞, K̃2] are constants. The values of the constants
c1 and c2 will be specified by the hypothesis (1.2) and (1.3).

Now, we define the numbers

ϑi = inf{c ∈ R; Mi(c) = 0} for i = 1, 2, (3.12)

where Mi, i = 1, 2, are functions defined by (3.4).
Then Mi(c) is decreasing function on (−∞, ϑi], hence, there exist inverse

decreasing functions Gi ≡ M−1
i , i = 1, 2, in particular, Gi maps the interval

[Mi(ϑi),∞) = [0,∞) on the interval (−∞, ϑi].
Therefore, we can substitute ci = Gi(mi), i = 1, 2, in (3.9), (3.10) and (3.11),

where m1 and m2 are nonnegative constants.
Let us note that the case (3.10) (resp. (3.11)) can be fulfilled only if M2(K̃2) =

0 (resp. M1(K̃1) = 0), in particular, the case (3.10) (resp. (3.11)) is a special case
of (3.9) with c2 = ϑ2 (resp. c1 = ϑ1).

Hence, the solutions % of the system (1.1)–(1.2) are necessarily given by the
formula

%(x) =
(

γ − 1
aγ

[F (x)−G1(m1)]+
) 1

γ−1

for x ∈ Ω1,

%(x) =
(

γ − 1
aγ

[F (x)−G2(m2)]+
) 1

γ−1

for x ∈ Ω2,

where m1 ∈ [0,∞), m2 ∈ [0,∞) and (1.2) implies

m1 + m2 = m.

Now we will consider the equation (1.3). It will give other necessary conditions
on parameters m1 and m2.

We define auxiliary functions

Fi(c) =
1− γ

γ

(
γ − 1
aγ

) 1
γ−1

∫
Ωi

(
[F (x)− c]+

) γ
γ−1 dx for i = 1, 2.
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The functions Fi, i = 1, 2, are nonpositive and nondecreasing on R. It is easy to
verify that Fi ∈ C1(R) and

F ′i (c) = Mi(c) for i = 1, 2.

By virtue of the definitions of the functions Fi and Mi, we can rewrite the
energy of the solution % (% is given by the formula (3.9)) in the form

E(c1, c2) =
∫
Ω

a

γ − 1
%γ − %F dx = F1(c1)−M1(c1) · c1 + F2(c2)−M2(c2) · c2.

If we substitute ci = Gi(mi) for i = 1, 2, we get

E(m1,m2) = F1(G1(m1))−m1 ·G1(m1) + F2(G2(m2))−m2 ·G2(m2).

Therefore, the hypothesis (1.2) and (1.3) imply

m1 + m2 = m & E(m1,m2) = e.

In the final part of the proof, we shall show that there are at most two m1 ∈ [0,m]
such that E(m1,m−m1) = e.

Let us define the function e : [0,m] → R by the formula e(m1) = E(m1,m −
m1), in particular,

e(m1) = F1(G1(m1))−m1 ·G1(m1)+F2(G2(m−m1))− (m−m1) ·G2(m−m1).

It is easy to verify that e ∈ C1[0,m] and

e′(m1) = G2(m−m1)−G1(m1) for m1 ∈ [0,m].

(Precisely, the result e ∈ C1[0,m] is obvious for γ ∈ (1, 2). If γ ∈ [2,∞) then, by
virtue of the definiton, the function Gi, i = 1, 2, is Lipschitz continuous in (δ,m)
for arbitrary 0 < δ < m

2 . Thus e ∈ C1(δ,m− δ) for arbitrary small δ > 0.)
Now, the equation e′(m1) = 0 is equivalent to the equation G1(m1) = G2(m−

m1), which has at most one solution (on the left side there is a decreasing function,
on the right side there is an increasing function). Hence, the equation e(m1) = e
has at most two solutions in the interval [0,m], in particular, Theorem 2 has been
proved.

Q.E.D.

Remarks. (i) The hypothesis % ∈ L∞loc(Ω) in Theorem 2 may be omitted. It
is sufficient to suppose only that %γ ∈ L1

loc(Ω) (compare with the remark after
Theorem 1).

(ii) It is not difficult to check the lower estimate e > −m supΩ F. Thus we can
suppose e ∈ (−m supΩ F,∞) in Theorem 2.
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4. The optimality of the critical mass mc

We shall show in this section that the result of Theorem 2 is optimal. We shall
deal with the system (1.1)–(1.3) for mass from the interval (0,mc) and we will
prove that there exists an energy e such that the stationary system (1.1)–(1.3) has
continuum of solutions.

The main theorem in this section is the following one:

Theorem 3. Let Ω ⊂ RN be a bounded domain, F : Ω → R be a locally Lipschitz
continuous function on Ω and −∞ < infΩ F ≤ supΩ F < ∞. Let m ∈ (0,mc).
Then there exists an energy e ∈ R such that there is continuum of functions
%ξ ∈ L∞loc(Ω) such that (1.1), (1.2) and (1.3) hold.

Proof. We will distinguish two cases:
(a) K̂ > K̃. According to the symmetry of the definition (3.5), we can suppose

without lost of generality that

mc = M1(K̃) + M2(K̃2), (4.1)

where M1(K̃) > 0 and M2(K̃2) > 0.
If we define for the functions Mi, i = 1, 2, the constants ϑi by the formula

(3.12), we see that the function M1 is continuous and decreasing on the interval
[K̃, ϑ1],

M1(K̃) > M1(K̃) · m

mc
> 0 = M1(ϑ1),

hence, there exists the constant k1 ∈ (K̃, ϑ1) such that M1(k1) = M1(K̃) · m
mc

.

The function M2 is continuous and decreasing on the interval [K̃2, ϑ2],

M2(K̃2) > M2(K̃2) · m

mc
> 0 = M2(ϑ2),

thus, there exists the constant l1 ∈ (K̃2, ϑ2) such that M2(l1) = M2(K̃2) · m
mc

.

By virtue of l1 > K̃2 and the definition K̃2 there exists the constant l2, K̃2 ≤
l2 < l1, such that {x ∈ Ω2 |F (x) > l2} is not connected. Let Θ1 be a maximal
connected component of the open set {x ∈ Ω2 |F (x) > l2}. Let us denote Θ2 =
Ω2 −Θ1 and define ψi = inf{c ∈ R; MΘi

(c) = 0}, i = 1, 2.
The function MΘi

, i = 1, 2, is continuous and decreasing on the interval (l2, ψi),

MΘi
(l2) > MΘi

(l2) · M2(l1)
M2(l2)

> 0 = MΘi
(ψi),

thus there exist the constants ni ∈ (l2, ψi), i = 1, 2, such that MΘi
(ni) = MΘi

(l2) ·
M2(l1)
M2(l2)

.
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If n1 = n2, then we can find δ > 0 sufficiently small and the constants ñi ∈
(l2, ψi), i = 1, 2, such that ñ1 6= ñ2 and MΘi

(ñi) = MΘi
(l2) · M2(l1)

M2(l2)
+ (−1)i · δ. If

n1 6= n2, then we put ñi = ni, i = 1, 2.
Now, for better understanding, we put Q1 = Ω1, Q2 = Θ1, Q3 = Θ2, k2 = ñ1,

k3 = ñ2,

ε1 = min

{
ϑ1 − k1

2
,
k1 − K̃

2

}
,

ε2 = min
{

ψ1 − k2

2
,
k2 − l2

2

}
,

ε3 = min
{

ψ2 − k3

2
,
k3 − l2

2

}
.

Then Ω =
3⋃

i=1
Qi, the sets Qi are pairwise distinct and εi > 0, i = 1, 2, 3.

If %(x) is given by the formula

%(x) =
(

γ − 1
aγ

[F (x)− ki]+
) 1

γ−1

on Qi, i = 1, 2, 3,

then % is the solution of the system (1.1)–(1.2), which follows from∫
Ω

%(x) dx =
3∑

i=1

MQi
(ki) = M1(k1) + MΘ1

(ñ1) + MΘ2
(ñ2)

= M1(k1) + M2(l1) =
(
M1(K̃) + M2(K̃2)

)
· m

mc
= m.

Next, we put

e =
∫
Ω

a

γ − 1
%γ − %F dx.

We will show that there is continuum of solutions of the system (1.1)–(1.3) with
the mass m and the energy e.

These solutions will be given by the formula

%ξ(x) =
(

γ − 1
aγ

[F (x)− ci]+
) 1

γ−1

on Qi, i = 1, 2, 3, (4.2)

where ci ∈ (ki − εi, ki + εi), i = 1, 2, 3. Then, the equation (1.1) is fulfilled.
The function MQi

(c), i = 1, 2, 3, (see (3.1) for the definition) is decreasing on
the interval c ∈ (ki−εi, ki+εi). Then we can define the inverse function Gi = M−1

Qi

on these intervals. Substituting ci = Gi(mi), i = 1, 2, 3, in (4.2), we get

%(x) =
(

γ − 1
aγ

[F (x)−Gi(mi)]+
) 1

γ−1

for x ∈ Qi, i = 1, 2, 3, (4.3)
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where mi ∈ (MQi
(ki + εi),MQi

(ki − εi)), i = 1, 2, 3.
Moreover, the condition (1.2) is equivalent to the condition

m3 = m−m1 −m2.

Now, we define the auxiliary functions

Fi(c) =
1− γ

γ

(
γ − 1
aγ

) 1
γ−1

∫
Qi

(
[F (x)− c]+

) γ
γ−1 dx for i = 1, 2, 3.

Then the condition (1.3) is equivalent to the equation E(m1,m2,m3) = e, where
the energy of the solution % (see (4.3)) is given by the formula

E(m1,m2,m3) =
3∑

i=1

(
Fi(Gi(mi))−mi ·Gi(mi)

)
,

in particular, if mi ∈ (MQi
(ki + εi),MQi

(ki − εi)) satisfies the hypothesis

E(m1,m2,m3) = e & m3 = m−m1 −m2,

then there exists the solution of the system (1.1)–(1.3). Thus, it is sufficient to
prove following Lemma 3:

Lemma 3. There is continuum of pairs of numbers m1, m2, mi ∈ (MQi
(ki +

εi),MQi
(ki − εi)), i = 1, 2, such that

e(m1,m2)− e = 0, (4.4)

where the energy e(m1,m2) is given by the formula

e(m1,m2) = F3(G3(m−m1 −m2))− (m−m1 −m2) ·G3(m−m1 −m2)

+
2∑

i=1

(
Fi(Gi(mi))−mi ·Gi(mi)

)
.

Proof of Lemma 3. The function e(m1,m2) is continuously differentiable and

∂e

∂m2
(MQ1(k1),MQ2(k2)) = k3 − k2 6= 0

(k2 6= k3 because of the definition of k2 and k3). Thus we can use the stan-
dard implicit function theorem for equation e(m1,m2) − e = 0 in the point
[MQ1(k1),MQ2(k2)].

Q.E.D. {Lemma 3}
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Thus, in the case (a), the proof is finished.
(b) K̂ = K̃. Let us consider the function MΩ(c) : [K̂, supΩ F ] → R given by

the formula

MΩ(c) =
∫
Ω

(
γ − 1
aγ

[F (x)− c]+
) 1

γ−1

dx.

It is a continuous function, MΩ(K̂) = mc, MΩ(supΩ F ) = 0, thus, there exists
s1 ∈ (K̂, supΩ F ) such that MΩ(s1) = m. By virtue of s1 > K̂, there exists
s2 ∈ R, K̂ < s2 < s1, such that the open set F [s2] has at least three components.
Let Θ be one of the components of the open set F [s2].

Now, we put Ω1 = Θ, Ω2 = Ω − Θ, K̂ = K̃ = K̃1 = K̃2 = s2, mc = MΩ(s2),
M1 ≡ MΩ1

, M2 ≡ MΩ2
. Then m ∈ (0,mc),

mc = M1(K̃) + M2(K̃2).

Hence, if we consider the underlined objects instead of the original ones, we are in
the situation (4.1) and we can repeat our arguments used in the proof of the case
(a).

Q.E.D.
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[4] E. Feireisl and H. Petzeltová, On the zero-velocity-limit solutions to the Navier–Stokes
equations of compressible flow, Manuscripta Mathematica 97 (1998), 109–116.
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[6] E. Feireisl and H. Petzeltová, Zero-velocity-limit solutions to the Navier–Stokes equa-
tions of compressible fluid revisited, Navier–Stokes equations and applications, Proceedings,
Ferrara, 1999, submitted.
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