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The Adaptive Two-Regime Method (ATRM) is developed for hybrid (multiscale) stochastic simulation of
reaction-diffusion problems. It efficiently couples detailed Brownian dynamics simulations with coarser lattice-
based models. The ATRM is a generalization of the previously developed Two-Regime Method [Flegg et al,
Journal of the Royal Society Interface, 2012] to multiscale problems which require a dynamic selection of
regions where detailed Brownian dynamics simulation is used. Typical applications include a front propagation
or spatio-temporal oscillations. In this paper, the ATRM is used for an in-depth study of front propagation
in a stochastic reaction-diffusion system which has its mean-field model given in terms of the Fisher equation
[Fisher, Annals of Eugenics, 1937]. It exhibits a travelling reaction front which is sensitive to stochastic
fluctuations at the leading edge of the wavefront. Previous studies into stochastic effects on the Fisher wave
propagation speed have focused on lattice-based models, but there has been limited progress using off-lattice
(Brownian dynamics) models, which suffer due to their high computational cost, particularly at the high
molecular numbers that are necessary to approach the Fisher mean-field model. By modelling only the
wavefront itself with the off-lattice model, it is shown that the ATRM leads to the same Fisher wave results
as purely off-lattice models, but at a fraction of the computational cost. The error analysis of the ATRM is
also presented for a morphogen gradient model.

I. INTRODUCTION

Deterministic mean-field models of reaction-diffusion sys-
tems describe the state of each chemical species using
continuous variables (concentrations) and simulate its
variation with time and space using reaction-diffusion
partial differential equations (PDEs). Due to the wealth
of analytical techniques available, such mean-field mod-
els have enjoyed considerable success1. However, there
has been increasing interest in modelling the stochastic
effects that arise from either a finite population size or
the discrete nature of its individuals2,3. Stochastic mod-
els are often derived using a bottom-up approach, where
the model is formulated using the individuals of the pop-
ulation as the basic entities, and the model parameters
are chosen so that in the limit of large population size
the model approaches known mean-field diffusion and re-
action rates4–6. This type of model is sometimes termed
an individual-based model (IBM)2.

Generally, different IBMs can be divided into one of
two separate categories: off-lattice or lattice-based mod-
els. Off-lattice models treat each individual as a point
in a continuous spatial domain. Different individuals are
more likely to interact if they are located in a similar
spatial location, i.e. the likelihood of interaction often
depends on the distance between each pair7. Here we
restrict our consideration to the diffusion and reaction of
molecular species and use the term molecular-based in-
stead of off-lattice model. Molecular-based simulations
in this paper are formulated in the form of Brownian
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dynamics5,8. Each molecule of each species is given a po-
sition in the spatial domain, and bimolecular reactions
can occur whenever two molecules are separated by a
given binding radius9.

Lattice-based models involve the discretization of the
computational domain into a set of compartments (i.e. a
lattice), upon which individuals can move by “jumping”
between neighbouring compartments (i.e. connected lat-
tice sites)10. In the applications which we shall consider,
the individuals (molecules) do not have memory, that
is, they do not remember which lattice site they came
from. Therefore, compartment-based models are partic-
ularly suitable for efficient simulations, as only the num-
ber of molecules in each compartment is recorded. For
this type of model the concept of a lattice has been re-
placed with a set of connected compartments, each with a
specific volume. This volume, and the molecules within
it, are assumed to be well-mixed. Reactions can only
occur between molecules in the same compartment, and
diffusion occurs by random jumps between neighbouring
compartments7,10.

Different IBMs can exhibit different stochastic effects,
even for large molecule numbers2. In particular, a well
known reaction-diffusion system that exhibits a slow con-
vergence to the mean field description is the Fisher trav-
elling wave, the prototype model for the spread of a bio-
logical species11. For finite molecule numbers, stochastic
effects can play a significant role in reducing the speed
of the wave12, but the degree to which the wave speed
is reduced depends on the details of the particular IBM
used. Figure 1 shows snapshots from Fisher wave sim-
ulations using both compartment-based (top plot) and
a molecular-based (middle plot) IBMs. The parameters
and initial conditions are the same for both simulations
and are discussed in Section III B. It is evident that
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FIG. 1. Time snapshots of the profile of the stochastic Fisher
wave (see Section III B for details) using different IBMs,
demonstrating the differences in wave speed between the mod-
els. Top: Compartment-based simulation (Section II B); Mid-
dle: Molecular-based simulation (Section II A); Bottom: Cou-
pled molecular-based and compartment-based simulation (Sec-
tion II C). Plots show a histogram of scaled molecular con-
centration versus the x-coordinate. Boxes colored blue are
compartment-based regions while yellow (with little circles)
denotes a molecular-based region. The blue line shows a (de-
terministic) finite difference solution of the mean-field PDE
(11).

one obtains substantially different wave speeds depend-
ing on the IBM used, even though they would be both
described by the same mean-field model. The solution of
mean-field PDE (11) is shown as a solid blue line. Note
that the mean-field model does not include any stochas-
tic effects and thus should not be compared with the
stochastic models in terms of solution accuracy. While
the compartment-based IBM shown here is much closer
to the mean-field model than the molecular-based IBM,
this is merely an effect of the parameters used, and the re-
sults in Section III B show that the compartment-based
wave speed is strongly dependent on the compartment
size.

While there have been numerous investigations into

the speed of Fisher travelling waves for lattice or
compartment-based IBMs12–15, molecular-based models
have received little attention due to their heavy com-
putational requirements, which scale up quickly as the
total number of molecules increases. An alternative and
more efficient approach is to simulate only the wavefront
itself with a molecular-based IBM, while a less compu-
tationally intensive IBM is used in the remainder of the
computational domain, particularly in the high concen-
tration region behind the wavefront. This ensures that
the dynamics of the wave are determined solely by the
molecular-based IBM while keeping the total number of
discrete molecules (and the computational requirements)
to a minimum. An example of this (taken from the results
shown in Section III B) is shown in Figure 1 (bottom),
which matches the wave speed of the purely molecular-
based simulation.

A related hybrid approach to stochastic Fisher wave
simulation was taken by Moro16, who used a lattice-based
model for the leading edge of the wavefront and a nu-
merical approximation of the mean-field equation for the
remainder of the domain. Moro’s aim was also to use
a hybrid approach for computational efficiency, but was
primarily interested in the lattice-based model for the
Fisher wave. In contrast, our goal is to study the effects
of using a molecular-based model of the Fisher wave, and
we therefore use this method to simulate the wavefront.

In this paper, we develop the Adaptive Two-regime
Method (ATRM) which is suitable for the efficient mod-
elling of reaction-diffusion systems using both molecular-
based and compartment-based IBMs. This is achieved by
the coupling of the two different stochastic models across
an interface separating two respective non-overlapping
spatial regions. The ATRM is the generalization of the
previously developed Two-Regime Method (TRM)17,18

which allows a model to use different IBMs in regions in
which they are required. One of the limitations of the
TRM is that it has used a fixed domain decomposition.
The ATRM generalizes TRM to any problem where the
interface between the two regions can move over time,
and therefore adapt to a dynamical chemical system (for
example, travelling waves, regional population growth)
or changes in the problem geometry (for example, cellu-
lar morphology). A simplified version of ATRM was used
previously to simulate the growth of filopodia19, but the
focus was on the application itself rather than the error
introduced by the moving interface. The goal of this pa-
per is to both fully characterise the moving interface er-
ror for three-dimensional reaction-diffusion simulations,
and to demonstrate that it can reproduce the results of a
much more computationally demanding molecular-based
method when applied to a Fisher wave simulation.

The paper is divided into three main sections. In Sec-
tion II, the different methods used in this paper are de-
scribed. In Section III A, we investigate the error intro-
duced by the moving interface and how it varies with the
model parameters by applying the method to a steady-
state morphological gradient problem. These results are
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compared to both a static interface and purely molecular-
based and purely compartment-based IBMs. Section
III B describes the application of the ATRM to a Fisher
wave. The speed of the modelled wave (corresponding to
the interface speed) and the effect of the total number of
molecules and the compartment size are investigated and
compared with the purely molecular and compartment-
based IBMs. We conclude our paper with discussion of
our results and other hybrid (multiscale) methods for
reaction-diffusion processes in Section IV.

II. METHODS

The most detailed modelling approach considered in this
paper will be given in terms of Brownian dynamics and
introduced in Section II A. We will use this model to
study a Fisher wave in Section III B. The rest of the
models introduced below will be used to decrease the
computational intensity of the molecular-based model,
while keeping the same level of accuracy.

A. Molecular-based Modelling

We will study a time-driven molecular-based algorithm
in this paper4. Time-driven molecular-based algorithms
consider each molecule as a single point particle with
position x(t). The molecular-based method proceeds
with discrete timesteps ∆t, and the diffusion of the
molecules/particles is modelled as a discretized Brownian
motion

x(t+ ∆t) = x(t) +
√

2D∆t ζ, (1)

where D is the diffusion constant and ζ = [ζx, ζy, ζz] is a
vector of random numbers sampled from a normal distri-
bution with zero mean and unit variance. Examples of
software packages implementing a time-driven molecular-
based method include Smoldyn4,20 and MCell21,22.

The simulation of zeroth-order reactions (production
from a source with a fixed rate) and first-order (unimolec-
ular) reactions is relatively straightforward and makes
use of a generator of Poisson and exponentially dis-
tributed random numbers4,10. Bimolecular reactions can
occur whenever two reactant molecules come within a
specified distance of each other. In the Fisher wave sim-
ulation in Section III B, we have the following reversible
bimolecular reaction

A+A
k2
�
k1

A (2)

with forward and backwards reaction rate constants k2

and k1, respectively. To model it, we follow a general-
ization to the classical Smoluchowski model, where the
forward reaction occurs within the binding radius ρ with
probability P∆t per timestep7. We also introduce an un-
binding radius αρ, which is the distance that the two

molecules of A are placed apart, whenever the backward
reaction in (2) occurs4. To calculate P∆t and α, we in-
troduce the following dimensionless parameters

γ =
√

4D∆t
ρ

, κ =
k2∆t
ρ3

,

where D is the diffusion constant of A. The reaction
probability per timestep P∆t can be found by solving
(via a look-up table or root finding method)5

κ = 2πP∆t

∫ 1

0

ξ2g(ξ;P∆t, γ) dξ, (3)

where g(ξ;P∆t, γ) is found by discretizing and solving
numerically

g(r) = (1− P∆t)
∫ 1

0

K(r, r′; γ)g(r′) dr′

+
∫ ∞

1

K(r, r′; γ)g(r′) dr′

+
P∆tK(r, α; γ)

α2

∫ 1

0

g(r′)r′2 dr′.

where

K(ξ, ξ′; γ) = (4πγP∆t)−1/2 exp
(−(ξ − ξ′)2

4γP∆t

)
is Green’s function for the diffusion PDE.

B. Compartment-based Modelling

The domain is partitioned into K compartments j =
0, 1, . . . ,K. Whilst there has been significant progress in
the field of irregular lattice compartment-based reaction-
diffusion simulation6,23, here we restrict the partitioning
to a regular grid of cube compartments with side length
h. The molecules within each compartment are assumed
to be well-mixed and are therefore evenly distributed over
its volume. Without the need for position information,
this method only stores the total number of each species
contained within each compartment. In this paper, all
models will only include one chemical species, A. We
will denote the number of molecules of A in the j-th
compartment as Aj .

The compartment-based algorithm is event-based. In
this paper, we use a variant of the Next Subvolume
Method24 which is itself an extension of the Gillespie
algorithm25 and the Gibson-Bruck algorithm26. At the
beginning of the simulation, the next event time tj is
generated for each compartment by

tj =
1
αj

ln
(

1
u0

)
, (4)

where u0 is a uniformly distributed random number in
(0, 1) and αj is the sum of propensities of all events
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(reactions or diffusion jumps) which can occur in the
j-th compartment. In the Fisher wave simulation in
Section III B, we have two reactions in each compart-
ment, given as the forward and backward reactions in
(2). Diffusion events (instantaneous jumps from a com-
partment to an adjacent compartment) are considered
as reaction events10, with a propensity D/h2Aj . Thus
αj = k1Aj + k2Aj(Aj − 1) + 6D/h2Aj in (4) for the in-
ternal compartments, i.e. the compartments which have
six neighbouring compartments. Boundary compart-
ments have appropriately modified propensity functions
because they have less neighbouring compartments27.
Then the compartments are sorted by tj using an in-
dex priority queue. At each step of the algorithm the
compartment j1 with the smallest next reaction time is
taken from from the queue and an event is chosen using
another uniformly distributed random number25. This
event is processed and a new tj1 is sampled for that com-
partment using

tj1 = t+
1
αj

ln
(

1
u0

)
,

where t is the current time. If the processed event is a
diffusion jump to compartment j2, then Aj2 also changes
and the corresponding αj2 needs to be recalculated. De-
noting its old value as αoldj2 , the old next event time toldj2
is updated using26

tj2 = t+
αoldj2
αj2

(toldj2 − t). (5)

Examples of software packages that implement
the compartment-based model are MesoRD28 and
URDME23.

C. Two-Regime Method

The Two-Regime Method (TRM) was originally pre-
sented in one spatial dimension17 and later extended
to higher-dimensional domains18. It considers the
diffusion of molecules across the interface I between
non-overlapping domains ΩC and ΩM modelled using
compartment-based (ΩC) and molecular-based methods
(ΩM ), respectively.

The TRM optimally preserves the correct diffusion flux
across the interface I between the regimes. To achieve
this, a number of different factors must be taken into
account. When particles cross the interface into the
compartment domain ΩC they are placed in a compart-
ment. Whilst these molecules would ordinarily be close
to the interfacial side of the compartments in which
they are placed, by virtue of being described using a
compartment-based approach, they must be considered
indistinguishable from other molecules “spread out” over
the compartment volume. In order to counterbalance the
generated net flux from the molecular-based domain ΩM
into the compartment-based regime ΩC as a result of this

paradigm-critical loss of information, the propensity of a
diffusion jump back across the interface I is specified dif-
ferently to the other diffusive jump propensities using17

2h√
πD∆t

D

h2
Aj ,

where Aj is the number of molecules in the compartment
next to the interface I. When a diffusion jump from
ΩC across the interface (to the molecular-based side ΩM )
occurs the molecule is given a position in ΩM with a
normal distance from the interface given by x, where x
is sampled from17

f(x) =
√

π

4D∆t
erfc

(
x√

4D∆t

)
. (6)

The perpendicular distance x given by the distribution
(6) is taken from an initial position on the interface given
by rj

rj = mj + yp1 + zp1,

where mj is the mid-point of the compartment face from
which the diffusion jump occurred, p1 and p2 are per-
pendicular unit vectors tangential to the interface and
aligned with the lattice vectors of the compartment-based
domain. Random numbers y and z are sampled from the
triangular distribution with lower limit−h/2, upper limit
h/2 and zero mean18.

The TRM has been used previously to study filopo-
dia dynamics19 and intracellular calcium release from ion
channels29 whereby a small-scale biochemical system is
coupled with a coarser model in a much larger domain.

D. Adaptive Two-Regime Method

In this paper we introduce the Adaptive Two-Regime
Method (ATRM), a method for changing the compart-
ment and molecular-based subdomains ΩC and ΩM in
response to the outcome and requirements of a dynamic
reaction-diffusion simulation. This is achieved by mov-
ing the interface I ≡ I(t) between simulation regimes.
Whilst the methodology introduced in this paper can be
generalized for any criteria defining the dynamic inter-
face, we move the interface I(t) in such a way as to limit
the computational requirements of the molecular-based
subdomain ΩM (which can otherwise become too cum-
bersome). We will not be considering time-adapting lat-
tices in the compartment-based model and therefore the
moving interface I(t) moves discretely such that the in-
terface aligns with the faces of the compartments. The
compartment geometry that we consider in this paper is
a regular grid of equal sized cubes with side length h (see
Figure 2). The interface I(t) is constrained to move by
step sizes equal to h in a direction normal to the interface
surface, so that it is always flat and aligned to the faces
of those compartments on the boundary.
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FIG. 2. The interface I(t) between the molecular and com-
partment regions (red surface) is restricted to move by jumps
between neighbouring compartment faces.

The conditions on the movement of the interface can
be set according to the specific problem. However, an
obvious and useful goal is that the interface I(t) moves
to restrict the total number of particles in ΩM , therefore
placing a limit on the computational effort applied to the
method that is expected to be the most computationally
demanding.

Following this goal, we move the interface towards the
molecular-based region ΩM if the concentration of parti-
cles within a distance h of the interface is above a given
threshold cmax. Conversely, we move move the interface
towards the compartment region ΩC if the concentration
of molecules within the compartments on the boundary
is less than cmax− δc. In this way the maximum concen-
tration expected in the molecular region is below cmax.
The difference between the two thresholds δc is necessary
to prevent the spurious movement of the interface due to
stochastic fluctuations in the molecule concentrations30.
As we shall see, the reduction of δc to zero results in
inaccuracies in the simulation that are due to rapid re-
distribution of molecules that occurs every time the in-
terface I(t) moves into ΩM . We check for the upper and
lower limit concentrations and move the interface every
nc timesteps of the simulation. Checking this condition
at every time step (nc = 1) is unnecessary and can be
computationally costly and therefore counterproductive
to the purpose of using this multiscale method30.

After each check of the movement criteria, the interface
I(t) can either move into the molecular region, or into the
compartment region. If the former, then each molecule
that is in the new compartment region (a perpendic-
ular distance h from the old interface) is counted and
placed inside the corresponding newly created compart-
ment jnew. For each particle that is removed from the
molecular-based simulation, the copy number in the new
compartment Ajnew

is incremented by one. If the inter-
face moves into the compartment region then each com-

partment j which was previously adjacent to the inter-
face and now in the new molecular region is removed and
Aj new molecules are created within the space occupied
by the old j-th compartment with randomly-generated,
uniformly-distributed initial positions.

III. RESULTS

Two model problems will be considered in this paper. In
Section III A we demonstrate the impact of applying the
ATRM to a simple morphogen gradient problem31,32 with
a known solution. This allows for an easy comparison
between simulations using both static and moving inter-
faces. In this way, the error associated with the moving
interface will be be studied. In Section III B we use the
ATRM to investigate Fisher waves in a molecular-based
model.

A. Steady State Morphological Gradient

The simulation domain is a semi-infinite cuboid shown in
Figure 3. The boundary at x = 0 (coloured dark blue) is
reflective and generates molecules with rate λ. There is
no upper boundary in the x direction and the molecules
are allowed to diffuse to x → ∞. The compartment-
based and molecular-based subdomains are labelled ΩC
and ΩM , respectively. The interface between the subdo-
mains is a plane perpendicular to the x-axis at x = I(t)
and moves parallel to the x-axis with constant step size
h. All boundaries in the y and z directions are periodic.
One species A is simulated and moves with diffusion con-
stant D. In addition to the production of molecules at
x = 0, one unimolecular degradation reaction

A
k→ ∅

is simulated. Thus, in the limit of high molecule copy
numbers, the normal rate equations for this system give

da(x, t)
dt

= D
∂2a(x, t)
∂x2

− ka(x, t) + λδ(x)

where a(x, t), x ≥ 0, t ≥ 0, denotes the concentration
of A at any point (x, y, z) ∈ Ω. This equation can be
explicitly solved33 to give

a(x, t) =
λ

2βD

[
e−βx − e−βx

2
erfc

(
2βDt− x√

4Dt

)
−e

βx

2
erfc

(
2βDt+ x√

4Dt

)] (7)

where β =
√
k/D.
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FIG. 3. The simulation domain Ω = (0,∞) × (0, 1) × (0, 1).
The moving interface is located at x = I(t), and the compart-
ment and molecular regions are ΩC = (0, I(t))× (0, 1)× (0, 1)
and ΩM = (I(t),∞) × (0, 1) × (0, 1) respectively. Molecules
are generated at the x = 0 boundary (coloured dark blue) with
rate λ. This boundary is also reflective. There is no lower
boundary in the positive x direction. All other boundaries in
the y and z directions are periodic.

Parameter Value

D 1

k 10

λ 106

β =
p
k/D

√
10

h 0.05

∆t 10−4

cmax as(1/2) = 0.206 as(0)

δc 0.02 as(0)

nc 10

TABLE I. Table of simulation parameters for the morpholog-
ical gradient simulation. The first three parameters are the
parameters of the biological model (D, k and λ). Parameter
h is the compartment size in ΩC and parameter ∆t is the time
step in ΩM . The last three parameters cmax, δc and nc are
the parameters of the ATRM. The function as is given by (8).

1. Transient regime

The time-varying solution given in equation (7) has an
initial transient period leading to a steady state solution

as(x) =
λ

2βD
e−βx (8)

as t → ∞. This section examines the initial transient
period, using the parameters given in Table I.

Figure 4 shows the results from a classical TRM simu-
lation with a static interface I(t) ≡ 0.5, i.e. the bottom
three parameters in Table I are not used. Four different
timesteps (at t = 0.02, 0.06, 0.11 and 0.16) were chosen
from the transient period and the data from the molec-
ular and compartment regions were plotted together in
a one-dimensional concentration histogram along the x-
axis. The bin size of the histogram was chosen to match
the compartment size h. At all times shown, the con-
centration histogram data shows a good agreement with

the analytical solution a(x, t) in equation (7). Figure 5
shows similar results but from the ATRM simulation with
a moving interface for parameters in Table I. The mov-
ing interface between the molecular and compartment
regions correctly follows the maximum threshold set at
cmax = 0.206 as(0), and no noticeable differences can be
seen between the static (TRM) and moving (ATRM) in-
terface results.
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FIG. 4. Concentration histograms (along the x-axis) from
the TRM simulation of morphogen gradient with I = 0.5.
The concentration in each compartment n̂i has been scaled by
the maximum expected concentration as(0). Blue denotes the
compartment-based region while yellow (with little circles) is
used for the molecular-based region.

To measure the error, we count the number of
molecules N(t) in the region (0, 0.5)× (0, 1)× (0, 1) and
compare this to the number predicted by equation (7):

E(t) =
N(t)− ∫ 0.5

0.0
a(x, t) dx∫∞

0
a(x, t) dx

. (9)

For the static interface (TRM) case (I(t) ≡ 0.5), this
corresponds to comparing the total number of molecules
in the compartment region with the expected amount.
For the moving interface (ATRM) this is not the case, as
the location of the interface varies with time. However,
the movement threshold cmax is set so that the average
steady state position of the interface is at x = 0.5, and
therefore at steady state the position of the interface in
the ATRM simulation will be consistent with the TRM
case.

Figure 6 shows the error E(t) versus time for the
static and moving boundary cases, along with a purely
molecular-based simulation and a compartment-based
simulation. The compartment-based simulation has its
domain truncated at x = 2 (with a reflective bound-
ary condition). We expect only a very small number of
molecules to reach x = 2 so this truncation will introduce
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FIG. 5. Concentration histograms (along the x-axis) from
the ATRM simulation of morphogen gradient with parameters
given in Table I. The concentration in each compartment n̂i

has been scaled by the maximum expected concentration as(0).
Blue denotes the compartment-based region while yellow (with
little circles) is used for the molecular-based region.

negligible error. At very small times the error measure is
dominated by the very low copy numbers in all simula-
tions, but after t > 0.1 it can be seen that both TRM and
ATRM simulations lose molecules more rapidly from the
x < 0.5 region due to an overestimation of the diffusion
across the interface. The absolute value of the error E(t)
increases until t ≈ 0.4, where it levels out at relatively
low 2% of the total number of molecules. The effect of the
moving boundary is small for these parameters, and the
net effect of the moving boundary is to slightly decrease
the diffusion of molecules across the interface. The next
section explores further the moving interface error dur-
ing the steady state, how this varies with the simulation
parameters, and therefore, how it may be reduced.

2. Steady State Regime and Parameter Study

This section explores the effect of simulation parameters
on the steady state error for static and moving interface
simulations of the morphological gradient. Since we vary
the compartment size h during these parameter sweeps,
the concentration histograms are calculated using bins
with a constant size of 0.05 along the x-axis (and with
size 1 along the y and z axis). The contribution of each
compartment i to bin j is scaled by the volume of i that
overlaps with j. In order to calculate the steady state
error, E(t) is averaged over 40 equally spaced times after
steady state is reached at t = 5 using

Ê =
39∑
i=0

E(5 + iτ) (10)

0.0 0.2 0.4 0.6 0.8 1.0
t

−0.035

−0.030

−0.025

−0.020

−0.015

−0.010

−0.005

0.000

0.005

E
(t

)

molecular-based
compartment-based
TRM - static interface
ATRM - moving interface

FIG. 6. Error E(t) given by (9) for four different simulation
methods, pure molecular-based and compartment-based, along
with the TRM and ATRM results.

where the spacing between each sample (τ = 0.1) is long
enough so that there is no significant correlation between
them.

Figure 7(a) shows the average steady state error Ê
versus compartment size h and average particle step size
s =
√

2D∆t. The contour lines of constant Ê generally
follow a linear relationship between h and s, and the
error is minimized near h = s. This is consistent with
the convergence study described in34, which found that
the TRM error for a static interface was minimized when
h =

√
πD∆t. Figure 7(b) shows the same data in a

scatter plot of Ê versus h − √πD∆t, with each point
is coloured by h. For a given h the error is linear with
h−√πD∆t around the point h =

√
πD∆t, with a slope

that varies with h. The change in slope with h is due
to the O(h2) diffusion error in the compartment region,
and is not seen in Flegg et al34 since h is only refined
near the interface. In our simulations h is refined over
the entire compartment region and the O(h2) diffusion
error becomes significant.

Figure 8 shows the steady state error Ê for the ATRM
simulation with moving interface. The most obvious
change in Ê with the moving interface is the shifting
of the plots towards positive Ê. That is, the flux of
molecules across the interface towards the molecular re-
gion is (slightly) reduced. For intermediate and small
values of h this reduction is small (1-2%), but for larger
h the shifts become more pronounced due to much larger
jumps that the interface makes. The scatter plot in Fig-
ure 8(right) also shows a strong non-linear reduction in
Ê for h� √πD∆t.

In summary, the effect of the moving interface on the
error associated with the TRM is minimal, and generally
in the region of 1-2% of the expected molecule concen-
tration. This increases for larger h due to the larger step
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FIG. 7. (a) Colorplot of the TRM error Ê given by equation (10) for steady state morphological gradient versus compartment

size h and particle average step size s =
√

2D∆t; (b) same data as a scatter plot of Ê versus h −
√
πD∆t. Each point is

coloured by h.
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FIG. 8. (a) Colorplot of the ATRM error Ê given by equation (10) for steady state morphological gradient versus compartment

size h and particle average step size s =
√

2D∆t; (b) same data as a scatter plot of Ê versus h −
√
πD∆t. Each point is

coloured by h.

size of the interface, but remains relatively small (less
than 3%) unless h� √πD∆t, when it starts to diverge.

Figure 9 shows the same steady state error Ê for the
moving interface versus the ATRM parameters used to
specify the movement criteria. These are δc, the separa-
tion between the upper and lower thresholds for move-
ment, and nc, the number of timesteps between checks
of the movement criteria. For these simulations the res-
olution parameters are kept constant at h = 0.1 and
s =
√

2D∆t = 0.014. The results of this parameter sweep
show that δc has the greatest effect on the error. The er-

ror decreases as δc is increased, and for these parameters
is minimized for δc greater than 4% of the maximum
steady state concentration as(0). The error decreases
more slowly for increasing nc, and we also note that the
increase in nc also restricts the maximum speed of the
moving interface. It is therefore clear that increasing δc
is the optimal method to reduce the error associated with
the moving interface.
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FIG. 9. Colorplot of the ATRM error Ê given by equation
(10) for steady state morphological gradient versus threshold
separation δc and nc of the ATRM.

B. Fisher Wave

The Fisher equation11 is the prototype model for the
spread of a biological species and describes the diffusive
spread of a species along with a logistic growth term

∂u

∂t
= D4u+ k1u− k2u

2 (11)

Given the phase space (u, ∂u∂t ), the Fisher equation has
unstable stationary point at (0, 0) leading to a stable
node at (k1/k2, 0). It admits travelling wave solutions
that transition from the unstable to the stable station-
ary point, which move with a wave speed c ≥ 2. The
wave will move with its minimum wave speed c = 2 as
long as the initial condition u(x, 0) is zero outside a finite
domain1.

A single-species stochastic reaction-diffusion system
matching the above PDE model can be constructed.
Consider the evolution of a single species A which under-
goes diffusion and a reversible reaction (2). Assuming a
large number of molecules, the mean-field concentration
of species A will approach equation (11). However, for
low molecule copy numbers, stochastic effects can play an
increasing role in the dynamics of the system. Numer-
ous lattice-based models have shown that the stochastic
fluctuations in the number of A molecules act to reduce
the wave speed by a term c∗ proportional to log−2N0,
where N0 is the average number of A molecules in each
lattice site behind the wavefront12–14. This result, how-
ever, is not immediately applicable to molecular-based
models, since N0 is inversely proportional to the volume
of each lattice site and thus is determined by the lattice
itself. While it would be useful to establish a similar
scaling law for molecular-based methods, the computa-
tional requirements of such methods scale quickly with

increasing molecule numbers and it is therefore difficult
to run the large simulations that are needed to approach
the corresponding mean-field model.

The problem of running a stochastic travelling wave
simulation with high molecule numbers is ideal for the
ATRM. Setting the location of interface I(t) directly be-
hind the wavefront means that the high concentration
region behind the wave is modelled by the compartment-
based method, while the wavefront itself and the low
concentration region in front of the wave is modelled by
the molecular-based method. Therefore the wave dynam-
ics are captured entirely by the molecular-based method,
while the total number of discrete molecules simulated
is small and restricted only to those that can affect the
wave propagation.

FIG. 10. Fisher wave simulation domain. Upper and lower
x-axis boundaries are reflective. All other boundaries are pe-
riodic. The position of the (moving) interface between the
molecular-based ΩM and compartment-based ΩC regions is
x = I(t). At t = 0 the interface is located at x = I(0) = h,
and the region x < h is filled with hw2 k1/k2 particles that
are placed randomly within the region. The domain length is
set to L and the height and depth of the domain are set to w.

Figure 10 shows the simulation domain Ω = (0, L) ×
(0, w) × (0, w). The initial conditions of the simula-
tion are a random and homogeneous distribution of A
molecules with concentration k1/k2 over the volume de-
fined by 0 ≤ x ≤ h and 0 ≤ y, z ≤ w. The domain in the
y and z directions is periodic with length w, therefore
the travelling wave will propagate as a one-dimensional
wave in the positive x direction. The domain width is
scaled by the expected concentration behind the wave-
front w =

√
800 k1/k2 in order to keep the total number

of molecules constant with a varying reaction ratio k1/k2.
The lower and upper x boundaries are both reflective.
The interface between ΩM and ΩC is a plane with nor-
mal parallel to the x-axis and it moves with a step-size h.
The parameters of the Fisher wave simulation are given
in Table II. Three different stochastic simulations were
run using (a) a purely compartment-based method, (b) a
molecular-based method and (c) the ATRM method. A
snapshot of each simulation taken at t = 40 was shown
in the introduction in Figure 1.

Our goal here is to ensure that the more efficient
ATRM simulation matches the results obtained by the
molecular-based method, and this is indeed the case.
In Figure 1, both the ATRM (bottom panel) and the
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Parameter Value

D 1

k1 1

k2 1

ρ 0.5

α 0.6

P∆t 3.7× 10−3

h 2.5

∆t 10−3

L 100

w 28.3

cmax 0.95 k1/k2 = 0.95

δc 0.55 k1/k2 = 0.55

nc 10

TABLE II. Table of parameters for the Fisher wave simula-
tion, used in Figure 1. The first three parameters are the
parameters of the biological model (D, k1 and k2). Using (3),
they were transformed to binding and unbinding radii ρ and
αρ. Parameter h is the compartment size in ΩC and param-
eter ∆t is the time step in ΩM . The last three parameters
cmax, δc and nc are the parameters of the ATRM.

molecular-based (middle panel) simulation are very sim-
ilar in terms of both the wavefront shape and propaga-
tion speed. However, clear differences can be seen in
these wave speeds and those of the mean-field model
and compartment-based simulation. These differences in
wave speed and the effect of the parameters k1/k2 and h
are explored further on in this section.
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FIG. 11. Comparison of computational time for each of the
simulation methods. The plots show the CPU time taken to
simulate 1 second of each model as a function of time t.

To demonstrate the efficiency gained by using the
ATRM method, Figure 11 shows a comparison of the

time taken to run each of the three different simulation
methods. The plots show the CPU time taken to com-
plete 1% of simulation time versus the total simulation
percentage performed. The purely compartment-based
method (red line) is clearly the fastest, and its plot can
barely be seen at the bottom of Figure 11. The purely
molecular-based simulation is the slowest. The ATRM
simulation initially follows the molecular-based simula-
tion, until the interface starts moving to follow the trav-
elling wave at about t = 10. After this point there is a
constant number of discrete molecules in the simulation
(those in the wavefront itself) and therefore the simula-
tion CPU time remains roughly constant.
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FIG. 12. Wave speed versus k1/k2 for the three simulation
methods. The wave speed is estimated using (12) from 20
different simulations, the average of these gives the solid line
and the error bars show one standard deviation.

For a travelling wave simulation the important output
measurement is normally the wave speed. Any stochastic
simulation method must be able to accurately reproduce
the speed of the wave and correctly capture any stochas-
tic effects. Therefore we have measured the simulated
wave speed versus the reaction ratio k1/k2 and the com-
partment size h.

The reaction ratio k1/k2 determines the saturation
concentration of the wave (the concentration behind the
wavefront) and therefore the number of molecules in the
wavefront. Increasing this parameter increases the num-
ber of molecules in any given volume and therefore we
would expect the wave speed to approach the mean-field
wave speed c = 2 as k1/k2 increases for the compartment-
based model. In the case of the molecular-based models,
the mean-field PDE description is often justified under
special circumstances (e.g. for systems with uniformly
distributed reactants) and the convergence of travelling
speeds to the mean-field model is not obvious.

Figure 12 shows the measured wave speed c versus
k1/k2 for the three different simulation methods. The
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wave speed is measured as follows. Given the total num-
ber of molecules at a given time during the simulation
Ntot(t), we can obtain the estimate of the wave speed c
as the appropriately rescaled rate of change of Ntot be-
tween two times t1 and t2:

c =
(Ntot(t2)−Ntot(t1))

(t2 − t1)
k2

k1 w2
. (12)

For each parameter value, we ran 20 Fisher wave simu-
lations and calculate the wave speed using using t1 = 10
and t2 = 30. The mean wave speed is plotted in Figure
12 as a solid line, while the error bars show one standard
deviation.

The results show that the ATRM method with mov-
ing interface produces identical results to the purely
molecular-based simulation for all values of k1/k2, within
the range of stochastic fluctuations for the wave speed.
As stated earlier, our goal is to match the results of the
molecular-based method, which is achieved here. Note
that the compartment-based method, while producing
a similar scaling with k1/k2, gives a consistently higher
wave speed than either of the other methods. This change
in wave speed for the compartment-based method was
found to vary with the compartment size h, and this is
shown later on in Figure 13. However, while the ATRM
simulation uses the compartment-based method for the
domain behind the wavefront ΩC , the wave front is situ-
ated entirely in the molecular-based domain ΩM and thus
the motion of the simulated wave is determined only by
the molecular-based method. The diffusion error intro-
duced by the ATRM interface is very small and has no
effect on the simulation. Due to the position of the inter-
face behind the wave front, the local concentration gra-
dient is zero at the interface which results in a negligible
ATRM diffusion error.

Figure 13 shows the measured wave speeds c ver-
sus the compartment size h. As previously stated, for
the compartment-based method the wave speeds show
a clear dependence on h. This result is not surprising,
given that previous lattice-based simulations12–14 showed
a log−2N0 scaling for c, where N0 is the average number
of molecules per lattice site and is therefore determined
by the lattice spacing. In addition, the diffusion error in
the compartment-based method is of order O(h2), and
for the Fisher wave this has the effect of increasing the
wave speed enough that it becomes larger than the mean-
field speed (c = 2) for h ≥ 3. However, neither of these
effects apply to the molecular-based method, which does
not have either a background lattice nor a set of com-
partments. The ATRM method, as desired, matches the
molecular-based method perfectly and displays a con-
stant wave speed versus h.

IV. DISCUSSION

We extended the TRM to consider a moving inter-
face between the domains that can respond dynamically
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FIG. 13. Wave speed versus compartment size h for the three
simulation methods. The wave speed is estimated using (12)
from 20 different simulations, the average of these gives the
solid line and the error bars show one standard deviation.

to the simulation variables (local concentration). This
can be considered as an adaptive domain decomposi-
tion method, which motivates the addition of the word
“Adaptive” to the TRM. The ATRM is a multiscale
method aimed at coupling compartment and molecular-
based stochastic reaction-diffusion simulations with a
moving interface. In this paper, we applied it to two dif-
ferent problems, a morphological gradient problem with a
steady-state solution and a Fisher travelling wave where
the movement of the interface is determined by the wave
motion.

The error associated with the moving interface for
the steady-state morphological gradient case was inves-
tigated using parameter sweeps. It was found that effect
of the moving boundary was minimal and that the addi-
tional error (over a static interface) was generally in the
region of 1-2%. This error increases with h, the compart-
ment size, and further increases for h much larger than√
πD∆t, where D is the diffusion constant and ∆t is the

molecular-based timestep. The interface error was insen-
sitive to the choice of nc (minimum number of timesteps
between interface movement), but it was found that δc
(the separation between the upper and lower concentra-
tion thresholds) needed to be greater than 4% of the
maximum molecular concentration for the error to be
minimised.

The second test problem clearly showed the advantages
of the ATRM method with a moving interface, applying
the method to a travelling wave simulation using a single-
species version of the classical Fisher equation. Here the
wavefront was simulated by the molecular-based method
while the compartment-based method was used for the
high concentration region behind the front. The ATRM
simulation showed a decrease in simulation time because
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the simulation time is dominated by the molecules that
are in the wave front itself, not those behind the wave
front.

The wave speed c was measured for varying k1/k2, the
ratio of the forward to backward reaction rates, and h,
the compartment size. In all cases the measured wave
speed was identical for both the TRM and the molecular-
based simulations. All the methods showed an increase in
wave speed with greater k1/k2. However, the wave speed
for the compartment-based method showed a dependence
on the h, which was not seen in either the ATRM or
molecular-based results. Therefore, the ATRM method
can be seen to match the molecular-based method, while
at the same time being more computationally efficient.
The error associated with the moving interface was neg-
ligible due to the location of the interface behind the wave
front, where the concentration gradient is zero on aver-
age. The ATRM is therefore an ideal method to study
the dynamics of a stochastic Fisher wave modelled using
a molecular-based method, which would ordinarily be im-
practical due to the large number of molecules needed.

Another hybrid simulation approach would be to use
a mean-field, deterministic, model for the simulation
behind the wave front, which is then coupled to the
molecular-based model for the wave front. This type of
model has been used previously (but not applied to the
Fisher wave) by Alexander et. al.35, Geyer et. al.36 and
Wagner and Flekkoy37. The disadvantage of coupling a
mean-field model to a molecular-based model is that an
overlap region is generally required in order to calculate
the mass flux across the interface, and to accurately com-
pute variances near the interface38. In contrast, using
the combination of a compartment-based and molecular-
based IBMs does not necessarily require an overlap re-
gion, and retains the stochastic nature of the model over
the entire domain. We have also found the computational
expense of the compartment-based model to be insignif-
icant compared with the time spent on the molecular-
based model (see Figure 11), so there is little motivation
to use a mean-field model instead.
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