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Abstract

Stochasticity plays a fundamental role in various biochemical processes, such
as cell regulatory networks and enzyme cascades. Isothermal, well-mixed
systems can be modelled as Markov processes, typically simulated using the
Gillespie Stochastic Simulation Algorithm (SSA) [1]. While easy to imple-
ment and exact, the computational cost of using the Gillespie SSA to simulate
such systems can become prohibitive as the frequency of reaction events in-
creases. This has motivated numerous coarse-grained schemes, where the
“fast” reactions are approximated either using Langevin dynamics or deter-
ministically. While such approaches provide a good approximation when all
reactants are abundant, the approximation breaks down when one or more
species exist only in small concentrations and the fluctuations arising from the
discrete nature of the reactions becomes significant. This is particularly prob-
lematic when using such methods to compute statistics of extinction times
for chemical species, as well as simulating non-equilibrium systems such as
cell-cycle models in which a single species can cycle between abundance and
scarcity. In this paper, a hybrid jump-diffusion model for simulating well-
mixed stochastic kinetics is derived. It acts as a bridge between the Gillespie
SSA and the chemical Langevin equation. For low reactant reactions the
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underlying behaviour is purely discrete, while purely diffusive when the con-
centrations of all species is large, with the two different behaviours coexisting
in the intermediate region. A bound on the weak error in the classical large
volume scaling limit is obtained, and three different numerical discretizations
of the jump-diffusion model are described. The benefits of such a formalism
are illustrated using computational examples.

Keywords: Chemical Master Equation, Chemical Langevin Equation,
Jump-Diffusion Process, Hybrid Scheme.

1. Introduction

Biochemical systems with small numbers of interacting components have in-
creasingly been studied in the recent years. Examples include the phage λ
lysis-lysogeny decision circuit [2], circadian rhythms [3] and cell cycle [4]. It
is this small number of interacting components that makes the appropriate
mathematical framework for describing these systems a stochastic one. In
particular, the kinetics of the different species is accurately described, under
appropriate assumptions, by a continuous-time discrete-space Markov chain.
The theory of stochastic processes [5, 6] allows the association of the Markov
chain with an underlying master equation, which is a set of ordinary differen-
tial equations (ODEs), possible of infinite dimensions, that describe, at each
point in time, the probability density of all the different possible states of
the system. In the context of biochemical systems this equation is known as
the chemical master equation (CME).

The high dimensionality of the CME makes it intractable to solve in
practice. In particular, with the exception of some very simple chemical sys-
tems [7] analytic solutions of the CME are not available. One way to deal
with this issue is to resort to stochastic simulation of the underlying Markov
chain. The stochastic simulation algorithm (SSA) developed by Gillespie [1]
exactly simulates trajectories of the CME as the system evolves in time. The
main idea behind this algorithm, is that at each time point, one samples a
waiting time to the next reaction from an appropriate exponential distribu-
tion, while another draw of a random variable is then used to decide which of
the possible reactions will actually occur. For suitable classes of chemically
reacting systems, one can sometimes use exact algorithms which, although
equivalent to the Gillespie SSA are less computationally intensive. Exam-
ples include the Gibson-Bruck Next Reaction Method [8] and the Optimized
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Direct Method [9]. These algorithms can be further accelerated by using
parallel computing, for example, on Graphics Processing Units [10, 11].

All the methods described above can only go so far in terms of speeding
up the simulations, since even with the all possible speed ups running the
SSA can be computationally intensive for realistic problems. One approach
to alleviate the computational cost is to employ different approximations on
the level of the description of the chemical system. For example, in the limit
of large molecular populations, the waiting time becomes, on average, very
small and under the law of mass action the time evolution of the kinetics is
described by a system of ODEs. This system is known as the reaction rate
equation which describes, approximately, the time evolution of the mean of
the evolving Markov chain. An intermediate regime between the SSA and the
reaction rate equation is the one where stochasticity is still important, but
there exist a sufficient number of molecules to describe the evolving kinetics
by a continuous model. This regime is called the chemical Langevin equation
(CLE) [6, 12], which is an Itô stochastic differential equation (SDE) driven
by a multidimensional Wiener process. In this case the corresponding master
equation for the CLE is called the chemical Fokker-Planck equation (CFPE)
which is a N -dimensional parabolic partial differential equation, where N is
the number of the different chemical species present in the system.

The fact that stochasticity is still present in the description of the chem-
ical system, combined with the fact that the underlying CFPE is more
amenable to rigorous analysis than the CME, has made the CLE equation a
very popular regime used in applications [13, 14, 15]. However, while there
are benefits to working with the CLE/CFPE, this approximation is only
valid in the limit of large system volume and provides poor approximations
for systems possessing one or more chemical species with low copy numbers.
Furthermore, unlike the SSA/CME which ensures that there is always a pos-
itive (or zero) number of molecules in the system, the CFPE and CLE can
give rise to negative concentrations, so that the chemical species can attain
negative copy numbers. This can have serious mathematical implications,
since the CFPE equation might break down completely, due to regions in
which the diffusion tensor is no longer positive definite, which makes the un-
derlying problem ill-posed. On the level of the CFPE, one way to deal with
such positivity issues is to truncate the domain and artificially impose no
flux-boundary conditions along the domain boundary [16, 17, 18, 14, 19, 20],
which will have a negligible effect on the solution when it is concentrated far
away from the boundary. When all chemical species exist in sufficiently high
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concentration, Dirichlet boundary conditions can also be used if one solves
the stationary CFPE as an eigenvalue problem [21]. However, as shown
in [22], these artificial boundary conditions can result in significant approx-
imation errors when the solution is concentrated near the boundary. Other
alternatives have been proposed to overcome the behaviour of the CLE close
to the boundary, either by suppressing reaction channels which may cause
negativity near the boundary [23], or by extending the domain of the pro-
cess to allow exploration in the complex domain [24]. In the later approach
the resulting process, called the Complex CLE will have a positive definite
diffusion tensor for all time, thus avoiding such breakdowns entirely. How-
ever, this method does not accurately capture the CME behaviour near the
boundary, and in areas where the CLE is a poor approximation to the CME,
the corresponding Complex CLE will suffer equally.

These issues have motivated a number of hybrid schemes which have been
obtained by treating only certain chemical species as continuous variables
and the others as discrete [25, 26, 27]. By doing so, such schemes are able
to benefit from the computational efficiency of continuum approximations
while still taking into account discrete fluctuations when necessary. Typi-
cally such schemes involve partitioning the reactions into “fast” and “slow”
reactions, with the fast reactions modelled using a continuum approximation
(CLE or the reaction rate equation), while using Markov jump process to
simulate the discrete reactions. Chemical species which are affected by fast
reactions are then modelled as continuous variables while the others are kept
discrete. Since the reaction rate depends on the state, it is possible that
some fast reactions become slow and vice versa. This is typically accounted
for by periodically repartitioning the reactions. Based on this approach, a
number of hybrid models have been proposed, such as [28, 29], which couple
deterministic reaction-rate equations for the fast reactions with Markov jump
dynamics for the slow, resulting in a piecewise-deterministic Markov process
for the entire system. Error estimates for such systems, in the large volume
limit, were carried out in [30]. Similar methods have been proposed, such
as [31] and more recently [32]. Other hybrid schemes [33, 34] also involve
a similar partition into slow and fast species, however the evolution of the
slow species is obtained by solving the CME directly, coupled to a number
of reaction-rate equations for the fast reactions. The hybrid system is thus
reduced to a system of ODEs. An error analysis of these schemes was carried
out in [35].

In this paper, we propose a hybrid scheme which uses Langevin dynam-
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ics to simulate fast reactions coupled with jump/SSA dynamics to simulate
reactions in which the discreteness cannot be discounted. Thus, unlike the
previously proposed models, both the continuous and discrete parts of the
model are described using a stochastic formulation. Moreover, our scheme
does not explicitly keep track of fast and slow reactions, but rather, the
process will perform Langevin dynamics in regions of abundance, jump dy-
namics in regions in where one of the involved chemical species are in small
concentrations, and a mixture of both in intermediate regions. The result-
ing process thus becomes a jump-diffusion process with Poisson distributed
jumps. The preference of jump over Langevin dynamics is controlled for
each individual reaction by means of a blending function which is chosen to
take value 1 in regions of low concentration, 0 in regions where all involved
chemical species are abundant, and smoothly interpolates in between. The
choice of the blending regions will depend on the constants of the propensity
and are generally chosen so that the propensity is large in the continuum
region, and small in the discrete region. Hybrid models for chemical dy-
namics involving both jump and diffusive dynamics have been previously
studied in various contexts. Recently, a method [36] based on a similar cou-
pling of SSA and Langevin dynamics was proposed. The authors introduce a
partition of reactions into fast and slow reactions, applying the diffusion ap-
proximation to the fast reactions to obtain a jump-diffusion process. Based
on an a-posteriori error estimator the algorithm periodically repartitions the
species accordingly. By introducing the blending region our approach no
longer requires periodic repartitioning. Other works which have considered
hybrid schemes based on jump-diffusion dynamics include [37]. In [38, 26] a
hybrid scheme based on a similar domain decomposition idea was proposed
for simulating spatially-extended stochastic-reaction diffusion models. In one
part of the domain a SDE was used to simulate the position of the particles
and on the other part a compartment-based jump process for diffusion was
used. These two domains were separated by a sharp interface, where correc-
tions to the transition probabilities at the interface were applied to ensure
that probability mass was transferred between domains. While such a direct
matching between continuum and discrete fluxes at the interface can accu-
rately simulate systems having only reactions with unit jumps, for systems
possessing jumps of length 2 or higher, such a direct coupling would cause
non-physical results. This scenario is analogous to ghost forces which arise in
quasi-continuum methods used in the multiscale modelling of materials [39].
Overlap regions are also necessary for coupling Brownian dynamics (SDEs)
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with mean-field partial differential equations [40].
The paper is organised as follows. In Section 2 after reviewing the

CME/SSA and CLE/CFPE formalisms we introduce blending functions and
the hybrid jump-diffusion formalism. In Section 3 we derive weak error
bounds for the hybrid scheme in the limit of large volume, and in partic-
ular show that the hybrid scheme does not perform worse than the CLE in
this regime. In Section 4 we describe three possible discretisations of the pro-
cess, which can be used in practise to simulate the jump-diffusion process. A
number of numerical experiments which demonstrates the use of the hybrid
scheme are detailed in Sections 5.1, 5.2 and 5.3.

2. Preliminaries

Consider a biochemical network of N chemical species interacting via R re-
action channels within an isothermal reactor of fixed volume V . For i =
1, 2, . . . , N , denote by Xi(t) the number of molecules of species Si at time
t, and let X(t) = (X1(t), X2(t), . . . , XN(t)). Under the assumption that the
chemical species are well-mixed it can be shown [41] that X(t) is a contin-
uous time Markov process. When in state X(t), the j-th reaction gives rise
to a transition X(t) → X(t) + νj with exponentially distributed waiting
time with inhomogeneous rate λj(X(t)), where λj(·) and νj ∈ ZN denote
the propensity and stoichiometric vector corresponding to the j-th reaction,
respectively. More specifically, each reaction is of the form

µr1X1 + µr2X2 + . . . µrNXN
kr−→ µr1

′X1 + µr2
′X2 + . . . µrN

′XN ,

where r = 1, 2, . . . , R, and µri, µr1
′ ∈ N = {0, 1, 2, . . . }, for i = 1, 2, . . . , N .

Let us denote µr = (µr1, µr2, . . . , µrN) and µ′r = (µ′r1, µ
′
r2, . . . , µ

′
rN). The

stoichiometric vectors ν1,ν2, . . . ,νR are then given by

νr = µ′r − µr

and describe the net change in molecular copy numbers which occurs dur-
ing the r-th reaction. Under the assumption of mass action kinetics, the
propensity function λr for the r-th reaction is

λr(x) = kr

N∏
j=1

xj!

(xj − µrj)!
,
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assuming that n! = 1 if n ≤ 0, to simplify notation. Within the interval [t, t+
dt), we update X(t)→ X(t) + νj, with probability λj(X(t)) dt+ o(dt). The
process X(t) can thus be expressed as the sum of R Poisson processes with
inhomogeneous rates λj(X(t)). As noted in [12, 42], X(t) can be expressed
as a random time change of unit rate Poisson processes,

X(t) = X(0) +
R∑

r=1

Pr

(ˆ t

0

λr(X(s))ds

)
νr, (1)

where Pr are independent unit-rate Poisson processes. This is a continuous
time Markov process with infinitesimal generator

L0f(x) =
R∑

r=1

λr(x)(f(x + νr)− f(x)). (2)

The classical method for sampling realisations of X(t) is the Gillespie SSA
[1]. Given the current state X(t) at time t, the time of next reaction t + τ
and state X(t+ τ) are sampled as follows:

1. Let λ0 =
∑R

r=1 λr(X(t)).
2. Sample τ ∼ − log(u)/λ0, where u ∼ U [0, 1].
3. Choose the next reaction r with probability λr(X(t))/λ0, where r =

1, 2, . . . , R.
4. X(t+ τ) = X(t) + νr.

We note that in advancing the system from time t to time t + τ one needs
to generate two random numbers each time. Based on the time changed
representation (1) one can derive an alternative algorithm, known as the Next
Reaction Method of Gibson and Bruck [8]. Indeed, for a fixed realisation of
each unit rate Poisson process P1, P2, . . . , PR, define Fr(t) to be the last jump
time of Pr before time t. Then for each r, the next jump time of Pr after
time Fr(t) will be distributed as Fr(t)− log u, where u ∼ U [0, 1]. Clearly, as
the process X(t) evolves, the r-th reaction will then occur at t+ τr satisfying

Tr(t+ τr) = Fr(t)− log u, where Tr(t) =

ˆ t

0

λr(X(s)) ds.

This provides the basis of the Next Reaction method. Suppose we are time
t, the next reaction will occur at t+ τmin for

τmin = argmin
r∈{1,2,...,R}

{τr : Fr(t)− log ur = Tr(t+ τr)} ,
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where ur ∼ U [0, 1] are independently distributed random numbers. Noting
that the values of the propensities do not change within [t, t+ τmin) we have
Tr(t+ τ) = Tr(t) + τrλr(X(t)), so that the next reaction time is given by

τmin = argmin
r∈{1,2,...,R}

{
Fr(t)− log ur − Tr(t)

λr(X(t))

}
,

at which time the reaction that occurs is the one for which τr = τmin. This
leads to the following exact algorithm for sampling realizations of X(t).

1. Set the initial number of molecules of each species, set t = 0.

2. Calculate the propensity function λr for each reaction.

3. Generate R independent random numbers ur ∼ U [0, 1].

4. Set Fr = − log(ur) and Tr = 0 for each r = 1, 2, . . . , R.

5. Set τr = (Fr − Tr)/λr for each r = 1, 2, . . . , R.

6. Set τmin = minr{τr} and let µ be the reaction for which this minimum
is realised.

7. Set t = t + τmin and update the number of each molecular species
according to reaction µ.

8. For each k, set Tr = Tr + λrτmin, and for the reaction µ, let u ∼ U [0, 1]
and set Fr = Fr − log u.

9. Recalculate the propensity functions λr.

10. Return to step 5 or quit.

This algorithm was introduced by Gibson and Bruck [8] who additionally
proposed the introduction of an indexed priority queue to efficiently search
for the minimum required in step 6, along with a dependency graph structure
to efficiently update propensity values in step 9. This makes it less compu-
tationally intensive from the Gillespie SSA when simulating systems with
many reaction channels [9].

2.1. Diffusion Approximation

For r = 1, 2, . . . , R define λ̃r(x) to be a smooth, non-negative extension of
λr(x) from NN to RN (the precise conditions on this extension are given in
Section 3). Given the extended propensities, a commonly used approximation
of (1) is the CLE, given by the following Itô SDE

dY(t) =
R∑

r=1

νr λ̃r(Y(t)) dt+
R∑

r=1

νr

√
λ̃r(Y(t)) dWr(t), (3)
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where Wr(t) are mutually independent standard Brownian motions. This dif-
fusion approximation is valid in the large volume regime, where all species ex-
ist in abundance, and all reactions occur frequently, see for example [12, 43].
More precisely, one can show strong convergence of Y(t) to X(t) over finite

time intervals [0, T ], see [44, 36]. Clearly, the lifting of {λr}Rr=1 to {λ̃r}Rr=1

is not unique, and different extensions will give rise to different diffusion ap-
proximations. However, as we shall see in Section 3, in the classical large
volume rescaling, the dynamics of the process will be largely determined by
the value of the propensities on the rescaled grid NN , and indeed, subject to
the extension satisfying a number of assumptions, different extensions will
lead to the diffusion approximation having weak error of the same order.

2.2. The Hybrid Scheme

In this section, we introduce a jump-diffusion process which provides an
approximation which is intermediate between the Gillespie SSA and CLE by
introducing a series of blending functions β1, β2, . . . , βR which are used to
blend the dynamics linearly between the SSA jump process and the CLE.
More specifically, given R smooth functions βr : Rd → [0, 1], r = 1, 2, . . . , R
we consider the following Itô jump-diffusion equation

Z(t) = Z(0) +
R∑

r=1

Pr

(ˆ t

0

βr(Z(s))λr(JZ(s)K) ds

)
νr

+
R∑

r=1

νr

ˆ t

0

(
1− βr(Z(s))

)
λ̃r(Z(s)) ds

+
R∑

r=1

νr

ˆ t

0

√(
1− βr(Z(s))

)
λ̃r(Z(s)) dWr(s),

(4)

where {Wr}Rr=1 and {Pr}Rr=1 are standard Wiener and Poisson processes, re-
spectively, all mutually independent, and JxK is the closest point in the lattice
ZN to x ∈ RN . Thus, (4) describes a jump-diffusion Markov process with
infinitesimal generator G defined by

Gf(z) =
R∑

r=1

βr(z)λr(JzK) [f(z + νr)− f(z)] +
R∑

r=1

(1− βr(z)) λ̃r(z)νr ·∇f(z)

+
1

2

R∑
r=1

(1− βr(z)) λ̃r(z) (νr ⊗ νr) : ∇∇f(z), (5)
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for all f ∈ C2
0(RN), where ⊗ stands for the tensor product, and A : B =

trace(ATB) for square matrices A and B. The first term on the right hand
side of (5) captures the jump behaviour of the process, while the remaining
two terms encode the effect of the diffusive dynamics.

We see that in regions where βr(x) = 1 the dynamics of the r-th reaction
is modelled by a pure jump process. Conversely, when βr(x) = 0 the dynam-
ics are purely diffusive, corresponding to CLE dynamics. In intermediate
regions where 0 < βr(x) < 1 we obtain a mixture of the two. The rationale is
to choose βr to be 0 in regions where the CLE provides a valid approximation
of the biochemical system, and βr to be 1 in regions where the diffusion ap-
proximation breaks down, i.e. in regions where the concentrations of certain
species are low and the discrete behaviour becomes significant. An example
of a trajectory is shown in Figure 1, where the blue line depicts diffusive
dynamics, while the red lines indicate jumps. We note that the process Z(t)
can still attain negative (and thus non-physical) states, however, JZ(t)K is al-
ways non-negative. A natural interpretation is that one should consider the
cell JZ(t)K as the actual observed dynamics of the system, and the state of
the underlying process Z(t) is a hidden Markov model which is not observed
directly.

2.3. Choice of Blending Functions

The blending functions β1(x), β2(x), . . . , βR(x) are to be considered as sim-
ulation parameters which are chosen to balance the trade-off between the
computational cost of using the SSA and the error arising from the diffusion
approximation. Generally chosen so that Langevin dynamics are only used
in regions where the reactions are considered fast. Since not all species are
involved in every reaction, it is natural to choose each blending function dif-
ferently. For a single species system, a natural choice of blending function is
the following piecewise linear function

β(x, I1, I2) =


1, if x ≤ I1,

I2 − x
I2 − I1

, if I1 < x < I2,

0, if x ≥ I2,

where 0 < I1 < I2 are the boundaries between the different regions. With this
choice of β(·, I1, I2), the hybrid process will perform purely jump dynamics
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Figure 1: A typical trajectory for hybrid approximation of the two-species chemical system
described in (20) starting from (A,B) = (1, 1). Red lines denote jump dynamics while blue
lines CLE dynamics. The black lines demarcate the “blending” region.

for 0 < Z(t) < I1, purely diffusive dynamics for I2 < Z(t) < ∞, and jump-
diffusion in between.

For chemical systems with N species we can construct blending functions
for each reaction as follows. Let Sr be the set of chemical species involved
in the r-th reaction (both as reactants, and products of the reaction). Then
we can define βr(x), r = 1, 2, . . . , R, as follows

βr(x) = 1−
∏
n∈Sr

(1− β(xn, I
n
1 , I

n
2 )), (6)

where In1 < In2 , n = 1, 2, . . . , N , are the boundaries for each individual chem-
ical species. With this choice of blending function, when Z(t) is in a state
where one of the species involved in the r-th reaction is not abundant, the
hybrid process will blend between jumps and diffusion to simulate the cor-
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responding reaction. The choice of the boundaries In1 and In2 is important
to correctly delineate between discrete and continuous behaviour. As will be
seen in the numerical experiments in Section 5.2, the accuracy of the scheme
is dependent on the width of the blending region. If the blending region
In2 − In1 is small (i.e. close to 1), the step size for the discretised CLE must
be accordingly decreased to maintain constant error.

Remark 2.1. While (6) is a natural blending function for the typical bio-
chemical systems where the diffusion approximation breaks down only close
to the boundary of the positive orthant, for constrained systems, one must
have jump dynamics near all the boundaries of the system. A typical example
is the reversible isomerisation model

A
k1−→←−
k2

B,

which can be modelled as a single species birth-death process for A with
birth rate λ(m) = k2(M −m) and death rate µ(m) = k1m, where M is the
total molecule count. For such systems, an appropriate blending function
would take value 1 in neighbourhoods of both m = 0 and m = M .

3. Derivation and Consistency of the Hybrid Scheme

In this section we shall make explicit the regime in which the hybrid scheme
correctly captures the dynamics of the original process, and subsequently
derive weak error estimates for the expectation of observables at a finite time
T > 0. Let L := NN be the lattice of possible states. For most biochemical
systems, we can make the following natural assumptions.

Assumption 3.1. The propensity functions satisfy λj(x) ≥ 0 for all x ∈ L,
and λj(x) = 0 if x ∈ L and x+ νj ∈ ZN \ L.

In particular, we are ensured that the jump process X(t) never attains a
negative state.

Assumption 3.2. For fixed T > 0, the set {X(t) | t ∈ [0, T ]} is almost surely
constrained within a bounded subset Ω of L.

We note that the domain Ω will depend on the initial condition X(0) =
X0. As it stands this assumption will not hold for general chemical reacting
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systems. Under suitable conditions on the propensities it is possible to replace
this assumption with a localization result showing that the probability of X(t)
escaping the bounded set is exponentially small. We shall avoid this approach
for simplicity, simply noting that one can always ensure this assumption by
setting propensities to zero outside a fixed bounded region.

Chemical Langevin dynamics Y(t) are only a valid approximation of X(t)
in the large volume limit. To study this regime, we introduce a system size
V � 1 which can be viewed as the (dimensionless) volume of the reac-
tor. Writing ε = V −1, we then rewrite the molecular copy number X(t) as
ε−1Xε(t) where Xε(t) will be the vector of concentrations of each chemical
species. We shall assume that each rate constant kr satisfies

kr = dr ε
−zr , where dr > 0 and zr = −1 +

K∑
k=1

µrk.

Given this scaling assumption, we can always write the propensity for the
r-th reaction, r = 1, 2, . . . , R, as

λr

(x
ε

)
=

1

ε
λεr(x), for x ∈ εL.

where λεr(x) is O(1) with respect to ε. Using (2), the generator of the rescaled
process Xε(t) is given as follows:

Lεf(x) =
1

ε

R∑
r=1

λεr(x)(f(x + ενr)− f(x)), for x ∈ εL. (7)

We now introduce the hybrid jump-diffusion scheme. To do so we must ex-
tend propensities λε(x) from the discrete lattice εL to λ̃ε(x) on the continuous
space RN . We shall make the following assumptions on the extension.

Assumption 3.3. The following properties hold for the extended propensities
λ̃εj(x):

1. They are non-negative, and lie in C3(RN).

2. They are bounded, uniformly with respect to ε, and the same applies
for their mixed derivatives up to order 3.

3. For each j, λ̃εj(x) is zero outside a bounded domain Ωε which contains
εΩ.
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Remark 3.1. A C3(RN) extension of the propensities satisfying Assumption

3.3 is always possible. Indeed, for each j, set λ̃j to be zero in RN \Ωε. Then
one can extend the value of the propensities to Ωε by transfinite interpolation,
see [45, 46].

Remark 3.2. Such an extension may result in propensities which differ from
the “standard” propensities typically used for the CLE. In particular, propen-
sities of the form k1x(x− 1) must be modified so as to remain non-negative.
Such an explicit construction of extended propensities for unimolecular and
bimolecular reactions of a single species can be found in [47, Example 4.7-4.8].

Using the extended propensities, one can extend the Markov jump process
Xε(t) to take initial conditions Xε(0) ∈ Ωε. The infinitesimal generator of
Xε(t) is the natural extension of (7), also denoted by Lε defined by

Lεf(x) =
1

ε

R∑
r=1

λ̃εr(x) [f(x + ενr)− f(x)] , for all f ∈ C0(RN).

For a fixed observable g ∈ C3(RN), define the value function uε : [0, T ] ×
RN → R:

uε(t,x) = E [g(Xε(t)) |Xε(0) = x] .

Then uε(t,x) can be expressed as the unique solution of the Backward Kol-
morogov equation [5]

∂tu
ε(t,x) = Lεuε(t,x), for (t,x) ∈ (0, T )× RN ,

uε(0,x) = g(x), for x ∈ RN .
(8)

For any fixed x ∈ RN , equation (8) can be viewed as an infinite linear ODE
on the translated lattice x + εL. By Assumption 3.3 the propensity is only
non-zero for finitely many terms, thus the dynamics is characterised by a
finite linear system of ODEs. Existence and uniqueness of a solution uε(t,x)
in C1[0, T ] follows immediately. Moreover, if g(x) is locally bounded, then

so is uε(t,x). Clearly, for x ∈ RN such that λ̃εr(x) = 0 for all r we have
uε(t,x) = g(x), for all t ∈ [0, T ].

Moreover, using Assumption 3.3, it follows that uε(t, ·) ∈ C3(RN), such
that the mixed derivatives can be expressed as the unique solutions of the fol-
lowing equations, where ∂i, ∂ij and ∂ijk denote first, second and third spatial
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derivatives with respect to the variables xi, xj, xk, ∀i, j, k ∈ {1, 2, . . . , N}.

∂t∂iu
ε(t,x)− Lε∂iu

ε(t,x) =
1

ε

R∑
r=1

∂iλ̃
ε
r(x) [uε(t,x + ενr)− uε(t,x)] , (9)

∂t∂iju
ε(t,x)− Lε∂iju

ε(t,x) =
1

ε

R∑
r=1

∂ijλ̃
ε
r(x) [uε(t,x + ενr)− uε(t,x)]

+
1

ε

∑
a,b∈Π2

R∑
r=1

∂aλ̃
ε
r(x) [∂bu

ε(t,x + ενr)− ∂buε(t,x)] ,

∂t∂ijku
ε(t,x)− Lε∂ijku

ε(t,x) =
1

ε

R∑
r=1

∂ijkλ̃
ε
r(x) [uε(t,x + ενr)− uε(t,x)]

+
1

2ε

∑
a,b,c∈Π3

R∑
r=1

∂abλ̃
ε
r(x) [∂cu

ε(t,x + ενr)− ∂cuε(t,x)]

+
1

2ε

∑
a,b,c∈Π3

R∑
r=1

∂aλ̃
ε
r(x) [∂bcu

ε(t,x + ενr)− ∂bcuε(t,x)] ,

where Π2 and Π3 denote the set of permutations of {i, j} and {i, j, k}, re-
spectively.

Lemma 3.3. Given p, q, r = 1, 2, . . . , R, and t ∈ [0, T ] define the following
scalar quantities

Aε
r(t,x) = νr · ∇uε(t,x) =

N∑
i=1

νr,i∂i u
ε(t,x),

Bε
p,q(t,x) = (νp ⊗ νq) : ∇∇uε(t,x) =

N∑
i,j=1

νp,i νq,j ∂iju
ε(t,x),

Cε
p,q,r(t,x) = (νp ⊗ νq ⊗ νr) : ∇∇∇uε(t,x) =

N∑
i,j,k=1

νp,i νq,j νr,k ∂ijku
ε(t,x).

Then, there exists constants K1, K2 and K3 and C1, C2, and C3 independent
of ε such that

‖Aε
r(t, ·)‖∞ ≤ C1e

K1T, ‖Bε
p,q(t, ·)‖∞ ≤ C2e

K2T, ‖Cε
p,q,r(t, ·)‖∞ ≤ C3e

K3T,
(10)
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for t ∈ [0, T ], where the K1, K2 and K3 depend on∥∥∥λ̃εr∥∥∥
C1(RN )

,
∥∥∥λ̃εr∥∥∥

C2(RN )
and

∥∥∥λ̃εr∥∥∥
C3(RN )

,

respectively, which by Assumption (3.3) are bounded independently of ε.

Proof. Using (9), we have

∂tA
ε
q(t,x)− LεAε

q(t,x) = F ε
1 (t,x)

where

F ε
1 (t,x) =

1

ε

R∑
r=1

νq · ∇λ̃εr(x) [uε(t,x + ενr)− uε(t,x)] . (11)

Let P ε
t be the semigroup associated with Xε(t), so that

P ε
t f(x) = E [f(Xε(t)) |Xε(0) = x] .

Clearly, if f is bounded, then |P ε
t f(x)| ≤ ‖f‖∞. In particular, |uε(t,x)| is

bounded uniformly with respect to ε. It is straightforward to check that we
can write the solution Aε

q(t,x) as

Aε
q(t,x) = Pt [νq · ∇g] (x) +

ˆ t

0

Pt−s F
ε
1 (s,x) ds,

where g is the fixed observable used as the initial condition in (8). Thus,

|Aε
q(t,x)| ≤ ‖νq · ∇g‖∞ +

ˆ t

0

‖F ε
1 (s, ·)‖∞ ds. (12)

Since uε(t, ·) is C1, we have

1

ε
[uε(t,x + ενr)− uε(t,x)] =

ˆ 1

0

Aε
r(t,x + w ενr)w dw.

Substituting into (11), we obtain

‖F ε
1 (t, ·)‖∞ ≤ C

R∑
r=1

‖λ̃εr‖C1‖Aε
r(t, ·)‖∞ ds.
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Therefore, using (12), we get

max
q
‖Aε

q(t, ·)‖∞ ≤ max
q
‖Aε

q(0, ·)‖∞ +K1

ˆ T

0

max
q
‖Aε

q(s, ·)‖∞ ds,

so that
max

q
‖Aε

q(t, ·)‖∞ ≤ C1e
K1T .

Similarly,

∂tB
ε
p,q(t,x)− LεBε

p,q(t,x) = F ε
2 (t,x),

where

F ε
2 (t,x) =

1

ε

R∑
r=1

(νp ⊗ νq) : ∇∇λ̃εr(x) [uε(t,x + ενr)− uε(t,x)]

+
1

ε

R∑
r=1

νq · ∇λ̃εr(x)
[
Aε

p(t,x + ενr)− Aε
p(t,x)

]
+

1

ε

R∑
r=1

νp · ∇λ̃εr(x)
[
Aε

q(t,x + ενr)− Aε
q(t,x)

]
.

Thus it follows that

Bε
p,q(t,x) = Pt [(νp ⊗ νq) : ∇∇g] (x) +

ˆ t

0

Pt−s F
ε
2 (s,x) ds,

where

‖F ε
2 (t, ·)‖∞ ≤ C

R∑
r=1

‖λ̃εr‖C2(RN ) (||Ar(t, ·)||∞ + ||Br,q(t, ·)||∞ + ||Br,p(t, ·)||∞) .

It follows that

max
p,q

∥∥Bε
p,q(t, ·)

∥∥
∞ ≤max

p,q

∥∥Bε
p,q(0, ·)

∥∥
∞

+K2

ˆ T

0

(
max
p,q

∥∥Bε
p,q(s, ·)

∥∥
∞ + max

p
‖Ap(s, ·)‖∞

)
ds,

which implies the second inequality in (10) by Gronwall’s inequality. The
proof of the third inequality in (10) follows analogously. �
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3.1. The hybrid scheme in the large-volume limit

Having extended the propensity function to take arbitrary values in RN we
can now study the weak error that arises from taking the hybrid approxima-
tion in the large-volume limit.

Assumption 3.4. We assume that the blending functions βr, r = 1, 2, . . . , R
satisfy βr ∈ C0(RN) and βr(x) ∈ [0, 1], for all x ∈ RN .

Given the extended propensities, we can apply the same large-volume rescal-
ing to the hybrid process (4) to obtain a jump-diffusion Zε(t) given by

Zε(t) = Zε(0) +
R∑

r=1

Pr

(ˆ t

0

βr(Z
ε(s)) λ̃εr(JZ

ε(s)Kε) ds

)
νr

+
R∑

r=1

νr

ˆ t

0

(1− βr(Zε(s)) λ̃εr(Z
ε(s)) ds

+
R∑

r=1

√
ενr

ˆ t

0

√
(1− βr(Zε(s)) λ̃εr(Z

ε(s)) dWr(s),

where {Wr}Rr=1 and {Pr}Rr=1 are standard Wiener and Poisson processes, re-
spectively, all mutually independent, and JxKε is the closest in εL to x, or
equivalently JxKε = εJx/εK. The generator of this process is given by

Gεf(x) =
1

ε

R∑
r=1

βr(x) λ̃εr(JxKε) [f(x + ενr)− f(x)]

+
R∑

r=1

(1− βr(x)) λ̃εr(x)νr · ∇f(x)

+
ε

2

R∑
r=1

(1− βr(x)) λ̃εr(x) (νr ⊗ νr) : ∇∇f(x).

We now obtain a weak error estimate between the processes Xε(t) and Zε(t)
in the large volume limit as ε→ 0.

Proposition 3.4. Let blending functions satisfy Assumption 3.4. Let g ∈
C3(RN), then there exists a constant C > 0, independent of ε, such that∣∣∣Ex [g(Xε(t))]− Ex [g(Zε(t))]

∣∣∣ ≤ Cε2, for t ∈ [0, T ], (13)

where Xε(0) = Zε(0) = x ∈ εΩ0.
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Proof. Let uε(t,x) = Ex [g(Xε(t))] and vε(t,x) = Ex [g(Zε(t))]. We wish to
obtain a bound on Eε(t,x) = uε(t,x)− vε(t,x). Then taking the derivative
with respect to t and using the fact that JxKε = x for all x ∈ εΩ0, we obtain

∂tE
ε(t,x)− GεEε(t,x) = ∂tu

ε(t,x)− Gεuε(t,x) = (Lε − Gε)uε(t,x)

=
R∑

r=1

(1− βr(x)) λ̃εr(x)
[uε(t,x + ενr)− uε(t,x)

ε
− νr · ∇uε(t,x)

− ε

2
(νr ⊗ νr) : ∇∇uε(t,x)

]
.

Since uε(t, ·) is in C3(RN), we can apply Taylor’s theorem up to the second
order on uε(t,x + ενr) to obtain

∂tE
ε(t,x)− GεEε(t,x) = cε(t,x), (14)

where

cε(t,x) =
R∑

r=1

ε2

6
(1− βr(x)) λ̃εr(x) (νr ⊗ νr ⊗ νr) : ∇∇∇uε(t, ξr),

for some ξr lying on the line between x and x+ ενr. From (14) and the fact
that E(0,x) = 0, it follows that

Eε(t,x) =

ˆ t

0

Rε
t−s c

ε(s,x) ds,

where Rε
t is the semigroup operator corresponding to Zε(t). Applying the

uniform bound (10) we thus have that

|Eε(t,x)| ≤ Cε2

ˆ t

0

R∑
r=1

‖Cε
r,r,r(s, ·)‖∞ ds ≤ C1ε

2TeK1T , for t ∈ [0, T ].

�

Remark 3.5. The remainder term cε(t,x) in equation (14) characterises the
local error at the point x. We note that it is non-zero only in regions where
βr(x) 6= 1. Intuitively we would expect this to imply that Zε(t) is a superior
approximation to the standard CLE. However, the global error estimate we
derived is too coarse to capture the distinction between the two diffusion
approximations, and thus we have only shown that the two approximations
are consistent: in that the hybrid scheme does no worse than the CLE in the
large-volume limit.
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4. Simulating the Hybrid Model

Equation (4) provides a general framework for simulating chemical systems
which can capture both the discrete and continuum nature of a biochemical
system. Any numerical scheme which can generate realisations of a jump-
diffusion process with inhomogeneous jump rates with deterministic jump
sizes can be used to simulate (4). For illustrative reasons we describe three
different possible numerical schemes, the first based on the Gillespie SSA and
the second based on the modified Next Reaction Method proposed in [48],
and discussed in Section 2. Finally, we describe an alternative scheme based
on adaptive thinning which works well for systems with bounded blending
regions. The main difference between the purely jump case (where these al-
gorithms have been applied before) and (4) is the fact that in the blending
region the propensity functions do not remain constant between two consec-
utive reactions. For the sake of clarity, given the propensities λ1, λ2, . . . , λR
and blending functions β1, β2, . . . , βR define

λ′j(x) = βj(x)λj(JxK), and λ′′j (x) = (1− βj(x))λj(x). (15)

Pseudocodes of each approach are given as Algorithms 1, 2 and 3. They all
have the same input, namely propensities λ1, λ2, . . . , λR, blending functions
β1, β2, . . . , βR, the stoichiometric matrix ν = (ν1, . . . ,νR), the final time of
simulation T , time steps for the CLE ∆t and δt (here, δt ≥ ∆t) and initial
state X(0) ∈ NN .

4.1. Hybrid simulations based on the Gillespie SSA

The steps to simulate the jump-diffusion process (4) based on an extension
of the Gillespie SSA are described in Algorithm 1. As we can see in regions
where βr(x) are 1, the scheme reduces to the standard Gillespie SSA, and
thus simulates the discrete dynamics exactly. Analogously, in regions where
βr are all zero one can use a larger time-step δt to evolve CLE (3) since it
is not necessary to approximate the solutions of (4) in such regions, which
can only be done with O(∆t) accuracy. In the intermediate regime for the
continuous part of the dynamics the following CLE is used

dX(t) =
R∑

j=1

λ′′j (X(s))νj dt+ νj

√
λ′′j (X(s)) dWj(s). (16)

If during the CLE time step [t, t + ∆t) a discrete event is occurring at time
t+ τ we simulate the CLE up to that time and then add the discrete event.
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Set t = 0.
while t < T do

if maxj βj(X(t)) = 0 then
Simulate CLE (3) up to time t+ δt.
Set t = t+ δt.

else if minj βj(X(t)) = 1 then

Compute λ0 =
∑R

j=1 λ
′
j(X(t)).

Sample τ ∼ − log(u)/λ0 where u ∼ U [0, 1].
Choose the next reaction r with probability λ′r(X(t))/λ0.
Set X(t+ τ) = X(t) + νr.
Set t = t+ τ .

else

Compute λ′0 =
∑R

j=1 λ
′
j(X(t)).

Sample τ ∼ − log u/λ′0, where u ∼ U [0, 1].
Choose the next reaction r with probability λ′r(X(t))/λ′0.
if τ < ∆t then

Simulate CLE (16) up to time t+ τ and set
X(t+ τ) = X(t+ τ) + νr.
Set t = t+ τ .

else
Simulate CLE (16) up to time t+ ∆t.
Set t = t+ ∆t.

end

end

Algorithm 1: generating approximate realisations of hybrid model (4).

To simulate the diffusion part of the hybrid scheme we make use of the weak
trapezoidal method described in [49]. Given the current state Xn we perform
the following two steps to obtain Xn+1:

X∗ = Xn +
∆t

2

R∑
j=1

νjλ
′′
j (Xn) +

√
∆t

2

R∑
j=1

νjλ
′′
j (Xn) ξj,

Xn+1 = X∗ +
∆t

2

R∑
j=1

hj(X
∗,Xn) +

√
∆t

2

R∑
j=1

√
[hj(X

∗,Xn)]+νj ξ
′
j,

where hj(X
∗,Xn) = 2λ′′j (X∗) − λ′′j (Xn), [a]+ = max (0, a) and ξ1, ξ2, . . . , ξR,
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ξ′1, ξ
′
2, . . . ξ

′
R are mutually independent standard Gaussian random variables.

4.2. Hybrid simulations based on the Next Reaction Method

A second algorithm, based on [48], for simulating (4) is described in Al-
gorithm 2. While it is entirely equivalent to the standard Next Reaction
Method, the modified scheme keeps explicit track of the internal times Tk
and the next firing time Fk of each Poisson process Pk which simplifies in-
tegrating diffusion steps into the scheme. We note that the hybrid scheme
described in [36] also employs a similar discretisation. Again in the presence
of diffusion, it is no longer true that the propensity λ′j(X(s)) is constant from
t until the next reaction. Computing the next reaction time is equivalent to
solving the following first passage time problem:

Compute inf{s ≥ t : Tr(s) = Fr(t)− log u for some r = 1, 2, . . . , R} where:

dX(s) =
R∑

j=1

λ′′j (X(s))νj dt+ νj

√
λ′′j (X(s)) dWj(s)

dTr(s) = λ′r(X(s)) ds, r = 1, 2, . . . , R.,

In Algorithm 2, we use an Euler discretization of Tr(s).

4.3. Thinning Method

In the special case where one can bound the value of the weighted propen-
sities {λ′r}Rr=1, it is possible to use a third method, based on standard thin-
ning methods for sampling inhomogeneous Poisson processes, see for exam-
ple [50, 51] and more recently [52]. The main advantage of this scheme would
be that it avoids the necessity to approximate the solution of the first pas-
sage time problem associated with the modified Next Reaction Method, thus
being potentially more efficient. While one can find such bounds for many
chemical systems, the added caveat is that the bounds must be known a
priori, and choosing them too loosely will severely degrade the performance
of the scheme.

To this end, we shall assume that there exist constants Λ1,Λ2, . . . ,ΛR,
where

λ′r(x) ≤ Λr, for all x. (17)

These constants will form the additional input of Algorithm 3. Suppose that
βr(X(t)) > 0 for some r. To compute the next jump time of the r-th reaction,
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Generate R independent, U [0, 1] random numbers uj, j = 1, 2, . . . , R.
Set t = 0. Set Fj = − log(uj) and Tj = 0, for each j = 1, 2, . . . , R.
Compute the weighted propensities λ′j = β(X(0))λj(X(0)).

while t < T do
if maxj βj(X(t)) = 0 then

Simulate CLE (3) up to time t+ δt. Set τ = δt.
else

Set τj = (Fj − Tj)/λ′j for j = 1, 2, . . . , R.
Let r = argminj{τj} and set τ = τr.

if minj βj(X(t)) = 1 then
Set X(t+ τ) = X(t+ τ) + νr.
Sample u ∼ U [0, 1] and set Fr = Fr − log(u).

else
if τ < ∆t then

Simulate CLE (16) up to time t+ τ .
Set X(t+ τ) = X(t+ τ) + νr.
Sample u ∼ U [0, 1] and set Fr = Fr − log(u).

else
Simulate CLE (16) up to time t+ ∆t. Set τ = ∆t.

end

end
Set t = t+ τ . Set Tj = Tj + λ′jτ for j = 1, 2, . . . , R.
Update the propensities λ′j = βj(X(t))λj(JX(t)K).

end

end

Algorithm 2: generating approximate realisations of hybrid model (4).
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we sample from a dominating homogeneous process with rate Λr, so that the
next jump time for the r-th reaction occurs at time t+ τr where

τr = − log(u)

Λr

, u ∼ U [0, 1].

Suppose that t + τr is the first jump occurring after the current time t.
To determine whether the reaction r will occur at time t + τr, we sample
u′ ∼ U [0, 1] and perform the reaction only if

Λru
′ ≤ λ′r(X(t+ τr)), (18)

where X(t + τr) is the state of the process after simulating the Langevin
dynamics from time t to t + τr. This thinning approach can be integrated
into the Gillespie SSA, demonstrated in Algorithm 3. At each timestep,
three cases can occur. If min βr(X(t)) = 1 (i.e. the process X(t) is a pure
jump process) we use the standard Gillespie SSA. If max βr(X(t)) = 0 (i.e.
the process is purely diffusive), then we perform a “macro-step” of the CLE
dynamics of size δt. The final case is where there is both diffusion and jumps,
we simulate the homogeneous dominating process with rate Λ0 =

∑R
r=1 Λr,

and accept/reject according to condition (18).
The main advantage is that we avoid the error arising from the piecewise

constant approximation of integral Tr(t). In particular, one can use higher
order methods for simulating the Langevin dynamics within the blending
region to obtain a better weak order of convergence in ∆t. The drawback
of this approach is the necessity to know a priori the upper bounds Λr,
assuming such bounds exist. Care must be taken so that the bounds are not
too pessimistic, otherwise the dominating homogeneous Poisson process will
fire very rapidly when the system lies within a blending region. In such cases
the bounds can be tuned by running exploratory simulations and keeping
track of the acceptance rate for each reaction.

5. Numerical Investigations

We illustrate the main features of the hybrid framework described in Sec-
tion 2.2 and demonstrate the use of Algorithms 1, 2 and 3 by considering
three numerical examples. Each of these examples were implemented in the
programming language Julia [53].
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Set t = 0.
while t < T do

if maxr=1,2,...,R βr(X(t)) = 0 then
Simulate CLE (3) up to time t+ δt.
Set t = t+ δt.

else if minr=1,2,...,R βr(X(t)) = 1 then

Let λ0 =
∑R

r=1 λ
′
r(X(t)).

Let u ∼ U [0, 1] and τ = − log(u)/λ0.
Choose index r with probability λ′r(X(t))/λ0.
Set X(t+ τ) = X(t) + νr.
Set t = t+ τ .

else

Let Λ0 =
∑R

r=1 Λr.
Let u ∼ U [0, 1] and set τ = − log(u)/Λ0.
Simulate CLE (16) up to time t+ τ using stepsize ∆t.
Let u′ ∼ U [0, 1].
if Λ0u

′ ≤
∑R

r=1 λ
′
r(X(t+ τ)) then

Let r be smallest index such that Λ0u
′ ≤
∑r

j=1 λ
′
j(X(t+ τ)).

Set X(t+ τ) = X(t) + νr.
Set t = t+ τ .

end

end

Algorithm 3: generating approximate realisations of hybrid model (4).

5.1. Lotka-Volterra Model

As a first example, we consider a chemical system consisting of two reacting
chemical species A and B undergoing the following reactions

A
k1−→ 2A, A+B

k2−→ 2B, B
k3−→ ∅. (19)

The chemicals A and B can be considered to be in a “predator-prey” rela-
tionship with A and B as prey and predator, respectively. The reaction-rate
equations corresponding to reactions (19) would then be the standard Lotka-
Volterra model. We choose the dimensionless parameters k1 = 2.0, k2 = 0.002
and k3 = 2.0. The initial condition is chosen to be A(0) = 50 and B(0) = 60.
A histogram generated from 103 independent SSA simulations of this system
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up to time T = 5 is shown in Figure 2. The dashed line depicts the evolu-
tion of the deterministic reaction rate equation starting from the same initial
point. One sees that the nonequilibrium dynamics force the system to spend
time in both low and high concentration regimes. Due to the time spent in
states with high propensity, the SSA is computationally expensive to simu-
late. It is clear that away from the boundary, using an approximation such
as the CLE would be computationally beneficial. The CLE corresponding to
(19), choosing the multiplicative noise as described in [12], is given by

dA(t) =
(
k1A(t)− k2A(t)B(t)

)
dt+

√
k1A(t) dW1(t)−

√
k2A(t)B(t) dW2(t),

dB(t) =
(
k2A(t)B(t)− k3B(t)

)
dt−

√
k2A(t)B(t) dW2(t)−

√
k3B(t) dW3(t),

where W1(t), W2(t) and W3(t), are three standard independent Brownian
motions. For a non-negative initial condition, the process (A(t), B(t)) will
remain nonnegative, however, this will not be the case for fixed-timestep dis-
cretisation. In particular, an Euler discretisation (An, Bn) will contain a term
of the form −

√
k3Bn∆t ξ, where ξ is a standard Gaussian random variable,

which can cause the discretised process to cross the B = 0 axis if the process
sufficiently close to this line. Thus, it is essential that reflective boundary
conditions are imposed to ensure positivity. However, even if positivity is
guaranteed, there is no reason to believe that the CLE will correctly ap-
proximate the dynamics near the axes. This motivates the use of the hybrid
model to efficiently simulate this chemical system.

To simulate the hybrid model we use Algorithm 1, choosing blending func-
tions β1, β2 and β3 as described in (6). We simulate the Langevin dynamics
in the blending region using a timestep of size ∆t = 10−3, and a timestep
δt = 10−2 outside the blending regions. In Figure 3(a), we plot E(A(t)) at
times T = 1, 2, . . . , 6, generated from 104 independent realisations of each
model. Error bars denote 95% confidence intervals. The hybrid models were
simulated for different values of I i1 and I i2, i = 1, 2, 3, however, the results were
not plotted as the Monte Carlo error was too large to distinguish between the
schemes. The hybrid scheme displayed in Figure 3(a) has blending regions
with parameters I i1 = 25.0 and I i2 = 35.0. While all models agree approxi-
mately at small times, for larger T the averages generated from SSA and CLE
differ significantly. Indeed, for T = 5 (corresponding to a single period of the
deterministic system) the means from the SSA and CLE differ by three orders
of magnitude. On the other hand, the hybrid scheme remains in good agree-
ment with the SSA. In Figure 3(b) we compare the average computational
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Figure 2: Histogram of 103 SSA simulations of 19 up to time T = 5.0 starting from A(0) =
50 and B(0) = 60. The dashed line is the solution of the corresponding deterministic
reaction rate equations.

(CPU) time to simulate each model up to time T , averaged over 104 reali-
sations. This was measured in seconds, using the standard Julia functions
tic and toc. The computational cost of the hybrid scheme was plotted for
three different choices of blending regions namely (I i1, I

i
2) = (5, 15), (10, 25)

and (25, 35), respectively. For small T the SSA and hybrid schemes require
a comparable amount of computational effort. However, as T increases, the
computational cost of the SSA scheme dramatically increases, while the cost
of the hybrid scheme remains approximately constant. To compute the av-
erage value at time T = 6, the hybrid scheme was on average 2 orders of
magnitude cheaper to run. As expected, the computational effort is smaller
when the blending region is closer to the boundary. However, relative to the
computational cost of the SSA and CLE, varying the blending region does
not significantly alter performance. For these simulations, the value of ∆t
and δt where chosen manually by computing the error for a number of short
exploratory runs. A more sophisticated implementation of the hybrid model
would require an adaptive scheme for the Langevin part of the process.

5.2. Steady State Simulations

As a second example, we consider a chemical system consisting of two species
A and B in a reactor of volume V . The species are subject to the following
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Figure 3: (a) Plots of E(A(T )) as a function of T for the SSA, CLE and hybrid schemes;
(b) the corresponding average computational (CPU) time in seconds as a function of T .

system of four chemical reactions [54]:

A+ A
k1−→ ∅, A+B

k2−→ ∅, ∅ k3−→ A, ∅ k4−→ B. (20)

This corresponds to a jump process X(t) having stoichiometric vectors

ν1 = (−2, 0)>, ν2 = (−1,−1)>, ν3 = (1, 0)>, ν4 = (0, 1)>,

with corresponding propensities (depending on the volume V ):

λ1(a, b) =
k1a(a− 1)

V
, λ2(a, b) =

k2ab

V
, λ3(a, b) = k3V, λ4(a, b) = k4V.

The dimensionless reaction rates are given by k1 = 10−3, k2 = 10−2, k3 = 1.2
and k4 = 1. As a first numerical experiment, we compute the evolution of
the distribution of (A,B) over time. We assume that V = 0.25, and that the
initial distribution is a “discrete” Gaussian mixture, namely the Gaussian
mixture

ρ0 = N ((30, 10), 1) +N ((20, 30), 1), (21)

restricted to the lattice N2. For each scheme (SSA, CLE and hybrid), the
distribution is approximated by a histogram generated from 107 independent
realisations of the process. The CLE was simulated using the weak second
order trapezoidal scheme described in [49]. To ensure positivity of the CLE,
reflective boundary conditions were imposed at the boundary of the orthant.
The hybrid scheme was simulated the hybrid next reaction scheme detailed
in Algorithm 2. The timestep was chosen to be ∆t = δt = 0.1. The blending
functions for the hybrid scheme were chosen according to (6), with I1

1 =
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I2
1 = 5 and I1

2 = I1
2 = 10. In Figure 4 we plot the distribution approximated

using each scheme at times t = 0, 1, 10 and 100. As expected, when the
concentrations of A and B remain abundant, all three models agree. As the
distribution approaches the low concentration regions, the discrete nature of
the chemical system becomes important, and the CLE is no longer able to
correctly capture the dynamics. Indeed, at time 100 one observes a significant
difference between the SSA and CLE distributions. On the other hand,
the hybrid scheme provides a good approximation to the SSA at all times,
but benefiting from a computational advantage in the large concentration
regimes.

The corresponding Markov jump process X(t) can be shown to possess a
unique stationary steady state [54]. We use all three models to compute the
first two moments M1 and M2 of the stationary distribution, for decreasing
values of V . The moments were approximated using ergodic average of the
discretised schemes, i.e.

M1 ≈
1

T

∑
ti≤T

(ti+1 − ti)Ai and M2 ≈
1

T

∑
ti≤T

(ti+1 − ti) (Ai)
2 ,

where (Ai, Bi) is the value of the discretised process at time ti and 0 < t1 <
t2 < . . . < tN = T are the jump times of the process. Each process was
simulated up to time T = 107. For the hybrid and CLE schemes a timestep
of ∆t = 0.1 was used throughout. The blending region was chosen as in the
previous example. The first and second moment are plotted in Figure 5 for
V = 2−i where i = 0, 1, 2 . . . , 8. While there is good agreement between all
three schemes for V large, the CLE consistently overestimates the moments
when V is small. On the other hand, the hybrid scheme remains robust to
this rescaling.

5.3. Exit time calculation for the birth-death problem

As a final example, we consider the problem of computing the mean extinc-
tion time (MET) for a one-dimensional birth-death process, namely a system
two reactions for one chemical species A:

A→ ∅ with propensity λ1(n) = k1n,

∅ → A with propensity λ2(n) = k2 if 0 < n < K, otherwise 0.
(22)

By assuming that λ2(n) = 0 for all n ≥ K, the state of the system lies within
the finite domain {0, 1, 2, . . . , K}. For k1 > 0, the birth-death process will
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Figure 4: Time evolution of the biochemical system (20) using SSA, CLE and the hybrid
scheme starting from initial distribution ρ0 given by (21).
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Figure 5: (a) Comparison of the first moments for the three different schemes (SSA, CLE
and hybrid) for simulation of the biochemical system (20) with parameters as in Figure 4
for V = 2−i for i = 0, 1, 2 . . . , 8. (b) Comparison of the second moments as a function of
V .

hit the extinction state x = 0 with probability 1. We denote by MET(n) the
MET of the process starting from A(0) = n. Following directly the approach
of [55, Section 2.1] (also see [5, 6]), we obtain

MET(n) =
1

k1

n∑
m=1

K−m+1∑
j=0

(
k1

k2

)j
(m− 1)!

(j +m− 1)!
, for n = 1, 2, . . . , K.

(23)
The corresponding CLE is given by

dY (t) = (k1 − k2 Y (t)) dt+
√
k1 dW1(t)−

√
k2 Y (t) dW2(t), (24)

for standard independent Brownian motions W1(t) and W2(t). The mean first
time of Y (t) reaching 0 starting from Y (0) = x can be calculated explicitly
as

2

ˆ x

0

e−Φ(y)

ˆ K

y

eΦ(z)

k2 + k1z
dz dy, (25)

where Φ is the potential

Φ(x) =
4k2

k1

log

(
1 +

k1x

k2

)
− 2x.

Since ne = k2/k1 is a unique solution of λ1(n) = λ2(n), the stochastic birth-
death process will fluctuate around ne for a long time before eventually go-
ing extinct. In general, we expect that any approximation which correctly
describes the extinction time behaviour of the birth-death process must ac-
curately capture the behaviour of the process particularly near n = 0 and
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n = ne (and possibly all points in between). If ne is large, then a Gaussian
approximation (e.g. CLE or the system size expansion) would accurately
capture the fluctuations around the quasi-equilibrium. However, as observed
in [55] such approximations would suffer close to n = 0. This suggests that
the hybrid scheme with a blending region supported between n = 0 and
n = ne would be a good candidate for an approximation to the process. Sim-
ilar observations have been in more general chemical systems [56, 57], where
it is observed that diffusion approximations of jump processes are not able
to correctly capture rare events, even when the system is in a regime where
the CLE correctly captures both the transient and stationary dynamics of
the process.

To test the hybrid scheme for MET problems, we consider the above
birth-death process X(t) with k1 = 1, so that ne = k2. We compute the mean
time of the birth-death process starting from ne to extinction. Following the
discussion at the end of Section 2, the hybrid scheme is considered extinct
when the process satisfies JZ(t)K = 0. We choose the blending functions
according to (6), simulating the process for different values of I i1 and I i2. Since
the blending region is bounded, we can use the thinning-based Algorithm 3
to simulate the jump-diffusion process within the blending region, choosing
Λ1 = k1I

1
2 and Λ2 = k2. A timestep of δt = ∆t = 10−2 is chosen throughout.

In Figure 6, we plot the MET of the hybrid scheme for varying k2, each
point generated from 105 independent realisations, and for different choices of
blending regions. The MET for the CME and CLE, computed directly from
(23) and (25), respectively, are shown for comparison. It is evident from the
numerical experiments that the hybrid scheme provides a better approxima-
tion for the MER compared to the CLE. However, the improvement is not
uniform over all timescales: the region in which the jump process is simulated
must be increased to correctly capture rare events. Figure 6 suggests that
the width of the blending region also plays a role in the simulation. Indeed,
a blending region with (I i1, I

i
2) = (3, 5) appears to be sufficient to accurately

estimate the MET up to k1 = 9, although it is likely this approximation will
break down, if k2 is increased further. The necessity of tuning the blending
region to capture the escape time dynamics is a disadvantage. Nonetheless,
the hybrid scheme provides us with an approach for improving the MET es-
timate obtained from the CLE, at the “cost” of having to simulate discrete
jumps in (increasingly large) regions of the domain.
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Figure 6: Comparison of the METs of the birth-death process (22), the corresponding CLE
(24) and the hybrid scheme. The parameters used are k2 = 4, 5, 6, 7, 8, 9 and k1 = 1 and
the process is started from A(0) = k2. We use: (a) blending regions of width 1; (b) blending
regions of width 2.

6. Conclusions

In this paper we have introduced a jump-diffusion model for simulating mul-
tiscale reaction systems efficiently while still accounting for the discrete fluc-
tuations where necessary. Fast reactions are simulated using the CLE, while
the standard discrete description is used for slow ones. Our approach involves
the introduction of a set of blending functions (6) which allow one to make
explicit in which regions the continuum approximation should be expected
to hold.

Based on the representation of the Markov jump process as a time changed
Poisson process, we described three different schemes, based on [1, 48] to
numerically simulate the jump-diffusion model in the three different regimes
(discrete, continuous and hybrid). To demonstrate the efficacy of the schemes,
we simulated equilibrium distributions of chemical systems and computed
extinction times of chemical species for illustrative chemical systems. The
results suggest that the proposed algorithm is robust, and is able to handle
multiscale processes efficiently without the breakdown associated when using
the CLE directly.
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