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Group-level behaviour of particles undergoing a velocity jump process with hard-sphere interactions
is investigated. We derive N -particle transport equations that include the possibility of collisions
between particles and apply different approximation techniques to get expressions for the dependence
of the collective diffusion coefficient on the number of particles and their diameter. The derived
approximations are compared with numerical results obtained from individual-based simulations.
The theoretical results compare well with Monte Carlo simulations providing the excluded volume
fraction is small.

I. INTRODUCTION

We study the effect of hard-sphere collisions on the be-
haviour of groups of particles moving according to a ve-
locity jump process, meaning that particles follow a given
velocity and switch to a different velocity at randomly
distributed times [1]. Velocity jump processes are of-
ten used to model movement of biological individuals,
including the bacterium E. coli [2] and reef fish larvae
[3]. Additionally, these random walks can be applied to
target-finding problems in swarm robotics studies [4].

If collisions between particles are neglected, then the
velocity jump process can be described using the trans-
port equation [1]

∂p

∂t
+ v · ∇x = −λ p+ λ

∫
V

T (v,u) p(t,x,u) du , (1)

where p(t,x,v) represents the density of particles that
are located at position x ∈ Rd and moving with velocity
v ∈ Rd, d = 2, 3, at time t > 0, and λ > 0 is the turning
frequency. The turning kernel T (v,u) in (1) gives the
probability of turning from velocity u to velocity v, given
that a reorientation occurs [1]. The main aim of this
paper is to incorporate hard-sphere particle interactions
into the velocity jump equation (1).

In the physical literature the effect of interactions on
diffusion processes has been studied for a long time [5].
Ohtsuki and Okano [6] consider the difference between
collective and individual diffusivity and show that both
behave differently under the influence of interactions.
In particular they show that interactions lead to en-
hanced collective diffusion, but reduced individual diffu-
sion. Bruna and Chapman [7] derive similar results using
the technique of matched asymptotic expansions for par-
ticles in non-confined spaces. Their results are further
extended for multiple species [8] and for particles in con-
fined spaces [9]. Recently the effect of crowded environ-
ments on diffusivity has been studied using individual-
based particle simulations [10] and comparing those to
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experimental results [11]. The effect of macromolecular
(intracellular) crowding on reaction rates has also been
studied in the biological literature [12–14]. Comparisons
between experimental and model results have been used
by Hall and Minton [15] to derive rate laws. This ef-
fect can have a significant influence on the accuracy of in
vivo experiments [16], as those often cannot fully repre-
sent crowding effects present in physiological media [17].

The kinetic behaviour of ideal gases can also be inter-
preted as a velocity jump process with collisions, albeit
here the frequency of self turning (i.e. turning given by
rate λ in equation (1)) vanishes [18]. In these gases, in-
teractions occur in the form of fully elastic collisions, i.e.
momentum is conserved during a collision. In this paper,
we are, however, interested in systems where all particles
always move with the speed s ∈ R+. Therefore we con-
sider the so-called reflective (speed-preserving) collisions
[4]. In this type of interaction particles get directly re-
flected off each other with the individual speed of each
particle being conserved. Whilst this type of collisions
does not appear in kinetic theory, it can still be applied
to a number of biologically relevant systems. In [19], the
formation of fish swarms is studied and reflective colli-
sions play an important part in this model. Reflective
collisions are also easy to implement in swarm robotics
applications [4].

The two types of collisions are illustrated in Figure 1.
In both cases, a particle at position x and with velocity v
collides with a second particle at x+εn that has velocity
u, where n ∈ Sd−1 is a unit vector. Here, ε describes the
(identical) diameter of each of the particles. We denote
the velocities after the collision took place by v′ and u′

respectively. For the reflective (speed-preserving) colli-
sions, we assume that

v′ = v − 2(v · n) n , u′ = u− 2(u · n) n . (2)

In the case of fully elastic collisions, the new velocities
take the form

v′ = v−((v − u) · n) n , u′ = u+((v − u) · n) n . (3)

The main differences between these two types of collisions
are that reflective collisions preserve speed, i.e. individu-
als travel at the same speed before and after the collision,
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FIG. 1. Comparison between elastic collision (3) (left panels)
and reflective collision (2) (right panels).

whilst speeds typically change during fully elastic colli-
sions; on the other hand, fully elastic collisions preserve
total momentum in the system, whilst this is not the case
for reflective collisions.

The remainder of the paper is organised as follows: In
Section II we derive a transport equation for the sys-
tem of interacting particles based on the BBGKY hier-
archy [20, 21]. In Sections III and IV we then derive
two approximative transport equations which general-
ize equation (1). In each case, we also present equa-
tions for effective diffusion constants. These approxima-
tions are then compared with the results obtained using
individual-based simulations in Section V.

II. THE BBGKY HIERARCHY

In this section we derive transport equations for the N -
particle system and later for the special case of a two-
particle system. These equations can be interpreted as
the first equation of the BBGKY hierarchy [20, 21], a hi-
erarchical system of transport equations that models the

general kinetics of gases and liquids. Let us assume that
we have a system of N identical particles with diameter
ε situated inside the domain Ω ⊂ Rd, d = 2, 3. Each
particle i = 1, . . . , N is described by its position xi ∈ Ω
and its velocity vi ∈ V ⊂ Rd, where

V = {v ∈ Rd | ‖v‖ = s} (4)

is the velocity space and s > 0 is the constant speed of
particles. The N particles undergo a velocity jump pro-
cess with turning frequency λ ∈ R+ and turning kernel
T (v,u). We define the N -particle group state vectors by

→
x= (x1, . . . ,xN ) , and

→
v= (v1, . . . ,vN ) .

Then we can write an N -particle transport equation for
the group density function P (t,

→
x ,
→
v) as follows(

∂

∂t
+

N∑
i=1

vi · ∇xi + λN

)
P
(
t,
→
x ,
→
v
)

= λ

N∑
i=1

∫
V

T (vi,v∗) (5)

×P
(
t,
→
x ,v1, . . . ,vi−1,v∗,vi+1, . . .vN

)
dv∗ .

This transport equation is valid in the region
→
x∈ ΩNε

defined by

ΩNε =
{

(x1, . . . ,xN ) ∈ ΩN : ‖xi − xj‖ ≥ ε ,∀i 6= j
}
.

Collisions between two particles happen with a probabil-
ity O(c), whilst collisions between three or more parti-
cles occur with probability O(c2), where c ∼ Nεd repre-
sents the total volume of the particles. Assuming that
this volume is small compared to the size of the domain
Ω, two-particle collisions represent the leading order be-
haviour and interactions between more than two particles
can be neglected. We will therefore concentrate on the
two-particle case of (5) that takes the form [22]:

∂P

∂t︸︷︷︸
(i)

+ v · ∇xP︸ ︷︷ ︸
(ii)

+ u · ∇yP︸ ︷︷ ︸
(iii)

= − 2λP︸ ︷︷ ︸
(iv)

+λ

∫
V

T (v,v∗)P (t,x,y,v∗,u) dv∗︸ ︷︷ ︸
(v)

+λ

∫
V

T (u,u∗)P (t,x,y,v,u∗) du∗︸ ︷︷ ︸
(vi)

. (6)

The two-particle density function is subject to the reflec-
tive external boundary conditions

P (t,x,y,v,u) = P (t,x,y, v̂,u) , x ∈ ∂Ω ,

P (t,x,y,v,u) = P (t,x,y,v, û) , y ∈ ∂Ω ,
(7)

where v̂ and û are the reflected velocities for wall colli-
sions given by

v̂ = v − 2(v · n)n ,

where n is the outwards-pointing normal vector at posi-
tion x ∈ ∂Ω. Additionally, we impose the collision con-
dition for all x,y ∈ Ω with ‖x− y‖ = ε

P (t,x,y,v,u) = P (t,x,y,v′,u′) , (8)

where the velocities after collision v′,u′ are defined in
(2). In order to derive a one-particle transport equation
similar to the classical velocity jump equation in (1), we
integrate over the coordinates of the second particle. In
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particular, we integrate with respect to u ∈ V and y ∈ Ω2

given by

Ω2 ≡ Ω2(x) = {y ∈ Ω : ‖x− y‖ ≥ ε} .

We then define the one-particle density as follows

p (t,x,v) =
∫

Ω2

∫
V

P (t,x,y,v,u) du dy .

Integrating each component (i)–(vi) in (6) individually,
we can derive the one-particle transport equation.
(i): Since the domain, Ω2, and the velocity space, V ,
do not depend explicitly on time, we can bring the time
derivative outside the integral to obtain∫

Ω2

∫
V

∂P

∂t
du dy =

∂p

∂t
.

(ii): We use Reynolds’ transport theorem in space to
obtain∫

Ω2(x)

∫
V

v · ∇xP du dy

= v · ∇xp−
∫
∂Bε(x)

∫
V

(v · n)P (t,x,y,v,u) du dy ,

where Bε(x) denotes the ball around x with radius ε and
n is the outwards pointing normal vector. Note that in
this case outwards is taken with respect to Ω2, hence n
in fact points into the ball Bε(x), i.e. it can be written
as

n =
x− y
‖x− y‖

. (9)

(iii): Using the divergence theorem, we obtain∫
Ω2

∫
V

u · ∇yP (t,x,y,v,u) du dy

=
∫
∂Ω∪∂Bε(x)

∫
V

(u · n)P (t,x,y,v,u) du dy ,

where n is again the outwards pointing normal vec-
tor with respect to Ω2 which on the boundary segment
∂Bε(x) is given by (9). Using the boundary conditions
along the wall ∂Ω given in (7) we can show that∫

∂Ω

∫
V

(u · n)P (t,x,y,v,u) du dy = 0 .

(iv): One can simply integrate to obtain

−2λ
∫

Ω2

∫
V

P (t,x,y,v,u) du dy = −2λ p(t,x,v) .

(v): Switching the order of integration, we obtain∫
Ω2

∫
V

λ

∫
V

T (v,v∗)P (t,x,y,v∗,u) dv∗ du dy

= λ

∫
V

T (v,v∗) p (t,x,v∗) dv∗ .

(vi): We can again switch the order of integration and
use

∫
V
T (v,u) dv = 1:∫

Ω2

∫
V

λ

∫
V

T (u,u∗)P (t,x,y,v,u∗) du∗ du dy

= λ

∫
Ω2

∫
V

∫
V

T (u,u∗) duP (t,x,y,v,u∗) du∗ dy

= λ

∫
Ω2

∫
V

P (t,x,y,v,u∗) du∗ dy = λ p(t,x,v) .

Summing the results in (i)–(vi), the one-particle trans-
port equation takes the form

∂p

∂t
+ v · ∇xp =− λp+ λ

∫
V

T (v,v∗) p(t,x,v∗) dv∗

+
∫
∂Bε(x)

∫
V

P (t,x,y,v,u) [n · (v − u)] du dy ,

where n = (x − y)/ε is a normal vector. Inverting from
n to −n in the last term, y can be written as y = x+ εn
and we can transform the integral over the surface of the
ball Bε(x) into an integral over the surface of unit sphere
Sd−1 in d dimensions

∂p

∂t
+ v · ∇xp =− λp+ λ

∫
V

T (v,v∗) p(t,x,v∗) dv∗

− εd−1

∫
Sd−1

∫
V

P (t,x,x + εn,v,u) [n · (v − u)] du dn ,

where the sign the collision term changes because of the
flip from n to −n. Because the influence of collisions of
more than two particles is negligible, as discussed, we can
generalise this equation for N particles by simply adding
up the influences of each of the other (N − 1) particles
and we obtain

∂p

∂t
+ v · ∇xp =− λp+ λ

∫
V

T (v,v∗) p(t,x,v∗) dv∗
(10)

− κ
∫

Sd−1

∫
V

P (t,x,x + εn,v,u) [n · (v − u)] du dn ,

where we define κ = εd−1(N − 1). In order to analyse
this equation further, we define the subsets of Sd−1

Sd−1
+ ≡ Sd−1

+ (v − u) = {n ∈ Sd−1 : n · (v − u) > 0} .

We can now split the collision integral in the transport
equation (10) into integral over Sd−1

+ and Sd−1 \Sd−1
+ and

apply the boundary conditions given in (8). We obtain

− κ
∫

Sd−1

∫
V

P (t,x,x + εn,v,u) [n · (v − u)] du dn

= −κ
∫

Sd−1
+

∫
V

P (t,x,x + εn,v,u) [n · (v − u)] du dn

κ

∫
Sd−1
+

∫
V

P (t,x,x− εn,v′,u′) [n · (v − u)] du dn.
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Substituting this into (10), we obtain

∂p

∂t
+ x · ∇xp = −λp+ λ

∫
V

T (v,u) p(t,x,u) du

+ κ

∫
Sd−1
+

∫
V

[
P (t,x,x− εn,v′,u′) (11)

− P (t,x,x + εn,v,u)
]

[n · (v − u)] du dn .

The problem we face now is that this equation still con-
tains the two-particle density function P , which is un-
known. In the following two sections we will discuss how
this issue can be resolved through approximation of the
two-particle density.

For the remainder of this paper we will concentrate
on a two-dimensional environment, which helps evaluat-
ing many of the integrals that occur in the derivations.
The general ideas could be applied for d = 3, but the
evaluation of the integrals might proof significantly more
difficult. Applications of the two-dimensional analysis
include swarm robotics studies with differential wheeled
robots [4].

III. BOLTZMANN COLLISION INTEGRAL

We consider a two-dimensional system (i.e. d = 2) in the
dilute gas limit given by

N →∞ , ε→ 0 , (N − 1)ε = κ . (12)

Note that in this limit the system is dilute in the sense
that the area fraction c ∼ Nε2 vanishes [23]. In this sec-
tion we use the molecular chaos assumption which states
that velocities are locally independent of each other, and
we can write [18]

P (t,x,y,v,u) = p(t,x,v) p(t,y,u) , (13)

for all x,y ∈ Ω and v,u ∈ V . Substituting this into (11)
and using (12), we obtain an equation that contains the
so-called Boltzmann integral as the last term [18]

∂p

∂t
+ v · ∇xp = −λp+ λ

∫
V

T (v,u) p(t,x,u) du

+ κ

∫
S1
+

∫
V

[
p(t,x,v′) p(t,x,u′) (14)

− p(t,x,v) p(t,x,u)
]

[n · (v − u)] du dn .

Next, we use the Cattaneo approximation [24] to derive
the effective diffusion properties of the hard-sphere veloc-
ity jump process. This approximation is based on an L2

moment-closure of a hierarchy of equations for the vari-
ous velocity moments of the mesoscopic density p(t,x,v).
The equation for the zeroth moment (particle density)

% ≡ %(t,x) =
∫
V

p(t,x,v) dv

is derived by integrating (14) with respect to v ∈ V . Due
to symmetry in u and v the Boltzmann collision term
vanishes in this equation and we obtain the conservation
of mass property

∂%

∂t
+∇x ·m(1) = 0 (15)

where m(1) is the first velocity moment

m(1) =
∫
V

v p(t,x,v) dv .

Multiplying (14) with v and then integrating with respect
to v ∈ V we obtain an equation for the first moment
m(1). This equation is identical to results seen in [24] for
a non-interacting velocity jump processes, except for the
influence of the Boltzmann collision term in (14). This
difference is given by the integral

I =
∫
V

∫
V

∫
S1
+

v p(v′) p(u′) (v − u) · n dn du dv︸ ︷︷ ︸
I1

−
∫
V

∫
V

∫
S1
+

v p(v) p(u) (v − u) · n dn du dv .

Let us begin by analysing the part I1. Using the facts
that (·)′ : V 7→ V is a bijection and v′ · n = −v · n , we
get

I1 = −
∫
V

∫
V

∫
S1
+

(v′)′p(v′) p(u′) (v′ − u′) · n dn du dv

=
∫
V

∫
V

∫
S1
+

v′p(v) p(u) (v − u) · n dn du dv . (16)

Integral I now takes the form

I =
∫
V

∫
V

∫
S1
+

(v′ − v) p(v) p(u) (v − u) · n dn du dv .

For the reflective collisions defined in (2) we have v′−v =
−2(v · n)n and we can simplify I to

I = −4
3

∫
V

∫
V

‖v − u‖v p(v) p(u) du dv .

In order to evaluate this integral, we assume that p(v) is
close to an equilibrium, i.e. that we can write

p(v) ≈ %

|V |
+ δg(v) ,with δ � 1 and g(v) ∼ O(1) . (17)

This is assumption is reasonable considering that the self-
turning effect brings particle densities closer to equilib-
rium. We can plug this into the equation for I to obtain
up to leading order:

I ≈ − 4 %
3|V |

δ

∫
V

∫
V

‖v − u‖v (g(v) + g(u)) du dv ,
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where we use the fact that
∫
V

v dv = 0 and have dropped
terms of order δ2. Using (4), we obtain the following two
integral equalities for all v ∈ V :∫
V

‖v − u‖ du = 8s2 ,

∫
V

‖v − u‖u du = −8s2

3
v .

Consequently, using |V | = 2πs, we obtain

I ≈ 4 %
3|V |

(
8s2 − 8s2

3

)
δ

∫
V

vg(v) dv =
32s
9π

%m(1) ,

where we have used

m(1) =
∫
V

vp(v) dv = δ

∫
V

vg(v) dv .

Hence, the equation for the first velocity moment takes
the approximate form

∂m(1)

∂t
+∇xM

(2) = −m(1)

(
λ+ sκ

32
9π

%

)
, (18)

where the second velocity moment is defined by

M (2) =
∫
V

vvT p(t,x,v) dv .

Following [24] we approximate M (2) by s2% I/2 where
I ∈ R2×2 is the 2−dimensional identity matrix. Sub-
stituting this moment closure into (18), we obtain the
second equation of the Cattaneo approximation in the
form

∂m(1)

∂t
+
s2

2
∇x% = −m(1)

(
λ+ sκ

32
9π

%

)
. (19)

Equations (15)–(19) form a closed system of three evo-
lution equations for three unknowns (density % and two
components of m(1)). We can apply parabolic scaling

limits as described in [25] in order to obtain the effective
density-dependent diffusivity of the system to be

Deff,1(%) =
s2

2
(
λ+ sκ 32

9π%
) . (20)

If we consider the original non-interacting unbiased ve-
locity jump process (1), then the above analysis (κ = 0)
leads to the effective diffusion constant D0 = s2/2λ. Us-
ing (20), we obtain Deff,1 (%) ≤ D0. This result will
be further explored using numerical simulations in Sec-
tion V. We formulate an alternative transport equation
as follows

∂p

∂t
− v · ∇xp = −λ1p+ λ1

∫
V

T (v,u) p(u) du ,

where λ1 = λ+ sκ
32
9π

∫
V

p(v) dv .
(21)

This adjusted transport equation corresponds to the ef-
fective diffusitivity (20) and is used to numerically com-
pare approximation (20) with individual-based simula-
tions in Section V.

IV. MATCHED ASYMPTOTIC EXPANSION

We have used (13) together with dropping O(ε) terms to
derive (14) from equation (11). In this section we keep
the terms of order ε using the following approximation

P (t,x,x± εn,v,u) ∼ p(t,x,v) p(t,x,u)
± p(t,x,v) εn · ∇xp(t,x,u) .

Substituting into (11), we obtain a Boltzmann equation
that has an additional O(ε) correction term and which
we analyse using the method of matched asymptotic ex-
pansions [7]. Again, multiplying by v and integrating
with respect to v ∈ V , we can derive the influence of this
correction term on the Cattaneo approximation:

J = −κε
∫
V

∫
V

∫
S1
+

v [p(v′) (n · ∇xp(u′)) + p(v) (n · ∇xp(u))] (v − u) · n dn du dv .

Repeating the steps we used to simplify integral (16), we arrive at

J = κε

∫
V

∫
V

∫
S1
+

(v′ − v) p(v) (n · ∇xp(u)) (v − u) · n dn du dv .

Using (2), we have v′ − v = −2(v · n)n. Integrating over n ∈ S1
+, we obtain

J = −κεπ
4

∫
V

∫
V

(
p(v) (v − u)(v · ∇xp(u)) + p(v)∇xp(u)(v · (v − u)) + p(v) v ((v − u) · ∇xp(u))

)
du dv .

Employing approximation (17) again, dropping terms of order O(δ2) and using M (2) ∼ s2% I/2, we obtain

J ≈ −κεπ
2
M (2)∇x%− κε

πs2

4
%∇x% ≈ −κε

πs2

2
%∇x% .
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Plugging all the corrections into the second equation of
the Cattaneo approximation, we arrive at

∂m(1)

∂t
+
s2

2
∇x% (1 + κεπ%) = −m(1)

(
λ+ sκ

32
9π
%

)
,

and therefore, using the parabolic scaling limit again [25],
we derive the effective diffusivity

Deff,2(%) =
s2 (1 + κεπ%)
2
(
λ+ sκ 32

9π%
) . (22)

We can see that, depending on parameter values, Deff,2

can be higher or lower thanD0 = s2/2λ and we can there-
fore explain a variety of different behaviours using this
approach. Note also that this effective diffusivity is larger
than the effective diffusivity obtained for the Boltzmann-
like equation (14) for all values of ε > 0 and hence that
the finite size of particles accelerates the diffusion pro-
cess. We can again formulate an adjusted velocity jump
process, as we did in equation (21), as

∂p

∂t
− v · ∇xp = −λ2p+ λ2

∫
V

T (v,u) p(u) du ,

where λ2 =
λ+ sκ 32

9π

∫
V
p(v) dv

1 + κεπ
∫
V
p(v) dv

.

(23)

To verify this adjusted equation, we will compare it nu-
merically to individual-based simulations in Section V.

V. SIMULATION RESULTS

In Sections III and IV, we have presented a total of three
different models that we want to compare to individual-
based simulations. The three models are given by (i)
the Boltzmann-like equation (14), (ii) the first adjusted
velocity jump model (21) that approximates the Boltz-
mann term, and (iii) the second adjusted velocity jump
model (23) that was derived using the method of matched
asymptotic expansions. All individual-based simulations
are performed using an event-based kinetic Monte-Carlo
(KMC) [26] simulation of the velocity jump processes.
The main idea of this algorithm is that one can jump di-
rectly from one event to the other without missing events.
Models (i) and (ii) are valid only in the dilute gas limit,
i.e. we can only expect those to compare well to KMC
simulations for very small values of the area fraction c.
Model (iii) on the other hand should give good compar-
isons even for larger values of c.

We begin with investigating the collision frequency in
Section V A. We compare the KMC results with the re-
sults predicted by the Boltzmann equation. Then we
compare numerical solutions of all three models with
KMC simulations in Sections V B and V C. They are
solved using a first order explicit finite volume scheme in
a unit square domain Ω = [−0.5, 0.5] × [−0.5, 0.5]. We
discretise the velocity space into 40 velocity directions

and use a grid size of ∆x = 0.005 and a time step of
∆t = 10−4. The initial condition is given by

p(0,x,v) =


16
π |V |

for ‖x‖ ≤ 1
4
, v ∈ V ,

0, otherwise.
(24)

meaning that particles are uniformly distributed in the
ball of radius 1/4 around the origin with uniformly dis-
tributed velocities. For KMC simulations we apply a re-
sampling procedure to ensure none-overlapping particles.
In all simulations, we run the system until t = 0.05 and
use the parameter values λ = 200 and s = 20.

A. Numerical study of collision frequency

In this first study, we perform numerical experiments
that count the frequency of collisions from an individual
perspective. We use a unit square with periodic bound-
ary conditions in order to avoid boundary influences. In
these experiments the number of direction changes due
to collisions in the system is counted for a certain amount
of time and then divided by the number of particles and
by the run-time. The area fraction c and the collision
parameter κ are given by

κ = (N − 1)ε , and c =
1
4
Nπε2 . (25)

For a given pair (κ, c), the nearest integer value N and
an adequate value of ε is found and an experiment is
performed. In Figure 2(a), we can see how the collision
frequency λcoll depends on the value of κ and is on a
leading order scale independent of c. We have a linear
relationship, which can be estimated as

λcoll ≈ 2.55 s κ .

The linear dependence on s is necessary, seeing that an
increase in particle speed is equivalent to decreasing the
run time of the system and vice-versa. Using results from
the kinetic theory of gases [27], we can predict the fre-
quency of collisions to be

λcoll = 2 εN v ,

where v is the mean relative velocity which can be com-
puted by

v =
1
|V |2

∫
V

∫
V

‖v − u‖ dv du =
4s
π
.

Consequently, λcoll ≈ 8 s κ/π ≈ 2.55 s κ , which provides
an excellent match with the numerical results. We then
use this information to get additional insight into the in-
fluence of the area fraction (concentration) c, by plotting
the dependence of λcoll/sκ on c for different values of
κ in Figure 2(b). Interestingly, for small concentrations
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FIG. 2. (a) The dependence of collision frequency, λ, on κ
for different values of c.
(b) The dependence of collision frequency divided by κ (i.e.
λcoll/sκ) on c for different values of κ.
For both plots parameters and numerical methods are given in
the text.

(c < 0.05) this dependence does not change with κ and
forms a monotonically increasing function, such that

λcoll =
8s
π
κf(c) .

For the range of concentrations plotted in Figure 2(b),
we can approximate f(c) to be

f(c) ≈ 1 + 1.73c .

This first numerical investigation demonstrates that at
leading order the number of collisions depends linearly
on κ, as predicted by the Boltzmann equation. Addi-
tionally, we show that a dependence on the area fraction
is present. This dependence could be caused by grouping
effects when more than two particles are close together
and bump into each other repeatedly before they break
up.

# N ε κ c Figure

(A) 1001 4× 10−3 4 1.26× 10−2 Figure 3

(B) 201 2× 10−2 4 6.31× 10−2 Figure 4

TABLE I. Parameters for example simulations.

B. Distributions for two example simulations

In this section, we compare the three models with KMC
simulations for the two test cases (A) and (B) as shown
in Table I. Notably, in both of these test cases we have
κ = 4. As Model (i) as given in (14) only depends on
the vale of κ and not otherwise on s or ε, this model
will give the same result for both test cases (A) and (B)
and we therefore only plot this result once. The same
argument holds for Model (ii). The distributions can be
seen in Figure 3 for problem (A) and Figure 4 for problem
(B). In Figures 3(e) and 4(c), we show horizontal slices
through the relevant distributions at x2 = 0.5.

For case (A), we can see that all four plotted distribu-
tions look very similar and in particular all three Mod-
els (i)–(iii) seem to give a good approximation to the
KMC results. One can attribute this similarity to the
fact that example (A) contains a very small particle di-
ameter ε and therefore a small volume fraction, i.e. it is
close to the Boltzmann limit, where Models (i) and (ii)
are accurate. However, when looking at the slice in Fig-
ure 3(e), we can already see that Model (iii) shown as the
dash-dotted (green) line gives a much better approxima-
tion to the KMC simulations than the other two models.
Additionally, we can see that the results of Models (i)
and (ii) match each other well, as expected. Diffusion in
the KMC simulations seems to be enhanced compared to
the Boltzmann limit, as predicted by (22).

For case (B), the results shown in Figure 4 indicate
that the particles have spread considerably further than
in case (A). As mentioned above, the corresponding sim-
ulations for Models (i) and (ii) were already shown in
Panels (b) and (c) of Figure 3, respectively, and seem to
differ greatly from the KMC results. This is confirmed
in the slice plots in Figure 4(c), where neither Model (i)
nor Model (ii) match well with the KMC results. The
reason for this discrepancy is that the volume fraction
in test problem (B) is not negligible and this system is
therefore far from the dilute gas limit. Model (iii) shown
as dash-dotted (green) line in Figure 4(c), on the other
hand, shows a good match with the KMC simulations.
This result confirms the validity of the adjusted system
(23) as an approximation for particles undergoing a veloc-
ity jump process with reflective hard-sphere interactions
in the considered parameter region.
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FIG. 3. Comparison between KMC simulation and numerical solutions of continuum approximations for the parameters N =
1001, ε = 0.004 and consequently κ = 4. We use the initial condition given in (24), zero-flux boundary conditions and plot
distributions at time t = 0.05.

(a) KMC simulation for 1001 particles of diameter ε = 0.004.
(b) Numerical solution of Model (i) given by (14).
(c) Numerical solution of Model (ii) given by (21).
(d) Numerical solution of Model (iii) given by (23).
(e) Slice through the distributions at x2 = 0. Dashed (blue) line: Model (i); dotted (red) line: Model (ii);

dash-dotted (green) line: Model (iii); black circles: KMC simulation.
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FIG. 4. Comparison between KMC simulation and numerical solutions of continuum approximations for the parameters N =
201, ε = 0.02 and consequently κ = 4. We use the initial condition given in (24), zero-flux boundary conditions and plot
distributions at time t = 0.05.

(a) KMC simulation for 201 particles of diameter ε = 0.02.
(b) Numerical solution of Model (iii) given by (23).
(c) Slice through the distributions at x2 = 0.5. Dashed (blue) line: Model (i) (distribution given in Figure 3(b));

dotted (red) line: Model (ii) (distribution given in Figure 3(c)); dash-dotted (green) line: Model (iii);
black circles: KMC simulation.

C. Numerical comparison for changing parameter
values

In order to further investigate the parameter regions in
which each of the adjusted models gives a good match
to the KMC simulations, we now perform a numerical
investigation for varying parameter values. The condi-
tion that particles do not overlap during the initialisation
process, presents a limit to the parameter regime we can
investigate. The parameter values are shown in Table II.

In order to compare the distributions at the end of the
simulation, we define the mean distance from the centre

(MDC) for KMC simulations through

〈‖xi − (0, 0)‖〉 =
1
N

N∑
i=1

‖xi‖ .

During the simulations, we choose a number of runs such
that N multiplied by the number of runs is at least 106

and take the average MDC over all those runs. The MDC
for the PDE description takes the form∫

Ω
‖x‖

∫
V
p(t,x,v) dv dx∫

Ω

∫
V
p(t,x,v) dv dx

.

Note that we explicitly only use this measure to compare
the various distributions. We do not use this measure
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N ε κ c

Figure 5(a) 50 0, . . . , 4× 10−2 0, . . . , 1.96 0, . . . , 6.28× 10−2

Figure 5(b) 1, . . . , 250 2× 10−2 0, . . . , 4.98 3.14× 10−4, . . . , 7.82× 10−2

Figure 5(c) 100, . . . , 2000 3× 10−2, . . . , 1.5× 10−3 3 7.21× 10−2, . . . , 3.5× 10−3

Figure 5(d) 6, . . . , 400 0.11, . . . , 1.26× 10−2 0.55, . . . , 5.03 5× 10−2

TABLE II. Parameter ranges for simulations in Figure 5.

to derive diffusion constants and this measure does not
correspond to the mean square displacement of particles
during the simulation. This is important to note, be-
cause Bruna and Chapman [8] show that the mean square
displacement is not an adequate measure for the collec-
tive diffusion constant, but for the self diffusion constant.
However, because we are only using the MDC as a mea-
sure of the width of the distributions at the end of the
simulations, it is a valid measure for the comparison be-
tween PDE Models (i)–(iii) and KMC simulations.

The results of this comparison can be seen in Figure 5.
In all four plots, the dotted (red) line indicates the uncor-
rected velocity jump equation (1) that does not consider
collisions at all. The dashed (blue) line indicates the first
correction given in (21) (Model (ii)) and the dash-dotted
(green) line shows the second correction given in (23)
(Model (iii)). The (black) solid line shows the results
obtained from KMC simulations. Note that we do not in-
clude Model (i) in this consideration, because the results
are expected to be very similar to those of Model (ii).

In Figure 5(a) we plot the results for simulation runs
with N = 50 and varying ε ∈ [0, 0.04]. We can see that
the MDC in KMC simulations, as well as in Model (iii),
undergoes a non-monotonic behaviour with a minimum
close to ε = 0.02. Model (ii) does not show such a be-
haviour, as κ is monotonically increasing with ε and dif-
fusion is therefore increasingly slowed down. This model
matches the KMC results well for very small values of ε,
whilst Model (iii) provides a good match for values up
to ε ∼ 0.02. Above this value the KMC simulations and
the second correction (23) start to diverge and one would
need to consider further correction terms to achieve an
accurate approximation in this regime. Interestingly for
values of ε greater than about 0.034 the hard-sphere par-
ticles actually spread faster than point particles.

The second experiment shown in Figure 5(b) plots the
dependence of MDC on N as we keep ε = 0.02 constant.
We can see that the MDC decreases monotonically in
the KMC simulations as well as in the PDE models. The
first correction (21) does not provide a good match for
N bigger than about 5, whilst Model (iii) improves this
match up to intermediate values of N . We see that for
large values of N > 100 the KMC simulation spreads
faster than both approximations, but slower than point
particles.

Figure 5(c) presents the results for a constant value
of κ. As is clear from the formulation of Model (ii) in
(21), the first correction solely depends on κ and there-

fore provides a horizontal line in this case. The KMC
simulations show higher values of MDC for lower values
of N , i.e. in a regime far away from the Boltzmann limit.
As we approach the Boltzmann limit when N →∞, the
KMC simulations converge towards the value provided
by Model (ii). As should be clear from the definition of
Model (iii) in (23), the second approximation undergoes
a similar behaviour and provides a very good match to
the KMC simulations throughout.

In the last experiment we keep the area fraction of par-
ticles in the simulation constant, i.e. c = πNε2/4 = 0.05
and vary N and ε. The KMC simulations, as well as the
PDE models, show monotonically decreasing values for
the MDC throughout the considered parameter regime.
Investigating the forms of the first and second corrections
in (21) and (23) respectively, it becomes clear that the
diffusion vanishes in the limit N →∞ when keeping the
volume fraction constant. The reason for this is that κ
goes to infinity in this limit. Therefore, we should expect
the KMC results to converge towards the MDC of the
initial condition for large values of N . In Figure 5(d),
we can see that Model (ii) provides significantly differ-
ent results to the KMC simulations in this regime that is
far from the dilute gas limit. Model (iii) does not pro-
vide a perfect match to the simulation results either, but
provides a significant improvement over Model (ii).

We conclude from this numerical study that the first
approximation (Model (ii)) provides a good match to
KMC simulations when a system close to the Boltzmann
limit is considered. As one moves away from this limit
and the area fraction becomes non-negligible, the sec-
ond correction term (Model (iii)) provides an improved
match. However, even this correction is only valid up
to certain limits in area fraction c. One would have to
consider additional terms of the Taylor expansion of the
two-particle probability distribution to derive more ac-
curate results for larger values of c.

VI. DISCUSSION

We have studied the effect of reflective collisions (2)
on the diffusive behaviour of a group of particles that
follow a velocity jump process. These reflective colli-
sions differ from the fully elastic collisions (3) observed
in gas molecules [27]. It is nevertheless interesting to
study those reflective collisions, because they correspond
more closely to behaviour seen in animal swarms [19, 28],
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FIG. 5. Comparison between KMC simulation and numerical solutions of velocity jump processes with adjustments for collisions.
Solid (black) line: KMC simulations; dotted (red) line: classical velocity jump equation (1); dashed (blue) line: Model (ii);
dash-dotted (green) line: Model (iii). The simulation parameters are given in Table II.

where animals aim to avoid each other but evidently can-
not transfer momentum. Reflective collisions conserve
speed and can be used for modelling systems where all
particles move with the same speed. We have studied
such systems in this paper by assuming that the velocity
space is given by (4). If we used elastic collisions (3),
then some particles would have velocities v′ 6∈ V after
collisions. We would have to either adjust their speeds
to s by modifying the running part of the velocity jump
process, or remove these particles from the system. New
particles with speed s would then have to be introduced
to keep the number of particles N constant [29]. These
technical issues have been avoided in this paper by using
reflective collisions (2).

Starting from the BBGKY hierarchy [20, 21] we de-
veloped a number of PDE descriptions that we com-
pared numerically to results obtained from individual-
based KMC simulations. The first model we introduced

stems from the Boltzmann equation [18] that is used in
fluid flow simulations [30]. Using Cattaneo approxima-
tions [24] we then study the effect which the additional
collision term has on the diffusive behaviour of the group
of particles. We show that in the dilute gas limit colli-
sions are always slowing down the collective diffusion. We
then attempted to move away from the dilute gas limit
and to introduce finite sized particles, using a matched
asymptotic expansion approach adapted similar to that
in [7]. Using the Cattaneo approximation again, we have
derived equation (22) for the collective diffusion coeffi-
cient. This diffusion coefficient is larger than the one in
the dilute gas limit. One can compare the results for
velocity jump processes obtained in this work to the ex-
cluded volume methods in BD simulations [7] by consid-
ering the limit s, λ → ∞, keeping s2/2λ = D0 constant.
In this limit, the adjusted diffusion constant given by
equation (22) takes the form Deff(%) = D0 (1 + κεπ%) ,
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which is indeed the form given by Bruna and Chapman
[7, 8]. This indicates that the results shown in this paper
are consistent with those for Brownian particles.
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