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Abstract. Several different methods exist for efficient approximation of paths in multiscale
stochastic chemical systems. Another approach is to use bursts of stochastic simulation to estimate
the parameters of a stochastic differential equation approximation of the paths. In this paper,
multiscale methods for approximating paths are used to formulate different strategies for estimating
the dynamics by diffusion processes. We then analyse how efficient and accurate these methods are
in a range of different scenarios, and compare their respective advantages and disadvantages to other
methods proposed to analyse multiscale chemical networks.

1. Introduction. A well-mixed chemically reacting system in a container of
volume V is described, at time t, by its N -dimensional state vector

X(t) ≡ [X1(t), X2(t), ..., XN (t)], (1.1)

where N is the number of chemical species in the system and Xi(t) ∈ N0, i =
1, 2, . . . , N , is the number of molecules of the i-th chemical species at time t. As-
suming that the chemical system is subject to M chemical reactions

N∑
i=1

ν−j,iXi
kj−→

N∑
i=1

ν+
j,iXi, j = 1, . . . ,M, (1.2)

the time evolution of the state vector X(t) can be simulated by the Gillespie SSA [13]
which is described in Table 1.1. Here, ν+

j,i and ν−j,i are stoichiometric coefficients and

νj,i = ν+
j,i − ν

−
j,i. Step [1] of the algorithm in Table 1.1 requires to specify propensity

functions which are, for mass-action reaction kinetics, given by

αj(x) = kj exp

[(
1−

N∑
i=1

ν−j,i

)
log V

]
N∏
i=1

(ν−j,i)!

(
xi
ν−j,i

)
, j = 1, 2, . . . ,M. (1.3)

Given the values of the propensity functions, the waiting time to the next reaction is
given by:

τ = − log (u)

α0(X(t))
, where α0(X(t)) =

M∑
k=1

αk(X(t)) (1.4)
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[1] Calculate propensity functions αk(X(t)), k = 1, 2, . . . ,M .

[2] Waiting time τ till next reaction is given by (1.4).

[3] Choose one j ∈ {1, 2, . . . ,M}, with probability αj(X(t))/α0(X(t)), and perform
reaction Rj , by adding νj,i to each Xi(t) for all i = 1, 2, . . . , N .

[4] Continue with step [1] with time t = t+ τ .

Table 1.1
The pseudo code for the Gillespie SSA.

and u ∼ U([0, 1]). The Gillespie SSA in Table 1.1 is an exact method, in that the
trajectories simulated using this algorithm evolve exactly as described by the corre-
sponding chemical master equation1 (CME). Equivalent and more efficient formula-
tions of the Gillespie SSA have been developed in the literature [3, 12]. However, in
certain circumstances they can still be very computationally intensive. For instance,
if the system that is being simulated has some reactions which are likely to occur
many times on a timescale for which others are unlikely to happen at all, then a lot of
computational effort is spent on simulating the fast reactions, when a modeller may
well be more interested in the results of the slow reactions [17]. In this paper, we will
focus on approximate algorithms for such fast-slow systems.

We refer to reactions which have high average propensities, and whose reactions
may occur many times on a time scale for which others are unlikely to happen at
all, as fast reactions. Slow reactions are those reactions which are not fast reactions.
In reality, there may be several different timescales present in the reactions of a
particular system, but for simplicity we assume there is a simple dichotomy [22]. We
may be interested in analysing the dynamics of the “slow variable(s)”, which are
chemical species (or linear combinations of the species) which are invariant to the fast
reactions, and therefore are changing on a slower timescale [5].

Efforts have been made to accelerate the Gillespie SSA for multiscale systems. The
Nested Stochastic Simulation Algorithm (NSSA) is such a method [7]. The reactions
are split into “fast” and “slow” reactions. The idea of the NSSA is to approximate the
effective propensities of the slow reactions in order to compute trajectories only on
the slow state space. This is done by using short bursts of stochastic simulation of the
fast reaction subsystem. The Slow-Scale Stochastic Simulation Algorithm (SSSSA) [2]
comes from a similar philosophy. Instead of using stochastic simulations to estimate
the effective propensities of the slow reactions, they are instead found by solving
the CME for the fast reactions (whilst ignoring the slow reactions). This has the
advantage that it does not require any Monte Carlo integration, however it is limited
to those systems for which the CME can be solved or well approximated for the
fast subsystem, which may not be applicable to some complex biologically relevant
systems.

Both of these methods use a quasi-steady state approximation (QSSA) in order
to speed up the simulation of a trajectory on the slow state space [23]. Another ap-
proach is to approximate the dynamics of the slow variable by a stochastic differential
equation (SDE). One can either use short bursts of the Gillespie SSA on a range of
points on the slow state space to approximate the effective drift and diffusion of the

1The CME is a high/infinite dimensional set of ordinary differential equations which describe the
time evolution of the probability of being in a particular state of the system.
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slow variable [10] or the Constrained Multiscale Algorithm (CMA) [5] which utilises a
modified SSA that constrains the trajectories it computes to a particular point on the
slow state space. These algorithms can be further extended to automatic detection of
slow variables [8, 25, 6], but, in this paper, we assume that the division of state space
into slow and fast variables is a priori known and fixed during the whole simulation.

The advantage of the SDE approximation methods [5, 10], is that the estimation
of the drift and diffusion terms can be easily parallelised, giving each process a subset
of the grid points on the slow state space. This means that if a user has access to
high performance computing facilities, then the analysis of a given system can be
computed relatively quickly. This is not the case for trajectory-based methods. One
could run many trajectories in parallel [20], however if the aim is to analyse slow
behaviours such as rare switches between stable regions, each trajectory will still have
to be simulated for a long time before such a switch is possible, regardless of the
number of trajectories being computed simultaneously.

In this paper, we take the approach that we would like to approximate the dy-
namics of the slow variable S by a continuous SDE, in the same vein as other previous
works [5, 9]. We wish to estimate the effective drift V and diffusion matrix D of the
slow variable, resulting in approximate dynamics given by:

dS = V(S) dt+
√

2D(S) dW. (1.5)

Here dW denotes standard canonical Brownian motion in N dimensions. In this paper
we will focus on examples where the slow variable is one dimensional, although these
results can be extended to higher dimensions [5]. The one-dimensional Fokker-Planck
equation (FPE) corresponding to SDE (1.5) is given by:

∂p

∂t
=

∂

∂s

(
∂

∂s

[
D(s)p(s, t)

]
− V (s)p(s, t)

)
. (1.6)

In Section 2 we introduce five methods for simulation of multiscale stochastic
chemical systems, including two novel approaches: the Nested Multiscale Algorithm
(NMA) in Section 2.4 and the Quasi-Steady State Multiscale Algorithm (QSSMA) in
Section 2.5. In Section 3 we compare the efficiency and accuracy of the CMA, NMA
and QSSMA for a simple linear system, for which we have an analytical solution
for the CME. Then in Section 4 we apply CMA, NMA and QSSMA to a bimodal
example. Finally, we discuss the relative accuracy and efficiency of these methods
against others proposed in the literature and summarise our conclusions in Section 5.

2. Multiscale Algorithms. We review three algorithms (CMA, NSSA and
SSSSA) previously studied in the literature in Sections 2.1-2.3. In Section 2.4 we in-
troduce the NMA, which combines ideas from the CMA and the NSSA. The QSSMA
is then introduced in Section 2.5.

2.1. The Constrained Multiscale Algorithm. The CMA is a numerical
method for the approximation of the slow dynamics of a well-mixed chemical system
by a SDE, of the form (1.5) which is for a one-dimensional slow variable S written as
follows:

dS = V (S) dt+
√

2D(S) dW. (2.1)

The effective drift V and effective diffusion D at a given point S = s on the slow
manifold are estimated using a short stochastic simulation. This simulation (called
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[1] Calculate propensity functions αi(t), i = 1, 2, . . . ,M .

[2] Next reaction time is given by (1.4).

[3] Choose one j ∈ {1, . . . ,M}, with probability αj/α0, and perform reaction Rj .

[4] If S 6= s due to reaction j occurring, then reset S = s while not changing the
value of F.

[5] If Xi < 0 for any i, then revert to the state of the system before the reaction j
occurred.

[6] Continue with step [1] with time t = t+ τ .

Table 2.1
The Conditional Stochastic Simulation Algorithm (CSSA). Simulation starts with S = s where

s is a given value of the slow variable.

the Constrained SSA, CSSA) is similar to that seen in the Gillespie SSA for the full
system, although it is constrained to a particular value of the slow variable S. The
CSSA is given in Table 2.1 where F is the vector of fast variables and S is the slow
variable. To estimate the effective drift and diffusion, statistics are collected about
the type and frequency of the changes dS of the slow variable which is reset in step
[4] of the CSSA. For a simulation of length T (s), the estimations are given by

V (s) =
1

T (s)

Q(T (s)))∑
m=1

dSm, (2.2)

D(s) =
1

2T (s)

Q(T (s))∑
m=1

(dSm)
2
, (2.3)

where dSm is the change in S due to the m-th iteration of the CSSA before the reset
is made in step [4], T (s) is the chosen length of CSSA simulation, and Q(T (s)) is the
number of iterations of the CSSA that are made up to time T (s).

By computing these quantities over a range of values of the slow variable, approxi-
mations can then be found, using standard methods, to the solution of the steady-state
Fokker Planck equation (1.6) for the SDE with drift V and diffusion D.

2.2. The Nested Stochastic Simulation Algorithm. The NSSA [7] is a
method for the reduction of computational complexity of simulating the slow dynamics
of a multiscale chemical system. The reactions in the system are partitioned into fast
reactions {Rf1 , Rf2 , . . . Rfn} and slow reactions {Rs1 , Rs2 , . . . Rsm}, where M = n+m
is the total number of different reactions. We are interested in the occurrences of the
slow reactions, but the computational effort is dominated by the simulation of the
fast reactions in the standard SSA given in Table 1.1. However, some/all of the slow
reactions are dependent on the value of the fast variables. In the NSSA, the effective
propensities of the slow reactions are estimated by using short simulations of only
the fast reactions. Using these effective propensities, the Gillespie algorithm can be
applied to just the slow reactions. In systems for which the QSSA is reasonable,
this algorithm can simulate trajectories of the slow variables at a fraction of the
computational cost of the full Gillespie SSA. It effectively reduces the system to a
lower dimensional chemical system where all of the reactions are “slow”, with reaction
rates estimated (where required) using relatively short bursts of stochastic simulation
of the fast reactions from the full system.
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2.3. The Slow-Scale Stochastic Simulation Algorithm. The SSSSA [2]
similarly aims to reduce the full system to a system which contains only the slow
reactions. In this algorithm, the effective propensities are calculated not by stochastic
simulation, as in the NSSA, but through application of the QSSA. For some classes of
fast sub-systems, the effective propensity can be explicitly calculated. For others, the
value can be approximated using formulae given in [2]. Since there is no requirement to
simulate the fast sub-system as in the NSSA, the speed-up in simulation of trajectories
as compared with the Gillespie algorithm is very large. In some cases non-linear
equations may need to be solved to find the first or second moments of the value of
the fast quantities, using Newton’s method, but even in the worst case scenario the
overall computational cost is far less than Monte Carlo sampling.

2.4. The Nested Multiscale Algorithm. The NMA is a new method, which
allows for efficient approximation of multiscale systems by a SDE. As in the CMA, our
aim is to approximate values for the effective drift and diffusion of the slow variables
within the system on a set of grid points. At each grid point, we simulate the fast
sub-system, which allows us to approximate the effective propensities for the slow
reaction. The drift and diffusion terms are then given by the chemical FPE [4, 11, 21]
for the system with only the slow reactions present, with the values for the effective
propensities substituted in.

For example, say we have n slow reactions, with effective propensities {ᾱi}ni=1,
and with stoichiometric vectors νi,S . Here νi,S is the change in the slow variable due
to the reaction Ri. In the case that the slow variable is the jth chemical species, then
νi,j , but it may be more complex if the slow variable depends on several chemical
species. Then, for a 1-dimensional slow variable, the drift V and diffusion D are given
by:

V (s) =

n∑
i=1

ᾱi(s)νi,S , (2.4)

D(s) =
1

2

n∑
i=1

ᾱi(s)ν
2
i,S . (2.5)

The NMA has the advantage over the CMA that it converges on the timescale of
the fast variables, whereas the CMA converges on the timescale of the slow variables.

2.5. The Quasi-Steady State Multiscale Algorithm. The QSSMA follows
a similar theme as the NMA, except this time we use the methodology of [2] to
approximate the effective propensity functions. A QSSA is used to derive the value
of these functions, as in the slow-scale SSA (as detailed in Section 2.3). Once the
effective propensities have been calculated, the formulae (2.4)–(2.5) for the drift V
and diffusion D can once again be used to approximate the dynamics of the slow
variable by a SDE of the form (2.1). The QSSMA does not require any stochastic
simulation in order to estimate the effective drift and diffusion functions, and thus
we see remarkable speed-ups when compared with the CMA. However, as with the
NMA, other errors come into play that are not present in the approximations arising
from the CMA.

3. Efficiency and Accuracy of the Schemes. In this section, we aim to test
the efficiency and accuracy of the three schemes (the CMA, and the newly proposed
NMA and SSMA). To test the algorithms, we choose a simple multiscale system of
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two chemical species X1 and X2 in a reactor of volume V undergoing the following
four reactions:

R1 : ∅ k1−→ X1

R2 : X2
k2−→ ∅ (3.1)

R3 : X1
K−→ X2

R4 : X2
K−→ X1.

We will study this system for large values of parameter K � k1V +k2. Then reactions
R3 and R4, occur many times on a timescale for which reactions R1 and R2 are unlikely
to happen at all. In such a regime, one might consider using multiscale methods to
reduce the computational cost of analysing the system. The slow quantity in this
system is S = X1 +X2. Note that this quantity is invariant with respect to the fast
reactions, and so only changes when either of slow reactions (R1 or R2) occur.

The analytical solution of the steady state CME is given by the following multi-
variate Poisson distribution [18]:

P(X1 = x1, X2 = x2) =
λx1

1 λx2
2

x1!x2!
exp
[
− (λ1 + λ2)

]
, (3.2)

where λ1 = k1V/k2 and λ2 = λ1(K + k2)/K. Let P(λ) be the Poisson distribution
with rate λ which is defined by its probability mass function

P(X = x) =
λx

x!
exp(−λ).

Using (3.2), we obtain that the exact distribution of the slow variable S = X1 +X2 is

P(λ0), where λ0 = λ1 + λ2 =
k1V

k2

(
2 +

k2

K

)
. (3.3)

In the rest of this section, we use (3.3) to compare the accuracy and efficiency of the
CMA, NMA and SSMA. Each of the three algorithms gives us a different method to
approximate the effective drift and diffusion of the slow variable at a given point on
the slow manifold. For each method there are several sources of error, and in this
section we aim to identify the effect of each, for each method.

3.1. Quasi-steady state assumption error. The NMA and QSSMA both
assume that the reactions can be partitioned into fast and slow reactions. Both of
these methods rely on the assumption that the fast reactions enter equilibrium on a
much faster (or even instantaneous) timescale in comparison with the slow reactions.
This assumption leads to the approximation that the dynamics of the slow variables
can be described well by a system consisting only of the slow reactions. For example,
we assume that the variable S = X1+X2 in the system (3.1) can be well approximated
by the system:

∅
k̄1−→←−
k̄2

S. (3.4)

The two methods (NMA and QSSMA) differ in their calculation of the effective re-
action rates, k̄1 and k̄2. We denote the effective propensities for these two reactions
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ᾱ1(s) and ᾱ2(s) respectively. We will now isolate the error that is incurred by approxi-
mation of the full system by the reduced system written in terms of the slow variables.
Slow reaction R1 does not depend on the value of the fast variables. Consequently,
we have

ᾱ1(s) = k1V and k̄1 = k1.

The second effective rate k̄2 in (3.4) has to be calculated, because reaction R2 includes
fast variables. The average values of X1 and X2 for the fast system (reactions R3 and
R4 in (3.1)), for a given value of S = s, is [1, 30]

E
(
X1|S = s

)
= E

(
X2|S = s

)
=
s

2
.

Therefore, we have

ᾱ2(s) = k2 E
(
X2|S = s

)
=
k2 s

2
and k̄2 =

k2

2
.

The probability density of S is then given by the Poisson distribution

P(λQSSA), where λQSSA =
2 k1V

k2
. (3.5)

We define the error incurred by the QSSA by

errorQSSA =
‖P(λQSSA)− P(λ0)‖2
‖P(λQSSA)‖2

. (3.6)

Comparing (3.3) and (3.5), we have

λ0 = λQSSA +
k1V

K
.

Therefore error (3.6) can be approximated for large K � 1 by

errorQSSA =
1

‖P(λQSSA)‖2

√√√√ ∞∑
n=0

(
λxQSSA

x!
exp(−λQSSA)− λx0

x!
exp(−λ0)

)2

≈ O(K−1).

Figure 3.1(a) shows error (3.6) a function of K. This plot confirms that this error
decays like K−1 as K increases (gradient of linear part of plot is equal to −0.998).

The limitations of the stochastic quasi-steady-state approximation are looked at
in detail in [28].

3.2. Diffusion Approximation Error. One of the sources of the error, com-
mon across all of three methods (CMA, NMA, QSSMA), is that we are approximating
a Markov jump process which has a discrete state space (the non-negative integers),
by a SDE with a continuous state space (the positive real numbers). To see the effect
of this, let us consider the simple birth-death chemical system (3.4). The steady state
solution to the CME for this system is given by the Poisson distribution (3.5). The
closest approximation that we can get to this process with an SDE, is the chemical
Langevin equation [14]. The corresponding stationary FPE for this system is

1

2

∂2

∂s2

((
k̄1 + k̄2s

)
p(s)

)
− ∂

∂s

((
k̄1 − k̄2s

)
p(s)

)
= 0. (3.7)
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Fig. 3.1. (a) Plot of error (3.6), incurred by the QSSA for the system (3.1) with reaction
parameters given k1 = k2 = 1 and V = 100, as a function of K.
(b) Blue plot shows error (3.9) as a function of λQSSA, for the system (3.4). Red plot shows value
of P(λQSSA)(0) as a function of λQSSA.

It can be explicitly solved to get [26].

p(s) = C exp(−2s)(s+ λQSSA)4λQSSA−1, (3.8)

where C is determined by normalisation
∫
p(s) ds = 1. Here the integral is assumed

to be taken over s ≥ 0 (if we want to interpret s as concentration) or s ≥ −λQSSA (if
we do not want to impose artificial boundary conditions at s = 0). Considering more
complicated systems, it is more natural to assume that the domain of the chemical
Langevin equation is a complex plane [24].

Suppose we now wish to quantify the difference between probability distributions
(3.5) and (3.8) as a function of λQSSA. The first issue that we come across is that
the solution of the steady-state CME is a probability mass function, and the solution
to the steady-state FPE is a probability density function. However, we can simply
integrate the probability density function over an interval of size one centered on each
integer, to project this distribution onto a discrete state space with mass function
PFPE so that the two distributions can be compared:

PFPE(n) =

∫ n+1/2

n−1/2

P (s) ds.

Another issue is to specify the treatment of negative values of s. In our case we
truncate the distribution for s ≥ 0. We can then exactly calculate PFPE to get

PFPE(n) =
1

Γ(4λQSSA)− γ(4λQSSA, 2λQSSA)

(
γ(4λQSSA, 2n+1+2λQSSA)−γ(4λQSSA, 2n−1+2λQSSA)

)
,

where γ(k, x) =
∫ x

0
zk−1 exp(−z) dz denotes the lower incomplete gamma function

and Γ(k) =
∫∞

0
zk−1 exp(−z) dz is the gamma function. Then we can consider the l2

difference between these two distributions for a given value of λQSSA,

errorFPE =
‖PFPE − P(λQSSA)‖2
‖P(λQSSA)‖2

=

√√√√ ∞∑
n=0

(
PFPE(n)−

λnQSSA

n!
exp[−λQSSA]

)2

. (3.9)
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Figure 3.1(b) shows how errorFPE decays as λQSSA increases. The slightly odd sickle
shaped error curve for small λQSSA is due to the probability mass of P(λQSSA) being
peaked close to (or at) zero. In this region the diffusion approximation is very poor.
To illustrate this, the value of P(λQSSA) at s = 0, i.e. exp[−λQSSA], is also plotted
in Figure 3.1(b) (red curve). Once the peak of the probability mass has moved far
enough away from zero, then the error is no longer dominated by being too close to
zero, and decays inversely proportional to λQSSA (gradient of log-log plot is −1.044).

In the 2000 paper by Gillespie [14] on the chemical Langevin equation, a condi-
tion is put on the types of system which are well approximated by a diffusion. The
probability of the system entering a state where the copy numbers of one or more of
the chemical species in the state vector are close to zero must be small. Otherwise
the approximation becomes poor. In the case of diffusion approximations of the slow
variable(s) of a system, the trajectories must likewise stay away from regions of the
state-space with low values of the slow variable(s). Further discussions and results
regarding the accuracy of the chemical Langevin and Fokker-Planck equations can be
found in [16].

3.3. Monte Carlo Error. The CMA and NMA both employ bursts of stochas-
tic simulations to estimate the effective drift and diffusion of the slow variable. The
main advantage of the QSSMA is that no such computation is required.

In the case of the CMA, as described in Section 2.1, the full system is simulated,
including fast and slow reactions. The computed trajectory is constrained to a partic-
ular value of the slow variables, and so whenever a slow reaction occurs, the trajectory
is projected back onto the same point on the slow manifold. The effective drift and
diffusion at that point on the slow manifold are functions of statistics about the rela-
tive frequency of these slow reactions. As such, as given by the central limit theorem,
the error in these estimations are mean zero and normally distributed, with variance
proportional to N−1

S , where NS is the number of slow reactions simulated during the
estimation. Since it is necessary to simulate all of the fast and slow reactions in the
system, depending on the difference in timescales this can be very costly. Since the
ratio of occurrences of fast reactions to slow reactions is proportional to K, the cost
of the estimation is O(KNS).

In comparison, the NMA, as described in Section 2.4, is only concerned with
finding the average value of the fast variables through a Gillespie SSA simulation of
only the fast variables. Therefore, the Monte Carlo error is again mean zero and
normally distributed, with variance N−1

F , where NF is the number of fast reactions
simulated. Since we only simulate the fast reactions, the cost of the estimation is
O(NF ). Therefore, the cost of estimation for the CMA is approximately K-times
that of the NMA for the same degree of accuracy.

3.4. Approximation of the solution of the stationary FPE. All three of
the algorithms (CMA, NMA, QSSMA) also incur error through discretisation errors
in the approximation of the solution to the steady-state FPE (1.6). The error of
such an approximation is dependent on the method used, such as the adaptive finite
element method used for three-dimensional chemical systems in [4]. In this paper
we are mainly interested in the accuracy of the various methods for estimating the
effective drift and diffusion functions, and as such we aim to simplify the methods
for solving this PDE as much as possible. Therefore we will only consider systems
with one-dimensional slow variables. The steady state equation corresponding to FPE
(1.6) is then effectively an ordinary differential equation, and one which can be solved
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Source of Error CMA NMA QSSMA
Diffusion approximation 4 4 4

QSSA 6 4 4
Monte Carlo error Cost - O(KNS) Cost - O(NF ) 6

PDE approximation 4 4 4
Table 3.1

Table to summarise the sources of error of the three algorithms.

directly [14] to obtain

PS(s) =
C

D(s)
exp

(∫ s

0

V (z)

D(z)
dz

)
, (3.10)

where C is the normalisation constant. With approximations of V and D over a range
of values of s (through implementation of the CMA, NMA or QSSMA), the integral
in this expression can be evaluated using a standard quadrature routine (for instance
the trapezoidal rule). The errors incurred here will be proportional to the grid size to
some power, depending on the approximation method used.

3.5. Comparison of Sources of Error. Table 3.1 summarises the analysis of
the errors of the various methods that we have looked at in this section. Each method
has advantages and disadvantages, depending on the type of system which a modeller
wishes to apply the methods to. All of the methods use diffusion approximations, and
as such, if the slow variables of the system of interest cannot be well approximated
by a diffusion, then none of the proposed methods are suitable. If the QSSA does
not hold for the system, then the CMA is the best choice. If it does hold, and the
analytical solution for the effective propensities is available to us, then the QSSMA is
the best choice, since it does not incur Monte Carlo, and is the least expensive of the
three algorithms. Finally, if no such analytical solution is available, but the QSSA
still holds, then the NMA is the best choice of algorithm, since it converges faster
than the CMA.

Next, we apply the three methods to three different parameter regimes of the
system given by (3.1). In each of the experiments, we set k1 = k2 = 1 and V = 100
and we vary K. We use K = 10, K = 200 and K = 103. In each case, the CMA, NMA
and the QSSMA are all applied to the system over the range of values S = X1 +X2 ∈
[101, 300]. This range is chosen since the invariant distribution of the slow variable
(3.3) is the Poisson random variable with intensity λ0 = 200 + 100/K, and therefore
the vast majority of the invariant density is contained with this region for all three
parameter regimes. Furthermore, we implemented these algorithms on a computer
with four cores, and to optimise the efficiency of parallelisation it was simplest to
choose a domain with the number of states divisible by 4, hence the region starting
at 101 as opposed to 100. For the CMA and the NMA, a range of different numbers
of reactions were used in order to estimate the drift and diffusion parameters at each
point, NS , NF ∈ {101, 102, . . . , 109, 1010}. Each code was implemented in C, and
optimised to the best of the authors’ ability, although faster codes are bound to be
possible. The number of CPU cycles used was counted using the C time library.
The CPU cycles used over all 4 cores were collated into a single number for each
experiment.

The results of these experiments are shown in Figure 3.2. Note that the results of
the QSSMA and NMA are unaffected by a change in the value of K. In the case of the
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Fig. 3.2. (a) Error (3.11) of the CMA (blue), NMA (red) and the QSSMA (black) as the
function of the computational effort for the chemical system (3.1) with parameter values k1 = k2 = 1,
V = 100 and K = 10. For illustrative purposes the single value of the QSSMA error is plotted as a
horizontal line. Actual computation time for the QSSMA is negligible.
(b) As in panel (a), with K = 200.
(c) As in panel (a), with K = 103.
.

NMA, a change in the value of this variable simply scales time in computation of the
fast subsystem, but does not affect the result. As such, only one run was necessary
for these methods for the three different parameter regimes. The three plots for the
NMA use the same simulations, but since the true distribution of the slow variable is
affected by the change in K, the error plots differ across the three parameter regimes.
In Figure 3.2 we plot the total relative error

error =
‖Papprox − P(λ0)‖2

‖P(λ0)‖2
, (3.11)

where Papprox is the steady state distribution of the slow variable obtained by the
corresponding method and P(λ0) is the exact solution given by (3.3). Figure 3.2(a),
with K = 10, denotes a parameter regime in which the QSSA produces a great deal of
error. The NMA error quickly converges to the level seen in the QSSMA, but neither
method can improve beyond this. The error seen from the CMA improves on both of
these methods with relatively little computational effort. One might argue that the
system is not actually a “true” multiscale system in this parameter regime, but the
CMA still represents a good method for analysis of the dynamics of such a system,
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since its implementation can be parallelised in a way which scales linearly with the
number of cores used.

Figure 3.2(c) shows a parameter regime which is highly multiscale. In this regime,
the QSSA is far more reasonable, and as such we see vastly better performance from
the NMA and QSSMA methods. However, eventually the CMA still has a higher
accuracy than these two other approaches, although at not inconsiderable computa-
tional cost. In this case, the error incurred by the QSSA may be considered small
enough that a modeller may be satisfied enough to use the QSSMA, whose costs are
negligible. For more complex systems, the CME for the fast subsystem may not be
exactly solvable, or even easily approximated, and in these cases the NMA would
be an appropriate choice. If a more accurate approximation is required, once again
the CMA could be used. In summary, even for simple system (3.1), with different
parameter regimes, different methods could be considered to be preferable.

4. A bistable example. In this section, we will compare the presented methods
for a multiscale chemical system which is bimodal, with trajectories switching between
two highly favourable regions [5]:

X2

k1−→←−
k2

X1 +X2, ∅
k3−→←−
k4

X1, X1 +X1

k5−→←−
k6

X2. (4.1)

One example of the parameter values for which this system is bistable for is given by:

k1 = 32,
k2

V
= 0.04, k3V = 1475, k4 = 19.75,

k5

V
= 10, k6 = 4000. (4.2)

In this regime, reactions R5 and R6 (with rates k5 and k6 respectively) are occurring
on a much faster time scale than the others. This can be seen in Figure 4.1, which
shows the cumulative number of occurrences of each reaction in this system, simulated
using the Gillespie SSA, given in Table 1.1. Both the species X1 and X2 are fast
variables, since neither is invariant to the fast reactions. As in [5], we pick a slow
variable which is invariant to reactions R5 and R6, S = X1 + 2X2. We now aim to
compare the efficiency and accuracy of the CMA, NMA and QSSMA in approximating
the stationary distribution in two different parameter regimes, with different spectral
gaps between the fast and slow variables. This can be done by altering the values of
rates k5 and k6.

One issue with using such a system, is that we cannot compute the analytical
expression for the invariant density. Therefore, we compare with an accurate approx-
imation of the invariant density.

4.1. Application of the NMA, QSSMA and CMA to reaction system
(4.1). For the NMA and the QSSMA, we assume that reactions R5 and R6 are oc-
curring on a very fast time scale. Therefore we may assume that between reactions
of other types (the slow reactions R1-R4), the subsystem involving only the fast reac-
tions enters statistical equilibrium. In this case, we can reformulate (4.1) such that it
is effectively a set of reactions which change the slow variable (reactions R5 and R6

are of course omitted as the slow variable S = X1 + 2X2 is invariant with respect to
these reactions):

2S
k̂1−→←−
k̂2

3S, and ∅
k̂3−→←−
k̂4

S. (4.3)
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Fig. 4.1. Plot to show the frequency of the different reactions in the system (4.1) with pa-
rameters given by (4.2), computed using the Gillespie SSA, with initial condition X = [100, 100].

Next, we design the QSSMA by analytically computing the rates k̂1, k̂2 , k̂3 and k̂4.
To estimate the rates in (4.3) we must compute the average values of X1 and X2

for fixed value of S = s in the fast subsystem:

X1 +X1

k5−→←−
k6

X2, X1(0) + 2X2(0) = s. (4.4)

As in [2], we approximate the mean values 〈X1〉 and 〈X2〉 of X1 and X2, respectively,
by the solutions of the deterministic reaction rates equations. The authors showed
that such an approximation is reasonably accurate for this particular fast subsystem
(a reversible dimerisation reaction). Therefore, we need to solve the following system:

k5

V
〈X1〉2 = k6〈X2〉, 〈X1〉+ 2〈X2〉 = s.

The nonnegative unique solution is given by:

〈X1〉 =
V k6

4k5

(√
1 + 8

k5

V k6
s− 1

)
and 〈X2〉 =

s− 〈X1〉
2

. (4.5)

Then the effective propensity function of the slow reaction can be written as [2]:

α̂1 = k1 〈X2〉,

α̂2 =
k2 s 〈X2〉

V
− 2 k2 〈X2〉2

V
+

2 k2 k6 〈X2〉
8 k5〈X2〉 − 2 k5(2s+ 3)− k6 V

, (4.6)

α̂3 = k3 V,

α̂4 = k4〈X1〉 = k4 (s− 2〈X2〉) .

More computational effort is required for this problem, since we need to compute 〈X2〉
for each value of S = s on the mesh. However, the computational effort is still negli-
gible in comparison with the CMA or NMA. The biggest drawback with the QSSMA
is the increase in mathematical complexity as the fast and slow systems themselves
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Fig. 4.2. (a) Approximation of the solution of the CME for the system (4.1) with parameters
(4.2). The domain was truncated to Ω = [0, 103]× [0, 1.5× 103].
(b) Approximation of the errors of the CMA, NMA and QSSMA for the system (4.1) with parameters
(4.2). Error was estimated using the approximation of the solution of the CME shown in panel (a).

become more complicated. The more complexity there is, the more approximations
need to be made in order to find the values of the effective propensities. The NMA
simulations of the fast subsystem (4.4) in order to approximate the effective propensi-
ties (4.6), which are then fed into the Fokker-Planck equation for the slow sub-system.
For the CMA simulations, we let S = X1 + 2X2 be the slow variable, and we let X2

be the fast variable. For further details on how to apply the CMA to this system,
see [5].

4.2. Numerical Results. In general, systems which have second (or through
modelling assumptions, higher) order reactions cannot be solved exactly, although
there are some special cases which can be tackled [15]. System (4.1) has second order
reactions and hence we assume that the invariant distribution for the system cannot be
solved analytically. As such, we are not able to compare the approximations arising
from the three methods considered (CMA, QSSMA, NMA) to an exact solution.
However, we can approximate the solution to the CME for this system, as we did
in [5], by solving it on a truncated domain, assuming that the invariant distribution
has zero probability mass everywhere outside this domain.

For the numerics that follow, we solve the CME on a truncated domain Ω =
[0, 103] × [0, 1.5 × 103]. The CME on this domain gives us a sparse linear system,
whose null space is exactly one dimensional. The corresponding null vector gives us,
up to a constant of proportionality, our approximation of the solution of the CME. We
normalise this vector, and then sum the invariant probability mass over states with
the same value of the slow variable S. This procedure gives us the approximation of
the invariant density of the slow variable which is plotted in Figure 4.2(a). Although
this is only an approximation, it is a very accurate one. To demonstrate this, we
compared the approximation of the solution PΩ of the steady-state CME on our
chosen domain Ω = [0, 103]× [0, 1.5× 103] with an approximation Pω over a smaller
domain, ω = [0, 8.0×102]× [0, 1.25×103]. The relative l2 difference between these two
approximations was 1.4571 × 10−11, indicating that any error in the approximation
PΩ is highly unlikely to be of the order of magnitude of the errors seen in Figure
4.2(b), where we have used PΩ to approximate the error of multiscale methods.

Figure 4.2(b) shows the error plots for the three methods for the system (4.1),
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using the approximation of the solution of the CME as the “exact” solution. The
computational effort here is measured in terms of the numbers of simulated reactions.
Since the computational cost for the two methods which use Monte Carlo simulations
are dominated by the cost of producing two pseudo-random numbers for each iteration,
this is a good estimate.

Unlike in the previous example, the distribution of the fast variables for a fixed
value of the slow variables is not known analytically, and as such an approximation has
been made, as was outlined in Section 4.1. As such, we no longer expect the NMA
approximation to converge to the QSSMA approximation as in the last example.
This can be seen in the error plot in Figure 4.2(b), where the error in the QSSMA
approximation, which again had negligible cost to compute, is relatively high, with the
NMA and CMA quickly outperforming it. The NMA slightly outperform the CMA
at first, but appears to be unable to improve past a relative error of around 7× 10−2.
Note that this is 9 orders of magnitude bigger than the relative l2 difference between
PΩ and Pω, and so is highly unlikely to be an artefact of the method we have used
to approximate this error. As in the previous example, and as seen in [5], although
the cost of the CMA is in general higher than the other methods, if a high precision
solution is required, it is arguably the method of choice, as the error continues to
decrease monotonically ∼ O(

√
Ns).

5. Discussion and conclusions. In this paper we have introduced two new
methods for approximating the dynamics of slow variables in multiscale stochastic
chemical networks, the NMA and QSSMA. These new methods combine ideas from
the CMA [5], with ideas used in existing methods for speeding up the Gillespie SSA
for multiscale systems [7, 2]. We then undertook a detailed numerical study of the
different sources of error that these methods incur, for a simple chemical system for
which we have an exact solution of the CME. Error is incurred due to the approxima-
tion of the dynamics by a diffusion process, Monte Carlo error in the approximation of
the effective drift and diffusion terms, error due to application of the QSSA, and nu-
merical error in approximation of the steady-state Fokker Planck equation, in various
combinations. We then conducted another numerical study for a bistable chemical
system, approximating the error by using an approximation of the solution to the
CME for the system.

What we may surmise from this work, is that different methods, utilising different
types of approximations, are appropriate for different types of system, or even in
different parts of the parameter space of the same system. The methods in this
paper differ from many others for stochastic fast/slow systems mainly in the approach
of approximating the slow variables by a SDE. The majority of the other methods
proposed in the literature use different ways of speeding up the Gillespie SSA for
multiscale systems [23, 17, 7, 1]. In each, the full simulation of the fast species is
replaced by some sort of approximation, so that an SSA-type algorithm, just for the
slow species, may be implemented.

Many other approaches in the literature rely on a QSSA, including that taken
by Rao and Arkin [23], Haseltine and Rawlings [17], E, Liu and Vanden-Eijnden [7]
and Cao, Gillespie and Petzold [1]. All of these methods will incur the error that is
seen in Figure 3.1(a). This error will be negligible for some systems, and significant
for others, as we saw in Section 3.1, and in the difference between panels in Figure
3.2. One advantage of these methods over those that we have presented in this paper,
is that they do not incur the continuous approximation error that we see in Figure
3.1(b) and discussed in Section 3.2. Diffusion approximation methods would not be
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appropriate if one wanted to analyse the dynamics of a slowly changing variable which
has a low average copy number. For instance, in some gene regulatory network models,
there are often two species, whose number sum to 1 in total, which represent whether
a particular gene is “switched on” or “switched off”. Such a variable is clearly not a
candidate for diffusion approximation. However, diffusion approximations have been
used successfully for other variables in such systems [19]. The dynamics of that gene
cannot themselves be approximated by a diffusion, but may be inferred from the state
of other variables, which may be good candidates for such an approximation.

One big advantage of the diffusion approximation methods, is the ease with which
the computational effort can be efficiently parallelised. This is a different approach to
parallelisation than in the case of methods which calculate SSA trajectories. Several
trajectories can be computed on different processors, but in order for the computed
invariant distribution to be converged, either the initial positions of all of the trajec-
tories must be sampled from the invariant distribution (which is unknown), or the
trajectories must be run for enough time that each one is converged in distribution.
On the other hand, the diffusion approximation approaches are almost embarrassingly
parallelisable, with a subset of the states for which we wish to estimate the effective
drift and diffusion being given to each processor. The solution of the Fokker-Planck
equation is similarly parallelisable. This means that given enough computational
resources, these algorithms can give us answers in a very short amount of time. More-
over, these approaches also allow us to consider adaptive mesh regimes [4], meaning
that one can minimise the number of sites at which we are required to estimate the
effective drift and diffusion values, while also controlling the global error incurred.
This flexibility is not available in an SSA-type approach.
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