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FROM BROWNIAN DYNAMICS TO MARKOV CHAIN:
AN ION CHANNEL EXAMPLE∗

WAN CHEN† , RADEK ERBAN† , AND S. JONATHAN CHAPMAN†

Abstract. A discrete rate theory for multi-ion channels is presented, in which the continuous
dynamics of ion diffusion is reduced to transitions between Markovian discrete states. In an open
channel, the ion permeation process involves three types of events: an ion entering the channel, an ion
escaping from the channel, or an ion hopping between different energy minima in the channel. The
continuous dynamics leads to a hierarchy of Fokker–Planck equations, indexed by channel occupancy.
From these the mean escape times and splitting probabilities (denoting from which side an ion has
escaped) can be calculated. By equating these with the corresponding expressions from the Markov
model, one can determine the Markovian transition rates. The theory is illustrated with a two-ion
one-well channel. The stationary probability of states is compared with that from both Brownian
dynamics simulation and the hierarchical Fokker–Planck equations. The conductivity of the channel
is also studied, and the optimal geometry maximizing ion flux is computed.
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1. Introduction. The membrane of a eukaryotic cell is mainly composed of
a lipid bilayer, which is impermeable to water-solvated ions [2]. Ion channels are
nanopores formed by transmembrane proteins; they allow ions to flow through and
thus act as biological valves connecting the intracellular and extracellular domains.
Ion channels are the main mechanism by which cells control the intracellular con-
centrations of chemical species, as well as the electric potential gradient across the
membrane. As such, they play important roles in maintaining various functions of
plant, animal, and human cells.

There are two main features which distinguish ion channels from other nanoscale
porous media. First, they may be selective, distinguishing between the charge and
size of ions; for example, the potassium K+ channel conducts potassium ions at a
rate 104 times faster than it does sodium ions [13]. Second, their conformations may
change between open and closed states in response to an external stimulus such as a
voltage gradient, ligand binding, or pH value.

The molecular structure of many ion channels has been revealed in recent decades
by X-ray crystallography, which provides insight into their features and function. For
example, the potassium K+ channel is composed of four identical subunits, which
create a cavity connecting the cell interior to a selectivity filter at the outer end of the
pore [13]. The narrow selectivity filter is only 12 Å long and about 3 Å wide, which
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forces potassium ions with Pauling radius 1.33 Å to shed their hydrating waters to
enter and pass in a single-file fashion. The oxygen atoms of four carbonyl groups form
four rings around the selectivity filter, which generates local minima called binding
sites in the overall energy landscape to coordinate the dehydrated ions.

Mathematical models for ion channels include molecular dynamics (MD), Brow-
nian dynamics (BD), and continuum theory (Poisson–Nernst–Planck equations), in
descending order of resolution [11, 10, 23]. Molecular dynamics provides the most
detailed description by mimicking the motions and interactions of all atoms (from
membrane proteins to free ions and even individual water molecules) at the molec-
ular level [4, 27, 20]. Since the relaxation of water molecules happens at the fastest
timescale of 1 fs, the time step of an MD simulation has to be very small, and one
needs to evolve a system of thousands of particles up to the order of 0.1 ms to observe
ion conduction. Such a simulation is obviously computationally intensive, but much
shorter simulations (on the order of 10 ps) can be used to obtain information about
the local potential energy and the effective diffusion coefficient of ions, which can then
be fed into BD simulations.

BD [32, 12, 25, 8] is a more coarse-grained simulation technique, which replaces
the solvent molecules (water) with a continuum and represents their influence by a
dielectric constant and stochastic forcing. The fluctuations of membrane proteins
are ignored, and the channel is approximated by a solid boundary. Because the
dynamics of water and proteins are no longer included, a relatively long time step can
be used, which greatly reduces the computational cost. In this paper, we focus on this
level of resolution and introduce a discrete rate theory that is based on observations
from BD.

The continuum model [7, 31, 26] calculates the potential energy by a mean-field
approximation of average ion positions, which yields a Poisson equation, and then
formulates a Boltzmann equation (in equilibrium) or a Nernst–Planck equation (in
nonequilibrium) for the ion concentration. These continuum partial differential equa-
tions (PDEs) can be solved efficiently; however, the individual ion-ion interaction is
missing in this mean-field assumption, which then fails to predict some properties
(e.g., saturation). Comparisons of BD and continuum theories in different channel
configurations are presented in [12, 25].

Recently several hybrid models combining MD and the theory of stochastic pro-
cesses have been proposed, which are able to include molecular details and access long
time scales while keeping computational cost low. One idea is to apply the Eyring rate
theory to the ion permeation process using the potential of mean force (PMF) calcu-
lated using MD. This is based on the assumption that channels have some binding
sites, and ions pass through them by a hopping mechanism: an ion fluctuates around
a certain site before it obtains enough energy to overcome the energy barrier and hops
into the adjacent vacant site. This ion hopping mechanism has been revealed by MD
in channels with binding sites [4, 5, 20]. In addition, the single file diffusion constraint
imposed by the narrowness of the channel assures that ions cannot cross each other in
the channel. Therefore, the continuous dynamics of ion diffusion can be represented
by transitions between discrete Markovian states.

The Eyring rate theory was originally designed for chemical reactions in the 1930s,
with transition rates proportional to the exponential of the energy barrier and dis-
tance between binding sites [17]. (As shown in [11], this overestimates the physical
barrier in the ion-crossing process.) A novel theory was proposed recently in [1] for
a one-dimensional channel with sawtooth-like PMF, in which the transition rates are
not approximated using the energy barrier but are obtained as the product of the
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total escape rate from one binding site and the splitting probability determining the
relative chance of landing in each neighboring site. Abad, Reingruber, and Sansom
[1] showed that an optimal size of binding site maximizes the ionic flux if the applied
voltage exceeds a threshold. They assume the channel is occupied by at most one
ion, whereby the resulting system forms a single Markov chain, and the rates can be
solved explicitly. In the multi-ion channel considered here, ion-ion interactions as well
as the higher dimension of the energy landscape mean that the complexity of the rate
theory is greatly increased.

In this paper, we present a general discrete rate theory for a multi-ion channel and
compare it with BD. The ion permeation process involves ion hopping, ion escaping,
and ion entering. For the purposes of this work we assume that ion entry rates are
known and focus on calculating the other rates in terms of the mean escape time and
splitting probability. Because of the complicated network between states, the rates
are more intricately related to these quantities than in the single-ion case. Moreover,
since analytical solutions for the mean escape time and splitting probability are not
available, these must be determined by solving the corresponding PDEs numerically.
The theory is illustrated by a two-ion channel with one binding site and two ion
sources. We show that, as with the one-ion channel, there exists an optimal shape for
the external potential that allows a maximal flux.

The structure of this paper is as follows. In section 2, we introduce a general
theory for a multi-ion channel with a maximal capacity of N ions. We first present
BD simulations and formulate an equivalent cascade of hierarchical Fokker–Planck
equations for the probability distribution of ions. An illustrative example of a two-ion
channel is discussed, and the probability distributions from the histogram of BD and
the solution of the Fokker–Planck equation are compared. Next, a discrete rate theory
framework is presented in section 3 and the transition rates calculated. The two-ion
channel is revisited in this framework, and the result is compared with that from
BD. In section 4, we apply the theory to study the dependence of channel conduction
on different parameters such as the diffusion coefficient, ion entry rate, and depth
of potential wells. In particular, we study the effect of the geometry of the external
potential in section 5. We conclude by discussing the advantages and limitations of
this method and possible applications and extensions in section 6.

2. Brownian dynamics. In this section, we present the theoretical framework
of BD simulation. Since we are interested in studying the ion permeation process,
which occurs on a timescale of 10−7 s, and since conformational changes occur on a
timescale of 10−3 s, we assume that the channel is always open and does not change
its conformation. Since the channel is very narrow and the ions pass through in
single file [20], we suppose that the motion is one-dimensional; that is, the centers of
the ions will be constrained to lie along a line. The generalization to a fully three-
dimensional channel is algebraically complicated but conceptually straightforward.
Since ions cannot pass each other in one dimension, we may neglect the finite size of
the ions and model them as point particles with charge.

We define the maximal capacity of a channel to be N , so that it can hold up to
N ions at one time. We denote the number of binding sites in the channel by M .
The parameters N and M vary among different channels; for example, a germicidal
A channel has two binding sites (M = 2), and single-ion occupation dominates (so
that N = 1, or perhaps N = 2 to allow for a knock-off effect) [1, 28].

At the ends of the channel the pore opens out into the intracellular and extra-
cellular space, as is schematically shown in Figure 2.1. A full model would include
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Fig. 2.1. A schematic structure of a channel. The (artificial) left and right boundaries at
x = −L and x = L connect large reservoirs of electrolyte inside and outside the cell, respectively. I
and E represent the overall intracellular and extracellular environments, respectively.

(probably continuum) models of these spaces, which would then be joined (preferably
matched in terms of matched asymptotic expansions, but more likely patched) to the
channel model. For our present purposes we need to introduce (artificial) interfaces
(i.e., points) at the left and right ends of the channel such that an ion passing through
these interfaces is taken to have left the channel and passed into the external domains.
Without loss of generality, we suppose that the left interface connecting the channel
to the intracellular domain lies at x = −L, and the right interface connecting the
channel to the extracellular domain lies at x = L, as shown in Figure 2.1. Thus an
absorbing boundary condition is imposed at x = −L and x = L.

In BD simulation of an ion channel the contribution of water molecules to the
motion of a solute ion can be approximated by random collisions and an average
frictional force in the evolution equation of the solute ion [32, 25]. The motion of a
system of k ions is given by the Langevin equation

(2.1) mi dvi = −γ vidt+ fk
i (x1, . . . , xk)dt+ γ

√
2D dWi, i = 1, . . . , k,

where xi(t) and vi(t) are the location and velocity, respectively, of the ith ion. There
are three forces on the right-hand side of (2.1). The first term corresponds to the
frictional force exerted on the ion by averaging the effect of water molecules; γ is
the frictional drag coefficient, which depends on the surrounding fluid environment.
Here we assume the environment to be uniform so that γ is constant. The third
term is the stochastic force generated by the random collisions of water molecules;
Wi is a Wiener process and D = kBT/γ is the diffusion coefficient, where kB is the
Boltzmann constant and T is the temperature. The second term fk

i (x1, . . . , xk) is
the overall electric force on the ith ion, including interactions with all other k − 1
ions in the channel, fixed charges in the protein, and the external field across the
membrane. It depends on the locations of all ions and can be obtained (along with the
diffusion coefficient) from MD simulation. For example, Schumaker and Watkins [30]
present a framework approach which receives estimates of the PMF and the elements
of the diffusion matrix from detailed MD simulations and can be used to compute the
channel properties more efficiently. The approach presented in our manuscript further
simplifies computations by deriving a discrete Markov chain from the corresponding
BD model.

Note that a typical value of the diffusion coefficient in aqueous solutions at room
temperature is D ∼ 10−3 mm2s−1, so that the ratio mi/γ ∼ 10−14 s−1. Since
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we usually take a time step Δt > 10−12 s in the simulation, the system is in an
overdamped limit [11]. We may thus approximate (2.1) by the overdamped Langevin
equation [14, 16]

(2.2) dxi =
D

kBT
fk
i (x1, . . . , xk) dt+

√
2D dWi, i = 1, . . . , k.

The boundary conditions on (2.2) may be described as follows:
1. When the number of ions in the channel k is less than its capacity N , new

ions are generated at the left (respectively, right) end at a rate Hk (respec-
tively, Gk). In principle Hk and Gk depend on the current locations of the
k ions in the channel x1, . . . , xk as well as the intracellular and extracellular
environments I and E .
Since we are in the overdamped limit we cannot simply place the incoming
ions at the ends of the channel: under Brownian motion they would imme-
diately cross the boundary and leave the channel again. Instead we place
them at a position within the channel given by the positional distribution
function h(x;x1, . . . , xk) (or g(x;x1, . . . , xk)). Note that h and g also depend
on the positions of the existing ions. This is necessary since, for example, an
ion entering the channel from the left must lie to the left of x1, while an ion
entering from the right must lie to the right of xk. Thus, at the very least,
h depends on x1 while g depends on xk.
The functions h and g should be chosen to make the join with the outer model
as smooth as possible, as in [18, 19]. Here we simply assume that h and g,
and the rates Hk and Gk, are given.

2. If xi(t) < −L or xi(t) > L, then the ith ion is removed from the channel.
3. If xi(t) > xi+1(t) for some i, then xi and xi+1 are switched. This enforces the

single-file nature of the channel by preventing an ion overtaking its neighbor.
This condition is unlikely to occur with ions in a channel due to the strong
Coulomb repulsion, but it may be necessary if we are interested in neutral
molecules.

2.1. Hierarchical Fokker–Planck equations. We denote by Pk(x1, . . . , xk, t)
the probability density function for the event that there are k ions in the channel at
positions x1, . . . , xk at time t. Since the number of ions in the channel may run from
zero to the channel capacity N , we have N + 1 such probability density functions.
The probability of no ion in the channel (i.e., k = 0) is denoted by P0(t) and is
independent of the spatial variable. We label the ions by the order of their locations,
such that xi < xj for i < j. Then the stochastic process (2.2) is equivalent to the
following hierarchical system of Fokker–Planck equations:

∂t Pk(x1, . . . , xk, t)

= D∇ ·
(
∇Pk(x1, . . . , xk, t)− Pk(x1, . . . , xk, t)

1

kBT
Fk(x1, . . . , xk, t)

)
−
(
Hk(x1, . . . , xk) +Gk(x1, . . . , xk)

)
Pk(x1, . . . , xk, t)

+Hk−1(x2, . . . , xk)h(x1;x2, . . . , xk)Pk−1(x2, . . . , xk, t)

+Gk−1(x1, . . . , xk−1) g(xk;x1, . . . , xk−1)Pk−1(x1, . . . , xk−1, t)

+ Tk+1(x1, . . . , xk) +Rk+1(x1, . . . , xk),(2.3a)
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Fig. 2.2. Hierarchical Fokker-Planck equations describe the conservation of ions in the channel.
For k-ion occupancy, the transitions to and from (k − 1)-ion and (k + 1)-ion occupancy (by ions
entering and escaping) are demonstrated, along with internal transitions between states.

where ∇ = (∂x1 , . . . , ∂xk
), Fk = (fk

1 , . . . , f
k
k ) ∈ R

k, and

Tk+1(x2, . . . , xk+1) = D

(
∂Pk+1

∂x1
− Pk+1

1

kBT
fk+1
1

)
(−L, x2, . . . , xk+1),

Rk+1(x1, . . . , xk) = −D

(
∂Pk+1

∂xk+1
− Pk+1

1

kBT
fk+1
k+1

)
(x1, . . . , xk, L),

where k = 0, 1, . . . , N and we use the convention that P−1 = PN+1 ≡ 0. Since only
one ion can escape or enter at any one time, Pk is coupled only to the neighboring
states Pk−1 and Pk+1. Note that HN = GN = 0, since no ions can enter when the
channel is fully occupied.

The first two terms (i.e., the first line) on the right-hand side of (2.3a) correspond
to ion diffusion and ion drift, respectively, where the drift term includes the external
potential as well as ion-ion interactions. The third term corresponds to a new ion
entering the k-ion channel from intracellular or extracellular solution; this term is
negative since such an event leads to a transition from a k-ion channel to a (k+1)-ion
channel. The fourth and fifth terms correspond to a new ion entering a (k − 1)-ion
channel from the left and right, respectively. The sixth and seventh terms (i.e., the
last line) of (2.3a) correspond to ions leaving a (k + 1)-ion channel from the left and
right, respectively. Figure 2.2 illustrates the transitions between states with (k−1), k,
and (k + 1) ions, along with internal transitions between states which are introduced
in section 3.

The boundary conditions on (2.3a) are

Pk(−L, x2, . . . , xk) = 0,(2.3b)

Pk(x1, . . . , xk−1, L) = 0,(2.3c)

along with the no-flux condition on the interface xi = xi+1,

(2.3d) lim
xi→xi+1

(
∂Pk

∂xi
− Pk

1

kBT
fk
i

)
= lim

xi→xi+1

(
∂Pk

∂xi+1
− Pk

1

kBT
fk
i+1

)
for i = 1, . . . , k−1, which ensures that the ions are correctly labeled. The reason that
we have had to write this as a limit is that the interion potential tends to infinity as
xi → xi+1, while Pk tends to zero. A local analysis shows that we need Pk to tend to
zero faster than (xi+1 − xi)

2.
We note the following normalization condition, which holds at all times t:

(2.4)
N∑

k=0

∫
Γk

Pk(x1, . . . , xk, t) dx1 · · · dxk = 1,
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where Γk is the available state space when there are k ions in the channel, namely,

(2.5) Γk =
{
(x1, x2, . . . , xk) |x1 < x2 < · · · < xk

}
.

We will usually be interested in the steady state; in that case we solve the cou-
pled hierarchical Fokker–Planck equations for the stationary probability distribu-
tion P̃k = limt→∞ Pk(t) for k = 0, 1, . . . , N .

2.2. An example with N = 2. We exemplify the theory above with a simple
channel that is selective to cations with elementary charge e = 1.6 × 10−19C. The
selectivity of this type of channel is generally caused by negatively charged boundary
proteins, which decrease the energy barrier imposed by the narrow structure and
assist the permeation of cations. For example, the oxygen atoms of four carbonyl
groups in the selectivity filter of the potassium channel can be modeled by putting
four negative partial charges equally spaced on a ring of radius d that is perpendicular
to the x-axis [12].

We consider the simplest possible example of a multi-ion channel with capacity
N = 2 and a single binding site M = 1. The binding site is located at the position
x = ξ and is a potential well generated by a ring of fixed partial negative charges
a distance d from the channel axis. By Coulomb’s law, the potential energy Φ1(x1)
seen by one cation at x1 with charge e traversing through the channel is

(2.6a) Φ1(x1) =
e

kBT

(
−keZ√

(x1 − ξ)2 + d2
+ Ux1

)
,

where ke is the Coulomb force constant, Z is the total fixed charge on the ring, and
U is the constant field, which imposes a potential difference 2UL across the channel
[−L,L]. This potential difference is small compared to the potential well and does
not change the shape of the potential well but merely tilts it by a small angle. The
force on the ion due to the potential is

f1
1 = −kBT

dΦ1

dx1
.

When there are two cations in the channel, at positions x1 and x2, the overall
potential energy Φ2(x1, x2), including the interaction between the two free ions, is

(2.6b)

Φ2(x1, x2) =
e

kBT

(
−keZ√

(x1 − ξ)2 + d2
+

−keZ√
(x2 − ξ)2 + d2

+
kee

|x1 − x2|
+ U(x1 + x2)

)
.

The forces on the two ions are then

f2
1 = −kBT

∂Φ2

∂x1
, f2

2 = −kBT
∂Φ2

∂x2
.

Finally we need to specify the entry rates Hk and Gk and entry distribution functions
h and g. We choose the simplest possible model for the entry distribution function.
We suppose that the ions entering from the left are all placed at a position x− near
the left-hand end of the channel, while ions entering from the right are placed at a
position x+ near the right-hand end of the channel; that is,

h(x) = δ(x− x−), g(x) = δ(x− x+).

In implementing this condition we have to be careful that we preserve the order of the
ions in the channel. We choose to do this as follows: if we are attempting to place an
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(a) Histogram. (b) ˜P2(x1, x2).

Fig. 2.3. Using the parameters in (2.7), the stationary probability density of a two-ion channel
is computed as (a) a histogram from BD simulation; (b) a solution of (2.9a)–(2.9e). Here x1 is the
position of the first ion and x2 is the position of the second ion; since we label the ions such that
x1 < x2, the state space is triangle Γ2 = {(x1, x2) : x1 < x2}.

ion at position x−, and the position of the existing ion x1 < x−, then we abandon the
insertion of the new ion. A similar procedure is implemented at the right-hand end.
In effect this means that the rate of entry is chosen to be zero whenever the position
x1 of the existing ion is such that x1 < x− or x1 > x+. (An alternative procedure
would be to modify the distribution functions h and g so that h = 0 if x1 < x− and
g = 0 if x1 > x+, but this would mean altering them from the present δ-functions.)

In general the entry rates may be functions of the current ion numbers and lo-
cations as well as the intracellular I and extracellular E environments. However, for
this illustrative example we suppose that they are constant subject to the constraint
set out above. Thus we choose

H0 = λ, G0 = μ, H1 = λΘ(x1 − x−), G1 = μΘ(x+ − x1),

where Θ is the Heaviside function. Recall that H2 = G2 = 0 since the channel is then
fully occupied. To run the BD simulation, we set the time step Δt = 100 ns and the
physical parameters as

L = 1 nm, x± = ±0.9 nm, ξ = 0 nm, d = 0.5 nm,

D = 1 nm2 · ns−1, λ = μ = 5 ns−1,

T = 298 K, kB = 1.38× 10−23 J ·K−1, U = 0 V · nm−1, Z = e.(2.7)

We use the nanometer as the unit of length and the nanosecond as the unit of time.
We evolve (2.2) for 2× 109 iterations until a dynamic equilibrium is reached. During
the simulation the number of ions in the channel varies in time as ions enter and leave.
We record the number of ions and their locations at each time step. We find that the
proportion of time spent with k ions in the channel, Jk say, is given by

(2.8) J0 ≈ 0.0000, J1 ≈ 0.8986, J2 ≈ 0.1014.

Thus, for these parameters, the channel is almost never empty; nearly 90% of the
time there is just one ion in the channel, with two ions the remaining 10% of the
time. The histograms of two-ion distribution and one-ion distribution are plotted in
Figures 2.3(a) and 2.4(a), respectively.
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(a) Histogram. (b) ˜P1(x1).

Fig. 2.4. Using the parameters in (2.7), the stationary probability density of the one-ion state

is computed by (a) a histogram from BD simulation; (b) a solution ˜P1(x1) of (2.9a)–(2.9e). Here
x1 is the position of the single ion in the channel.

The stationary probability distributions P̃2(x1, x2), P̃1(x1), and P̃0 satisfy the
stationary Fokker–Planck equations for a two-ion channel, namely,

0 = D∇ ·
(
∇P̃2(x1, x2) + P̃2(x1, x2)∇Φ2(x1, x2)

)
+ λΘ(x2 − x−) δ(x1 − x−)P̃1(x2) + μΘ(x+ − x1) δ(x2 − x+)P̃1(x1),(2.9a)

0 = D
d

dx1

(
dP̃1

dx1
(x1) + P̃1(x1)

dΦ1

dx1
(x1)

)
− (λΘ(x1 − x−) + μΘ(x+ − x1)) P̃1(x1)

+ λ δ(x1 − x−)P̃0 + μ δ(x1 − x+)P̃0

+D

(
∂P̃2

∂x1
+ P̃2

∂Φ2

∂x1

)
(−L, x1)−D

(
∂P̃2

∂x2
+ P̃2

∂Φ2

∂x2

)
(x1, L),(2.9b)

0 = −(λ+ μ)P̃0 +D

(
dP̃1

dx1
+ P̃1

dΦ1

dx1

)
(−L)−D

(
dP̃1

dx1
+ P̃1

dΦ1

dx1

)
(L),(2.9c)

with the boundary conditions

(2.9d) P̃2(−L, x2) = P̃2(x1, L) = 0, P̃1(−L) = P̃1(L) = 0

and

(2.9e) lim
x1→x2

(
∂P̃2

∂x1
+ P̃2

∂Φ2

∂x1

)
= lim

x1→x2

(
∂P̃2

∂x2
+ P̃2

∂Φ2

∂x2

)
.

We solve (2.9a)–(2.9e) by the finite element PDE solver Comsol with 28,800 ele-

ments. The stationary distribution P̃2(x1, x2) is shown in Figure 2.3(b), and P̃1(x1)
is shown in Figure 2.4(b). We see that these agree with the histograms in Figures

2.3(a) and 2.4(a) obtained from BD simulations. We can also see that P̃2(x1, x2) is

localized around two discrete states near (x−, ξ) and (ξ, x+), while P̃1(x1) is localized

around x1 = ξ. The most likely path between the two states of P̃2(x1, x2) can also be
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faintly seen. This localization of P̃2 and P̃1 motivates the definition of a small num-
ber of discrete states which the system can adopt, which is the basis for the discrete
transition rate theory described in the next section.

3. Discrete transition rate theory. We saw in our two-ion example (Figures

2.3 and 2.4) that P̃2 was mainly localized around two regions in state space, while

P̃1 was mainly localized around one region. Suppose, in general, that when there are
k ions in the channel the stationary probability distribution P̃k(x1, . . . , xk) is mainly
localized around Lk small regions. Let us denote these regions by

S
(i)
k ⊂ Γk for i = 1, . . . , Lk,

where Γk is given by (2.5). Then P̃k is very small outside ∪Lk
i=1S

(i)
k , so that∫

Γk\∪Lk
i=1S

(i)
k

P̃k(x1, . . . , xk) dx1 · · · dxk ≈ 0.

The idea of discrete rate theory is to replace the continuous variable P̃k with a set of

discrete probabilities corresponding to the states S
(i)
k , so that

P̃
(i)
k =

∫
S

(i)
k

P̃k(x1, . . . , xk) dx1 · · · dxk

is the (stationary) probability that (x1, . . . , xk) ∈ S
(i)
k . Note that P̃

(i)
k is just a number:

it is independent of spatial variables. In total there are LΣ =
∑N

k=0 Lk states in the
channel, and the sum of the probabilities of all LΣ states is unity according to (2.4);
that is,

N∑
k=0

Lk∑
i=1

P̃
(i)
k = 1.

We now imagine a Markov chain in which the channel undergoes transitions from one
of these discrete states to another, with the transition probabilities dependent only on
the current state (i.e., no past history is involved). This Markov chain is illustrated
in Figure 2.2. Such Markov chains for ion channels have been previously considered
for a single ion in a many-well channel [1, 21]. However, multiple occupancy of the
channel leads to a more complicated transition structure.

Since only one ion at a time can enter or leave (so that P̃k is coupled only to

P̃k−1 and P̃k+1), we see that S
(i)
k may have transitions to and from only the states

S
(·)
k , S

(·)
k−1, and S

(·)
k+1. The general master equation for the time-dependent probability

P
(i)
k (t) is of the form

d

dt
P

(i)
k (t) =

∑
j

α
(i,j)
k−1P

(j)
k−1(t) +

∑
l

β
(i,l)
k+1P

(l)
k+1(t) +

∑
m

γ
(i,m)
k P

(m)
k (t)︸ ︷︷ ︸

influx

−

⎛⎝∑
j

α
(j,i)
k +

∑
l

β
(l,i)
k +

∑
m

γ
(m,i)
k

⎞⎠P
(i)
k (t)

︸ ︷︷ ︸
outflux

,(3.1)
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where α
(i,j)
k is the transition rate from S

(j)
k to S

(i)
k+1, β

(i,j)
k is the transition rate from

S
(j)
k to S

(i)
k−1, and γ

(i,j)
k is the transition rate from S

(j)
k to S

(i)
k . Thus α describes the

influx of a new ion, β describes the loss of an ion to the intracellular or extracellular
environment, and γ describes a hopping of the ions within the channel. In fact, we
expect many of these rates to be zero, since, for example, when we add a new ion to
a channel it must occupy either the leftmost or rightmost potential well.

The entry rates for new ions α
(i,j)
k may be determined from Hk and Gk, which

for the present purposes we are assuming are given. The ion escape rates β
(i,j)
k and

hopping rates γ
(i,j)
k can be computed from the notation of mean escape time and

splitting probability, as described below.
To define the mean escape time we set all the influx probabilities to zero. We then

suppose that the channel initially contains k ions located at positions x1, . . . , xk. We
define the mean escape time τk(x1, . . . , xk) to be the average time before the channel
undergoes a transition to a (k− 1)-ion configuration, that is, the average time for one
ion to leave the channel. Using the backward-Kolmogorov equation [29], it can be
shown that τk satisfies

Δτk +
1

kBT
Fk · ∇τk = − 1

D
, (x1, . . . , xk) ∈ Γk,(3.2a)

τk = 0 if x1 = −L or xk = L.(3.2b)

Then the mean escape time from state S
(i)
k is given by

(3.3) τk

[
S
(i)
k

]
=

∫
S

(i)
k

τkPk dx1 · · · dxk∫
S

(i)
k

Pk dx1 · · ·dxk
.

We now determine a similar expression for τk[S
(i)
k ] using the discrete transition rate

model. Equating the two expressions will then provide information on the rates β
(i,j)
k

and γ
(i,j)
k .

To this end suppose that the channel is initially in the state S
(i)
k , so that P

(i)
k (0) = 1,

and P
(j)
m (0) = 0 otherwise. As before, the influx rates αk are set to be zero. The mas-

ter equation (3.1) for P
(·)
k then decouples from those for P

(·)
k−1 and P

(·)
k+1, and we can

solve for P
(·)
k . Given this solution we can determine the mean escape time τk[S

(i)
k ] as

(3.4) τk

[
S
(i)
k

]
=

∑
l

∑
j

∫∞
0

t β
(l,j)
k P

(j)
k (t) dt∑

l

∑
j

∫∞
0

β
(l,j)
k P

(j)
k (t) dt

.

In calculating the mean escape time we have not distinguished between the case in
which the first ion leaves from the left end into intracellular electrolyte I and the
case in which the last ion leaves from the right end into extracellular electrolyte
E . However, it is important that the discrete state model get the ratio of these
probabilities correct, since this is what causes a net ionic flux through the channel.

Thus the second piece of information we use to determine the rates β
(i,j)
k and γ

(i,j)
k

is the splitting probability ρk(x1, . . . , xk). This is defined to be the probability that
the first ion to exit was x1 from the left-hand side of the channel, under the condition
that an ion-escaping event from a k-ion to a (k − 1)-ion channel has occurred, given
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that the k ions started in positions (x1, . . . , xk) initially. The splitting probability
function ρk satisfies

Δ ρk +
1

kBT
Fk · ∇ρk = 0 for (x1, . . . , xk) ∈ Γk,(3.5a)

ρk = 1 on x1 = −L, ρk = 0 on xk = L.(3.5b)

As with τk, we can now calculate the splitting probability for state S
(i)
k as

(3.6) ρk

[
S
(i)
k

]
=

∫
S

(i)
k

ρkPk dx1 · · ·dxk∫
S

(i)
k

Pk dx1 · · · dxk
.

To calculate the splitting probability from the Markov chain we need to separate β
(l,j)
k

into two individual rates representing the case that an ion leaves to the right into the
extracellular domain and the case that an ion moves to the left into the intracellular
domain; that is, we write

β
(l,j)
k = β

+(l,j)
k + β

−(l,j)
k .

Then the probability that an ion escapes to the left, given that it escapes, is

(3.7) ρk

[
S
(i)
k

]
=

∑
l

∑
j

∫∞
0

β
−(l,j)
k P

(j)
k (t) dt∑

l

∑
j

∫∞
0 β

−(l,j)
k P

(j)
k (t) dt+

∑
l

∑
j

∫∞
0 β

+(l,j)
k P

(j)
k (t) dt

.

Note that, as in the case of the escape time τk, the right-hand side depends on S
(i)
k

through the initial condition on P
(·)
k .

By equating (3.3) with (3.4) and (3.6) with (3.7), we have a number of equations

to help determine the unknown rates β
(l,j)
k and γ

(l,j)
k . Since only the leftmost (re-

spectively, rightmost) ion can escape from the left-hand side (respectively, right-hand

side) of the channel, many of the rates β
(l,j)
k will in fact be zero. If we still do not have

enough equations to determine the remaining β
(l,j)
k and γ

(l,j)
k , then it will be necessary

to determine some of the transition rates between internal states. Since these do not
involve a change in the number of ions in the channel, they may be determined by
standard techniques.

Note that to determine the net flow of ions through the channel we will also have
to distinguish between ion entry from the left and from the right; that is, we should
also split

α
(i,j)
k = α

−(i,j)
k + α

+(i,j)
k .

However, in most cases (at least) one of these rates will be zero, since it is not possible
to have the same transition between two states occurring with an ion entering from
either side. The one case where this is possible is the transition between an empty
channel and a one-ion channel, which occurs in our example below.

3.1. Example of a two-ion channel. In section 2.2 we introduced the two-ion
channel which we will revisit here to illustrate the rate theory introduced above. Using
parameters (2.7), the two-ion channel can exist in a two-ion, one-ion, or zero-ion state.

From Figure 2.4 we see that P̃1(x1) is localized around the single region x1 = ξ, so
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(1)
S0

(1)

γ
2

β

α

α

β

β

α

γ
2

1

1

2β

2

1

1

α 0

0

S2

S2
(2)

(1)

 (2,1) (1,2)

 −(1,1)

 −(1,1)

 +(2,1)

+(1,2)

 −(1,1)

 −(1,1)

+(1,1)

+(1,1)

Fig. 3.1. The transitions between the four different states: the three circles represent the left
entry point, the binding site, and the right entry point; a (green) filled circle indicates the presence
of an ion.

that there is only one metastable state with one ion in the channel. From Figure 2.3
we see that P̃2(x1, x2) is localized around the two states (x−, ξ) and (ξ, x+). Thus
there are two metastable states with two ions in the channel. Thus our Markov chain
comprises the four states

(3.8) S
(1)
2 : {(x−, ξ)}, S

(2)
2 : {(ξ, x+)}, S

(1)
1 : {ξ}, S

(1)
0 : {}.

Thus L2 = 2, L1 = 1, L0 = 1, and overall there are LΣ = 4 states for this channel.
These states, and the transitions between them, are illustrated in Figure 3.1. The
circle at the center represents the binding site x = ξ, and two other circles represent
the left and right entry positions x = x±. A (green) filled circle represents a position

occupied by an ion. Note that for the transitions between S
(1)
0 and S

(1)
1 it is important

to distinguish between ions entering and leaving from the right and from the left, so
that we can calculate the net flow of ions through the channel.

Let us first consider the ion entry rates. We find

α
+(1,1)
1 = 0, α

−(1,1)
1 = λ, α

+(2,1)
1 = μ, α

−(2,1)
1 = 0, α

+(1,1)
0 = μ, α

−(1,1)
0 = λ.

Note that the two zero values arise because the transition from S
(1)
1 to S

(1)
2 occurs via

an ion entering from the left, while that from S
(1)
1 to S

(2)
2 occurs via an ion entering

from the right. Note also that α
(i,j)
2 = 0 for all i, j since with two ions the channel is

already full to capacity.

Let us now consider the ion leaving rates β
(i,j)
k . In principle we have six of these

to determine. However, since the transition from S
(1)
2 to S

(1)
1 must occur via an ion

leaving from the left, we know that β
+(1,1)
2 = 0. Similarly the transition from S

(2)
2 to

S
(1)
1 must occur via an ion leaving from the right, so we know that β

−(1,2)
2 = 0. This

leaves β
−(1,1)
2 , β

+(1,2)
2 , β

−(1,1)
1 , and β

+(1,1)
1 to determine. To these we must add the

two hopping rates γ
(1,2)
2 and γ

(2,1)
2 .

Denoting the state of the system by the probability vector P = (P
(1)
2 , P

(2)
2 , P

(1)
1 ,

P
(1)
0 )T , the master equation governing the evolution of the Markov chain is then

(3.9)
dP

dt
= T P(t),
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where the 4× 4 transition matrix T is given by

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β
−(1,1)
2 − γ

(2,1)
2 γ

(1,2)
2 α

−(1,1)
1 0

γ
(2,1)
2 −β

+(1,2)
2 − γ

(1,2)
2 α

+(2,1)
1 0

β
−(1,1)
2 β

+(1,2)
2

−α
−(1,1)
1 − α

+(2,1)
1

− β
+(1,1)
1 − β

−(1,1)
1

α
+(1,1)
0 + α

−(1,1)
0

0 0 β
+(1,1)
1 + β

−(1,1)
1 −α

+(1,1)
0 − α

−(1,1)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As expected, the sum of each column of the matrix T is zero (since the system (3.9)

conserves probability), so the matrix is rank deficient. The stationary probability P̃
is the eigenvector associated with the zero eigenvalue of matrix T .

To calculate the mean escape time and splitting probability we set all entry rates
to zero and solve (3.9). To emphasize that this is an auxiliary problem and not the

true Markov chain we denote the probability of lying in each state by q
(1)
2 (t), q

(2)
2 (t),

q
(1)
1 (t), q

(1)
0 (t), respectively. Then (3.9) is

dq
(1)
2

dt
= −

(
γ
(2,1)
2 + β

−(1,1)
2

)
q
(1)
2 + γ

(1,2)
2 q

(2)
2 ,(3.10a)

dq
(2)
2

dt
= −

(
β
+(1,2)
2 + γ

(1,2)
2

)
q
(2)
2 + γ

(2,1)
2 q

(1)
2 ,(3.10b)

dq
(1)
1

dt
= β

−(1,1)
2 q

(1)
2 + β

+(1,2)
2 q

(2)
2 −

(
β
+(1,1)
1 + β

−(1,1)
1

)
q
(1)
1 ,(3.10c)

dq
(1)
0

dt
=
(
β
+(1,1)
1 + β

−(1,1)
1

)
q
(1)
1 .(3.10d)

The first two equations decouple. We start by considering the state S
(1)
2 ; that is, we

solve (3.10a)–(3.10b) subject to the initial conditions q
(1)
2 (0) = 1 and q

(2)
2 (0) = 0.

This gives (
q
(1)
2

q
(2)
2

)
=

1

λ1 − λ2

(
λ1 + β

+(1,2)
2 + γ

(1,2)
2

γ
(2,1)
2

)
exp(λ1 t)

+
1

λ2 − λ1

(
λ2 + β

+(1,2)
2 + γ

(1,2)
2

γ
(2,1)
2

)
exp(λ2 t),(3.11)

where λ1, λ2 are two eigenvalues satisfying

λ1 + λ2 = −
(
β
−(1,1)
2 + β

+(1,2)
2 + γ

(2,1)
2 + γ

(1,2)
2

)
,

λ1λ2 = β
−(1,1)
2 β

+(1,2)
2 + β

−(1,1)
2 γ

(1,2)
2 + β

+(1,2)
2 γ

(2,1)
2 .

Using (3.4), the mean escape time τ2[S
(1)
2 ] is

τ2

[
S
(1)
2

]
=

∫∞
0

t
(
β
−(1,1)
2 q

(1)
2 (t) + β

+(1,2)
2 q

(2)
2 (t)

)
dt∫∞

0
β
−(1,1)
2 q

(1)
2 (t) + β

+(1,2)
2 q

(2)
2 (t) dt

=
β
+(1,2)
2 + γ

(2,1)
2 + γ

(1,2)
2

β
+(1,2)
2 γ

(2,1)
2 + β

−(1,1)
2 γ

(1,2)
2 + β

−(1,1)
2 β

+(1,2)
2

,(3.12a)
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and, using (3.7), the splitting probability ρ2[S
(1)
2 ] is

ρ2

[
S
(1)
2

]
=

∫∞
0 β

−(1,1)
2 q

(1)
2 (t) dt∫∞

0
β
−(1,1)
2 q

(1)
2 (t) + β

+(1,2)
2 q

(2)
2 (t) dt

=
β
−(1,1)
2 β

+(1,2)
2 + β

−(1,1)
2 γ

(1,2)
2

β
−(1,1)
2 β

+(1,2)
2 + β

−(1,1)
2 γ

(1,2)
2 + β

+(1,2)
2 γ

(2,1)
2

.(3.12b)

Similarly, by applying the initial conditions q
(1)
2 (0) = 0 and q

(2)
2 (0) = 1, we find

τ2

[
S
(2)
2

]
=

β
−(1,1)
2 + γ

(2,1)
2 + γ

(1,2)
2

β
+(1,2)
2 γ

(2,1)
2 + β

−(1,1)
2 γ

(1,2)
2 + β

−(1,1)
2 β

+(1,2)
2

,(3.12c)

1− ρ2

[
S
(2)
2

]
=

β
−(1,1)
2 β

+(1,2)
2 + β

+(1,2)
2 γ

(2,1)
2

β
−(1,1)
2 β

+(1,2)
2 + β

−(1,1)
2 γ

(1,2)
2 + β

+(1,2)
2 γ

(2,1)
2

.(3.12d)

Finally we have to consider the escape time and splitting probability for state S
(1)
1 .

With the initial conditions q
(1)
2 (0) = q

(2)
2 (0) = q

(1)
0 (0) = 0, q

(1)
1 (0) = 1, equation

(3.10c) decouples and is easily solved to give

τ1

[
S
(1)
1

]
=

∫∞
0

tq
(1)
1 (t) dt∫∞

0 q
(1)
1 dt

=
1

β
−(1,1)
1 + β

+(1,1)
1

,(3.12e)

ρ1

[
S
(1)
1

]
=

β
−(1,1)
1

β
−(1,1)
1 + β

+(1,1)
1

.(3.12f)

The mean escape times τ2, τ1 and the splitting probabilities ρ2, ρ1 can be obtained
by solving (3.2) and (3.5), respectively, with k = 2, 1 by using Comsol. Fixing U = 0,
ξ = 0, the mean escape time τ2 in triangular domain Γ2 is as plotted in Figure 3.2(a)
and the splitting probability ρ2 in Γ2 as plotted in Figure 3.2(b). Since there is no
applied field across the channel (U = 0), and the potential well is at the center, the
external potential is symmetric with x = 0; therefore both functions are symmetric

(a) τ2(x1, x2). (b) ρ2(x1, x2).

Fig. 3.2. (a) Mean escape time τ2(x1, x2) for two-ion transiting into a one-ion state. (b)
Splitting probability ρ2(x1, x2) of the ion exiting from the left side under the condition that an ion
escaping event occurs. The parameters are as given in (2.7).
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with x1 + x2 = 0. We take the values of functions at the center of the different states
and obtain

τ2

[
S
(1)
2

]
= τ2(x−, ξ) = 0.01113, ρ2

[
S
(1)
2

]
= ρ2(x−, ξ) = 0.9964,

τ2

[
S
(2)
2

]
= τ2(ξ, x+) = 0.01113, ρ2

[
S
(2)
2

]
= ρ2(ξ, x+) = 0.0036,

τ1

[
S
(1)
1

]
= τ1(ξ) = 3.9385× 103, ρ1

[
S
(1)
1

]
= ρ1(ξ) = 0.5.

Equating these expressions to those of (3.12), we find six equations for the six unknown
rates. Solving these, we find

β
−(1,1)
2 = β

+(1,2)
2 = 89.8283, γ

(2,1)
2 = γ

(1,2)
2 = 0.3361,

β
−(1,1)
1 = β

+(1,1)
1 = 1.2695× 10−4.

Note that, by using the mean escape time and the splitting probability, we have not
had to estimate the internal hopping rates γ2 from the Fokker–Planck equation but
have been able to determine them from the auxilary problems we have solved. We
will see in section 5 that this is especially useful when the internal states are not so
well defined.

Since there is no external potential gradient in this case (U = 0) the rates are
symmetric, and there is no net flux through the channel. However, we can already

make some observations. First, the rates β
±(1,1)
1 are tiny compared to the others. Thus

the channel will switch between single and double occupancy but will almost never be
empty of ions. We will confirm this when we consider the equilibrium occupancy of

the channel in the next section. Second, the exit rates β
−(1,1)
2 and β

+(1,2)
2 are about

270 times as large as the hopping rates γ
(2,1)
2 and γ

(1,2)
2 . This means that, for these

values of the parameters, an incoming ion enters and leaves about 270 times before it
manages to replace the bound ion in the potential well at the center of the channel.

3.2. Stationary probability of each state. Now that we have determined all
the transition rates in Figure 3.1, the stationary probability for the number of ions in
the channel can be calculated explicitly as

(3.13)

P̃
(1)
2 + P̃

(2)
2 =

α
−(1,1)
1 τ2

[
S
(1)
2

]
+ α

+(2,1)
1 τ2

[
S
(2)
2

]
1 + 1

τ1
[
S

(1)
1

] 1

α
−(1,1)
0 +α

+(1,1)
0

+ α
−(1,1)
1 τ2

[
S
(1)
2

]
+ α

+(2,1)
1 τ2

[
S
(2)
2

] ≈ 0.1002,

P̃
(1)
1 =

1

1 + 1

τ1
[
S

(1)
1

] 1

α
−(1,1)
0 +α

+(1,1)
0

+ α
−(1,1)
1 τ2

[
S
(1)
2

]
+ α

+(2,1)
1 τ2

[
S
(2)
2

] ≈ 0.8998,

P̃
(1)
0 =

1

τ1
[
S

(1)
1

] 1

α
−(1,1)
0 +α

+(1,1)
0

1 + 1

τ1
[
S

(1)
1

] 1

α
−(1,1)
0 +α

+(1,1)
0

+ α
−(1,1)
1 τ2

[
S
(1)
2

]
+ α

+(2,1)
1 τ2

[
S
(2)
2

] ≈ 2.285× 10−5.

We see that these agree well with the probabilities obtained from a Brownian dynam-
ics simulation in (2.8). The same probabilities may be obtained by integrating the
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solutions of Fokker–Planck equations over the configuration space, which gives

I2 ≡
∫ L

−L

∫ x2

−L

P̃2(x1, x2) dx1 dx2 ≈ 0.1001,

I1 ≡
∫ L

−L

P̃1(x1) dx1 ≈ 0.8991, I0 ≡ P̃0 ≈ 8.3× 10−4.(3.14)

4. Current-voltage curve. The most important characteristic of an ion chan-
nel is its conductance. In this section, we investigate the channel conductance by
examining the current-voltage curves for various values of the channel parameters.

The potential difference across a channel is usually around 100 ∼ 200 mV. We
therefore vary the potential gradient U in the range [−0.1, 0.1] V nm−1, which gives a
voltage drop in the range [−200, 200] mV for a channel of length 2 nm. Following the
framework in section 3, we compute the transition rates corresponding to each given
value of U .

By examining the transition network in Figure 3.1, we see that there are two
different paths which lead to ions moving from the intracellular (left-hand side) to the
extracellular (right-hand side) domain, namely

PATH 1 : S
(1)
1

α
−(1,1)
1−−−−→ S

(1)
2

γ
(2,1)
2−−−→ S

(2)
2

β
+(1,2)
2−−−−→ S

(1)
1 ,

PATH 2 : S
(1)
1

β
+(1,1)
1−−−−→ S

(1)
0

α
−(1,1)
0−−−−→ S

(1)
1 .

Both paths start with a channel with one ion bound at the potential well. In Path 1
another ion first enters the channel from the left-hand source to produce a two-ion
channel. The two ions then hop to the right so the new ion lies in the potential well
at the center of the channel. The ion released from this well then exits the channel
at the right. Thus in Path 1 we can think of a new ion coming in and knocking the
present ion out the other side. In Path 2 the ion in the channel first leaves from the
right to leave an empty channel, and then a new ion enters from the left.

By considering the transition rates, we can determine the relative importance of

each of these mechanisms. For the parameters in (2.7) the rate β
+(1,1)
1 is tiny, and

Path 1 dominates the current. Note that at equilibrium the ion flux entering from
the left is balanced by the flux which leaves from right for each path, so that

α
−(1,1)
1 P̃

(1)
1 = β

+(1,2)
2 P̃

(2)
2 , α

−(1,1)
0 P̃

(1)
0 = β

+(1,1)
1 P̃

(1)
1 .

Similarly ions flow from right to left via the paths

PATH 3 : S
(1)
1

α
+(2,1)
1−−−−→ S

(2)
2

γ
(1,2)
2−−−→ S

(1)
2

β
−(1,1)
2−−−−→ S

(1)
1 ,

PATH 4 : S
(1)
1

β
−(1,1)
1−−−−→ S

(1)
0

α
+(1,1)
0−−−−→ S

(1)
1 ,

and, at equilibrium, we obtain

α
+(2,1)
1 P̃

(1)
1 = β

−(1,1)
2 P̃

(1)
2 , α

+(1,1)
0 P̃

(1)
0 = β

−(1,1)
1 P̃

(1)
1 .

Combining the current from each path, the net current is given by

I = e
(
α
−(1,1)
0 P̃

(1)
0 + α

−(1,1)
1 P̃

(1)
1 − β

−(1,1)
1 P̃

(1)
1 − β

−(1,1)
2 P̃

(1)
2

)
= e
(
β
+(1,1)
1 P̃

(1)
1 + β

+(1,2)
2 P̃

(2)
2 − α

+(1,1)
0 P̃

(1)
0 − α

+(2,1)
1 P̃

(1)
1

)
.(4.1)
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Fig. 4.1. I-V curve for L2λ/D = L2μ/D = 1, 5, 10 with d/L = 0.5; all other parameters are
as in (2.7). Curves (a) for small voltages, for which internal transitions in the channel are rate
limiting; (b) for larger voltages, at which saturation occurs due to the finite rate of entry of ions
from the bulk.
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Fig. 4.2. I-V curve for d/L = 0.3, 0.4, 0.5 with L2λ/D = L2μ/D = 5. All other parameters
are as in (2.7).

Next we study how the conductance of the channel varies with the external potential
energy parameter d/L and the dimensionless entry rates L2λ/D and μL2/D. We plot
in Figure 4.1 the current-voltage (I-V) curve for different entry rates when d/L = 0.5.
For large voltages the current saturates since it is limited by the entry rate of ions
λ and μ; this effect is illustrated in Figure 4.1(b). In Figure 4.2 we plot the I-V
curve for various values of d with a fixed entry rate. The slopes of these curves
give the conductance of the channel, which grows initially with increasing voltage
until saturation sets in. We see that as the dimensionless entry rate increases, or the
potential well gets shallower, the conductance of the channel increases.

5. Optimal geometry of potential. We showed in Figure 4.2 that a channel
with shallower potential well has larger conductivity if all other physical parameters
are fixed. However, the depth of the potential well is not the only factor that de-
termines the ion flux. Abad, Reingruber, and Sansom [1] studied the flux through a
channel of capacity N = 1 with symmetric M-shaped potential energy and showed
that there exists a critical ratio σ, of the width of the potential well over the length of
channel, at which the flux is maximized. This optimal geometry of potential energy
requires that the potential well be neither too narrow (σ → 0) nor too wide (σ → 1).
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Fig. 5.1. (a) A group of potential energy wells for d = 0.1, 0.2, 0.3, . . . , 0.9, 1.0 nm are plotted
as solid curves respectively from narrow to wide wells; the darker curve corresponds to Z = e,
d/L = 0.5, and the dotted curve corresponds to the energy drop due to applied field U = −0.05 V
nm−1. (b) The external charge Z as a function of d given by (5.1).

We now perform a similar analysis of the two-ion channel. For our N = 2 example
we study how the shape of an external potential on the protein boundary affects the
conductivity of the channel. We vary the distance d and carefully choose the external
charge as

(5.1) Z = e
2−

(
1 + 0.52

)−0.5

d−1L−
(
1 + d2L−2

)−0.5 ,

so that the depths of the resulting potential wells are all the same and so that Z = e
when d/L = 0.5 (see Figure 5.1(b)). The resulting group of potential wells with
applied field U = −0.05 V nm−1 is plotted in Figure 5.1(a): the darker curve corre-
sponds to Z = e, d = 0.5L, and the dotted curve shows how the potential wells tilt
with the applied field. Obviously, when d is small, we have a steep potential drop near
the binding site and a relatively flat energy landscape near the ends of the channel.
When d/L gets large, the potential well tends to a curve that is steeper near the end
of the channel and flatter near the binding site.

Now we fix U = −0.05 V nm−1, λ = μ = 5 ns−1, and plot in Figure 5.2 the sta-
tionary probability density function P̃2(x1, x2) obtained by solving stationary Fokker–
Planck equations numerically for various values of d. Recall that since x1 < x2, we
only look at the upper left triangular domain Γ2 given by (2.5). We observe that
when the potential well is very narrow and steep at the binding site with d = 0.1 nm,
the probability distribution of two ions is localized at two tiny spots around (x−, ξ)
and (ξ, x+). As d increases until d = 0.5 nm, the two spots grow a little larger and
shift slightly away from (x−, ξ) and (ξ, x+). Thus for d ∈ [0.1, 0.5] nm we can justify
the use of our four-state rate theory. For d between 0.5 nm and 0.6 nm, a ridge of
high probability distribution emerges that connects the previous two spots at its two
tails. This implies that instead of the two ions being trapped at one of two states,
the two can wander back and forth freely between these two states. As d increases
even further to d = 0.9 nm, the ridge shrinks to its center peak, which corresponds to
the two ions both sitting in the potential well. Thus, for larger values of d, we have
effectively only one state for the two-ion occupied channel.
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(a) d = 0.1 nm. (b) d = 0.2 nm. (c) d = 0.3 nm.

(d) d = 0.4 nm. (e) d = 0.5 nm. (f) d = 0.6 nm.

(g) d = 0.7 nm. (h) d = 0.8 nm. (i) d = 0.9 nm.

Fig. 5.2. Fixing λ = μ = 5 ns−1, U = −0.05 V nm−1, we plot the stationary probability
distribution ˜P2(x, y) for d = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 nm, which are obtained by solving
(2.9) numerically. The figure shows the change from two distinct states at (−0.9, 0), and (0, 0.9),
to a ridge of high probability regime, to one distinct state near (−0.45, 0.45), with the change of
geometry of the potential well.

Thus, for large d, we can define a single-chained three-state system,

(5.2) S
(1)
2 : {((x− + ξ)/2, (ξ + x+)/2)}, S

(1)
1 : {ξ}, S

(1)
0 : {},

which is similar to the four-state system in Figure 3.1, except that S
(1)
2 = S

(2)
2 are

combined and there is no hopping γ
(1,2)
2 and γ

(2,1)
2 between them. Following the

framework in section 3, all the entry rates α
−(1,1)
0 = α

−(1,1)
1 = μ and α

+(1,1)
0 =

α
+(1,1)
1 = λ are prescribed, and the escaping rates are easily calculated as

β
−(1,1)
k =

ρk

[
S
(1)
k

]
τk

[
S
(1)
k

] , β
+(1,1)
k =

1− ρk

[
S
(1)
k

]
τk

[
S
(1)
k

] , k = 1, 2.

In Figure 5.3(a), we plot the mean escape time τ2 from the left state S
(1)
2 = (−0.9, 0)

(black solid curve) and the right state S
(2)
2 = (0, 0.9) (black dash-dotted curve) in

four-state formulation, and compare them with τ2 from the balanced state
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Fig. 5.3. Fixing U = −0.05 V nm−1, we numerically solve (3.2) and (3.5) and obtain the

mean escape times and left splitting probabilities at two states S
(1)
2 = (−0.9, 0) and S

(2)
2 = (0, 0.9)

for d between 0.1 and 1 nm, which determine the escaping rates and transition rates by (3.12).
We compare it with the results of the three-state simplified model (5.2). (a) The mean escape time
τ2 versus d at different states. (b) The splitting probability ρ2 versus d at different states. (c)

The escaping rates β(1) = β
−(1,1)
2 and β(2) = β

+(1,2)
2 . (d) The transition rates γ(1) = γ

(2,1)
2 and

γ(2) = γ
(1,2)
2 . Note that those rates depend only on the mean escape time and left splitting probability

and are independent of entry rates.

S
(1)
2 = (−0.45, 0.45) (red solid curve) in the three-state formulation (5.2). Since the

potential well is broader as d increases, the second ion (the one which is not trapped in
the well) feels its effect more, resulting in an exponential increase in the mean escape
time. In a channel with descending voltage from left to right (U = −0.05 V nm−1), it
takes a longer time for two ions in the left state (−0.9, 0) to escape than for two ions
in the right state (0, 0.9), so the black solid curve is above the black dashed curve.

For two ions in the balanced state S
(1)
2 = (−0.45, 0.45) in the middle of channel, it

takes an even longer time, so the red solid curve is above the two black curves.
Notice that the ratio τ2(−0.9, 0)/τ2(0, 0.9) is largest when 0.5 < d < 0.6. Note

also that for small d the three-state formulation is invalid (so τ2(−0.45, 0.45) is mean-
ingless) but for large d the ratio τ2(−0.45, 0.45)/τ2(−0.9, 0) is close to 1: for a broad
potential the mean escape time is insensitive to the precise initial position of the two
ions.

In Figure 5.3(b) we plot the left splitting probability ρ2 at the left state S
(1)
2 =
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(−0.9, 0) (black solid curve) and the right splitting probability 1 − ρ2 at the right

state S
(2)
2 = (0, 0.9) (black dash-dotted curve) in four-state formulation. For large d,

the external potential has a large gradient near both ends of the channel (as shown
in Figure 5.1(a)), which pulls the new ion introduced at either source towards the
center of channel and into balance with the existing ion at around (−0.45, 0.45).
So new entering ions at each source are less likely to leave from the same end of the
channel, and both the left splitting probability at the left state (black solid curve) and
the right splitting probability at the right state (black dash-dotted curve) decrease
monotonically as d increases. In addition, the left-splitting probability ρ2 at the

balanced state S
(1)
2 = (−0.45, 0.45) in the three-state formulation is plotted by the

red solid curve, which overlaps with ρ2(−0.9, 0). As with the escape time, the splitting
probability is insensitive to the initial position of the ions, and is dominated by the
effects of the potential.

Next we compare the escape rates β in the two formulations in Figure 5.3(c).

The black solid curve shows the rate at which an ion at left state S
(1)
2 = (−0.9, 0)

escapes from the left side, the black dash-dotted curve plots the rate at which an ion

at right state S
(2)
2 = (0, 0.9) escapes from the right side. The left and right escaping

rates at the balanced state S
(1)
2 = (−0.45, 0.45) in three-state formulation (5.2) are

plotted as the red solid curve and red dash-dotted curve, respectively. All escaping
rates drop rapidly as d increases. When d ≥ 0.7, the potential well is so broad that
the two ions are trapped in the channel for a long time. In Figure 5.3(d), we plot

the transition rates between states S
(1)
2 = (−0.9, 0) and S

(2)
2 = (0, 0.9). Due to the

inclined voltage, the transition from left state S
(1)
2 to S

(2)
2 occurs more often than

the other way; namely, the transition rate γ
(2,1)
2 depicted by the solid curve is above

γ
(1,2)
2 , the dash-dotted curve. When d < 0.4, the transition rates are very low (< 10−4

ns−1), so the two states are very distinct. For large d, the observed single state in
Figure 5.2 can be treated as the average of the two distinct states.

We remark that the mean escape time of the ion from a one-ion channel τ1(S
(1)
1 =

{0}) is O(105) times larger than τ2(S
(1)
2 ), so the escape rates β

−(1,1)
1 � β

−(1,1)
2 and

β
+(1,1)
1 � β

+(1,2)
2 . By (3.13) we see that for there to be an appreciable probability

of having no ion in the channel we need τ1(S
(1)
1 )−1 ∼ α

−(1,1)
0 + α

+(1,1)
0 = λ + μ. In

our example, we choose the smallest entry rates to be λL2/D = μL2/D = 1, so the

resulting P̃
(1)
0 is extremely small compared to P̃

(1)
1 and P̃

(1)
0 and is therefore negligible.

Thus, for any entry rates λL2/D = O(1), μL2/D = O(1), only one-ion occupancy
(small entry rates) or two-ion occupancy (large entry rates) is observed most of time

(i.e., P̃
(1)
1 + P̃

(1)
2 + P̃

(2)
2 ≈ 1). In particular, our model can also be viewed as the

so-called single-vacancy model with two “sites” and two ions [24]. However, we did
not postulate the single-vacancy property when we formulated our BD model. In
fact, if the entry rates λ and μ were much smaller, then the empty state could have
significant probability of occurring, and our BD model could be closer to the so-called
single-ion model; see McGill and Schumaker [24] for the discussion of single-vacancy
and single-ion mechanisms of permeation through the channel.

In Figure 5.4(a), fixing λ = μ = 5 ns−1, U = −0.05 V nm−1, we compare the
stationary probabilities of two-ion occupancy (solid curves) and one-ion occupancy
(dash-dotted curves) for various values of d using (i) the four-state formulation (3.8)
(black curves), (ii) the three-state formulation (5.2) (red curves), and (iii) the Fokker–
Planck equations solved via Comsol (circles and diamonds). When d is large, the
stationary probabilities obtained from all three methods agree with each other, which
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Fig. 5.4. Fixing λ = μ = 5 ns−1, U = −0.05 V nm−1. (a) We plot the stationary probabilities
of two-ion and one-ion states by four-state formulation (3.8) (black curves), three-state formulation
(5.2) (red curves), and by solving the Fokker–Planck equation with 28,800 elements (circles and
diamonds). (b) We plot the current I vs. d by four-state formulation (3.8) (black solid curve) and
by three-state formulation (5.2) (red solid curve), which are compared with (fL + fR) in (5.4) from
solution of the Fokker–Planck equation (circles).

confirms that the single balanced state in the three-state formulation can be treated
as an average of the two distinct states (with frequent transitions) in the four-state
formulation. Because the mean escape time grows from O(10−2) ns to O(102) ns with
d increasing as shown in Figure 5.3(a), a constant entry rate λ = μ = 5 ns−1 leads to
a transition from initially one-ion–dominant to two-ion–dominant channel.

After obtaining the rates and probabilities, we can compare the flux through the
channel from the rate theory and the solution of the Fokker–Planck equations. We
integrate the right-hand side of (2.9b) with respect to x1 over [−L,L], which yields

(5.3) f1R − f1L + (μ+ λ)I0 −
(
μ

∫ x+

−L

P̃1 dx1 + λ

∫ L

x−
P̃1 dx1

)
− (f2R − f2L) = 0,

where

f2L =

∫ L

−L

D

(
∂P̃2

∂x1
+ P̃2

∂Φ2

∂x1

)
(−L, x1) dx1 =

∫ L

−L

D
∂P̃2

∂x1
(−L, x1) dx1,

f2R =

∫ L

−L

D

(
∂P̃2

∂x2
+ P̃2

∂Φ2

∂x2

)
(x1, L) dx1 =

∫ L

−L

D
∂P̃2

∂x2
(x1, L) dx1,

f1L = D

(
dP̃1

dx1
+ P̃1

dΦ1

dx1

)
(−L) = D

dP̃1

dx1
(−L),

f1R = D

(
dP̃1

dx1
+ P̃1

dΦ1

dx1

)
(L) = D

dP̃1

dx1
(L).

In Table 5.1, we show that the eight transitions connected to state S
(1)
1 in Figure 3.1

correspond one by one to the eight terms in (5.3).
The left-to-right flux across the left boundary of the channel is generated by

introducing new ions μI0 + μ
∫ x+

−L
P̃1 dx1, and the right-to-left flux across the left
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Table 5.1

Transitions computed by the four-state model (3.8) and the hierarchical Fokker–Planck equation.

Transitions by escaping Flux from rate theory Flux from Fokker–Planck

S
(1)
2

β
−(1,1)
2−−−−−→ S

(1)
1 β

−(1,1)
2

˜P
(1)
2 f2L

S
(2)
2

β
+(1,2)
2−−−−−→ S

(1)
1 β

+(1,2)
2

˜P
(2)
2 −f2R

S
(1)
1

β
−(1,1)
1−−−−−→ S

(1)
0 β

−(1,1)
1

˜P
(1)
1 f1L

S
(1)
1

β
+(1,1)
1−−−−−→ S

(1)
0 β

+(1,1)
2

˜P
(1)
1 −f1R

S
(1)
1

α
−(1,1)
1−−−−−→ S

(1)
2 μ ˜P

(1)
1 μI1

S
(1)
1

α
+(2,1)
1−−−−−→ S

(2)
2 λ ˜P

(1)
1 λI1

S
(1)
0

α
−(1,1)
0−−−−−→ S

(1)
1 μ ˜P

(1)
0 μI0

S
(1)
0

α
+(1,1)
0−−−−−→ S

(1)
1 λ ˜P

(1)
0 λI0

boundary of the channel is generated by ions leaving the left boundary f1L + f2L.
Similarly we have that the left-to-right flux across the right boundary of the channel
is generated by ions leaving the right boundary −f1R − f2R, and the right-to-left
flux across the right boundary of the channel is generated by introducing new ions

λI0 + λ
∫ L

x−
P̃1 dx1. Thus the overall fluxes are

(5.4) fL = μI0+μ

∫ x+

−L

P̃1 dx1− f1L− f2L, fR = −f1R− f2R−λI0−λ

∫ L

x−
P̃1 dx1.

In Figure 5.4(b), we fix λ = μ = 5 ns−1, U = −0.05 V nm−1, and plot the current I
against d from the flux (fL + fR) in (5.4) using discrete circles, obtained by solving
(2.9). In comparison, the black solid curve depicts the current obtained by applying
the four-state rate theory (3.8), and the red solid curve depicts the current obtained
by the three-state rate theory (5.2). We see that for a broad potential well with
0.6 < d < 1, all three methods reach a good agreement: the four-state works for
large d, even though the stationary probability distribution in Figure 5.2 shows that
there should be three states for large d. This is because of our use of escape times
and splitting probabilities to determine the transition rates in the model, rather than
our trying to estimate hopping rates directly. However, with small d, the three-state
model is not an accurate description of the Markov process, and the flux quickly
becomes inaccurate.

An important observation from Figure 5.4(b) is that a maximal current is achieved
around d = 0.6 nm, which means there exists an optimal shape of the potential well
for conducting ions, even if the depth of the well remains the same. This result agrees
with the argument in [1] for a single-ion channel with piecewise linear potential energy.

We may explain the existence of an optimal flux by looking at the stationary
probabilities P̃2 and P̃1 as functions of d in Figure 5.4(a). When d is small, the
potential well is very narrow and steep near the binding site, but relatively flat near
the end of channel, so any new ion introduced would escape very quickly from the
same end by diffusion, leaving the old ion in the channel. For example, at d = 0.1

nm, both escaping rates β
−(1,1)
2 and β

+(1,2)
2 are over 500 ns−1. Thus the channel has

only one ion (P̃1 > 0.8) most of the time; obviously the process of an ion entering and
leaving from the same end does not generate any through flux. On the other hand,
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Fig. 5.5. Fixing U = −0.05 V nm−1. (a) Stationary probability ˜P2 (black) and ˜P1 (red)
obtained from four-state Markov chain formulation (3.8) for λ = 1, 5, 20, 100 ns−1. The in-

tersection points of each pair of curves at which ˜P2 = ˜P1 ≈ 0.5 for λ = 1, 5, 20, 100 are at
d ≈ 0.665, 0.6, 0.54, 0.41 nm, respectively. (b) Current obtained from the four-state Markov chain
formulation for μ = 1, 5, 20, 100 ns−1. The critical values of d at which optimal flux is achieved are
respectively d ≈ 0.63, 0.6, 0.59, 0.57 nm.

when d is large, the potential well is very broad and flat near the binding site, and two
ions can hardly escape from the channel, as shown by the large mean escape time in
Figure 5.3(a); once a new ion is introduced to the channel, it quickly moves towards
the center and settles into a balanced state in the well with the other ion; thus the
two-ion state dominates (P̃2 > 0.9). In this case the flux is small because two ions
are trapped in the channel for a long time.

When neither two-ion nor one-ion occupancy dominates in the channel, so that
there are adequate transitions between the two-ion distinct states and frequent es-
capes from the two-ion to the one-ion state, a large flux is generated. This explains
heuristically why an intermediate potential well has an optimal geometry.

Finally, we investigate how the entry rates affect the optimal flux for the family of
potential wells in Figure 5.1(a) using the four-state Markov chain formulation (3.8).

Recall that the escape rates β
−(1,1)
2 , β

+(1,2)
2 and transition rates γ

(1,1)
2 , γ

(1,2)
2 are

determined by the potential through mean escape time and left splitting probability,
and thus are independent of the entry rates. We fix the applied field U = −0.05 V
nm−1 and plot in Figure 5.5(a) the stationary probabilities P̃2 (black) and P̃1 (red)
for λ = 1, 5, 20, 100 ns−1. The intersection points of each pair of curves at which
P̃2 = P̃1 ≈ 0.5 for λ = 1, 5, 20, 100 are at d ≈ 0.665, 0.6, 0.54, 0.41, respectively. This
illustrates the fact that when the potential well is narrow and steep at the binding site

(d small), the escaping rates β
−(1,1)
2 and β

+(1,2)
2 are large (shown in Figure 5.3(c)),

so the entry rates have to increase in order to have equal probabilities of two-ion and
one-ion occupancy.

In Figure 5.5(b), we plot the current I(d) for λ = 1, 5, 20, 100 ns−1. As expected,
the current increases as the entry rates increase, but we also find that the value of
d at which the current is optimized shifts; the critical values of d at which optimal
flux is achieved are respectively d ≈ 0.63, 0.6, 0.59, 0.57. Thus the optimal value of
d slightly decreases as the entry rates increase, which shows that the larger escaping
rates of tighter potentials require larger entry rates to optimize the flux.
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6. Conclusions and discussion. We have presented a set of hierarchical Fokker–
Planck equations describing ion permeation in multi-ion channels, and reduced these
systematically to a discrete rate theory. The basis of the reduction is the fact that
many channels have internal binding sites at which ions sit, so that ions move by hop-
ping between sites on a slow time scale while oscillating in the binding sites on a fast
time scale. Since the fast oscillation is not key in determining the conduction rate,
we can reduce the continuous dynamics to the slow transition between the discrete
states and thus provide an efficient way to calculate the current through the channel.
A key component of our reduction was the use of exit times and splitting probabilities
to determine the discrete hopping rates, rather than trying to estimate these directly
using Kramer’s theory, for example. This means that the predictions of the discrete
model are accurate even when the internal states are not so well defined.

In contrast to traditional Eyring rate theory [17] and the recent study of a one-ion
channel in [1], we have developed a general theory for multi-ion channels and have
shown an intricate coupling between transition rates, mean escape time, and splitting
probability, due to the complexity of the resulting system of Markovian states. The
theory is illustrated by a two-ion channel, which is the most accessible example that
includes the multi-ion complexity. We have investigated how conductivity of the
channel depends on the diffusion coefficient, potential energy landscape, and the ion
entry rate. By varying the geometry of the external potential while keeping the depth
fixed, we observed that when the potential well is narrow and steep at the binding
site, the one-ion state dominates, but when it is not, the two-ion state dominates. In
between there is an optimal geometry which maximizes the ion flux by negotiating
between these two extremes and allowing frequent transitions between the one-ion
and two-ion states.

In the presented two-ion model, we imposed the rates λ and μ of the ion entry
into the channel. In practice, these rates should be determined by modeling regions
of intracellular and extracellular space close to the channel [12]. If the channel entry
was purely diffusion-limited, then one could use the BD theory of reaction-diffusion
processes to introduce suitable boundary conditions for the channel [15]. In particu-
lar, one could use hybrid methods for coupling a BD model inside the channel with
the continuum model in the channel exterior [19]. This multiscale approach would
determine the appropriate values for the entry rates λ and μ. An open question is
how the multiscale approach of Franz et al. [19] could be generalized to the case when
particles interact through electrical forces or when ion-crowding is considered [3]. The
effects of crowding in model channels were recently investigated by Bruna and Chap-
man [6]. They studied drift-diffusion models where the interaction between particles
is described by a repulsive hard-core potential. Such interactions are important to
consider if solvent molecules are included in the modeling of permeation through the
channel [9].

In section 2.1, we introduced hierarchical Fokker–Planck equations for general
channels with channel capacity N . The reduction to discrete rate theory was dis-
cussed for general N in section 3. This approach was illustrated using the two-ion
example introduced in section 2.2. In particular, all calculations were presented for
the case N = 2. This case is interesting from both application and theoretical points
of view. It is relatively straightforward to apply the discrete rate theory reduction to
channels with channel capacity N = 3. The reduction of BD simulation to Markov
chains in section 3 is based on (a) solving suitable PDEs numerically to obtain prob-
ability densities, escape times, and splitting probabilities; (b) parametrizing the cor-
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responding Markov chain. Both (a) and (b) are computationally feasible for N = 3.
If we further increase N , then the most challenging task will be to compute solutions
of N -dimensional PDEs. There is the potential to use modern methods for solving
high-dimensional PDEs [22] but this is beyond the scope of this work.
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