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Abstract

A shift-periodic map is a one-dimensional map from the real line to itself which is periodic up

to a linear translation and allowed to have singularities. It is shown that iterative sequences

generated by such maps display rich dynamical behaviour. They converge in certain limits

to both discrete and continuous stochastic processes, including Brownian motion, more gen-

eral Lévy processes and various types of random walks, depending on the properties of the

generating shift-periodic map.

1 Introduction

Dynamical systems and their stochastic properties have been studied for more than a hundred
years, starting with the pioneering works of Poincaré. He first connected probabilistic concepts
with dynamics, conjecturing the Poincaré recurrence theorem [1]. Major advances in the field were
made in the 1930s by Birkhoff [2] and von Neumann [3], via the proof of so called ergodic theo-
rems, concerning time averages of functions along trajectories. Birkhoff also first used topological
methods for the study of dynamical systems. In these early years differential equations were often
the main focus of the study of dynamical systems. However, since the 1970s attention turned to
simple dynamical systems, generated iteratively from a map F : Ω → Ω via an equation

xn+1 = F (xn), (1.1)

where Ω has been taken to be a low-dimensional set [4], such as interval [0, 1]. It has been observed
that even very simple maps and systems can give rise to complicated, seemingly random behaviour
of trajectories, a phenomenon Yorke and Li named ”chaos” in their seminal paper [5]. An
example of this concept was given by Robert May in [6] with the logistic map F (x; r) = rx(1−x).
Depending on parameter r, it displays a wide array of behaviour of trajectories, highly sensitive
to the initial value.

While sequence (xn) generated from equation (1.1) is fully deterministic when x0 is known, it
can instead be viewed as a discrete-time stochastic process when initial value x0 is chosen according
to a probability distribution on Ω and a suitable scaling can also lead to continuous-time stochastic
processes. A notable example is Brownian motion, obtained as a limit after an appropriate scaling
in space and time for a specific class of maps F , as demonstrated by Beck and Roepstorff in [7, 8].
Their approach to convergence to the Ornstein-Uhlenbeck process was further investigated by
various other authors, for example by Mackey and Tyran-Kamińska [9, 10], who derived various
central limit theorems for chaotic, deterministic semi-dynamical systems and showed how Brownian
motion can be obtained from a deterministic system using these results.

In some application areas, for example financial modelling [11] or network traffic [12], conti-
nuous-time stochastic processes with heavy-tailed increments, rather than normally distributed
increments, have been observed to give a better model than Brownian motion. While such Lévy
motions can arise as limits of a stochastic process [13], they have not yet been investigated as a
limit of iterates (1.1) of one-dimensional maps, which we discuss in this paper. When the behaviour

∗Merton College, Merton Street, Oxford, OX1 4JD, United Kingdom; e-mail: julia.stadlmann@merton.ox.ac.uk
†Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2

6GG, United Kingdom; e-mail: erban@maths.ox.ac.uk

1



of (xn) as a stochastic process is studied, it is common to choose the distribution of x0 on Ω in
such a way that F is measure preserving, ensuring that all xn are identically distributed. This
restricts the stochastic processes we might obtain in a limit. Although, for many maps on bounded
intervals a corresponding invariant measure can be constructed [14], for maps on unbounded Ω
this problem becomes harder. However, if we chose to restrict our attention to bounded intervals,
the random variables generated by equation (1.1) would have finite variance, so that in a scaling
limit, we would obtain normal distribution of increments.

The key issue in the above is that F shall map Ω to itself. However, some authors have also
investigated the behaviour of trajectories generated instead by maps F : Ω → F (Ω) with Ω $ F (Ω)
until the point of escape from Ω, especially when the holes, i.e. Ω \ F−1(Ω), are small compared
to Ω. Early results are due to Pianigiani and Yorke [15], who motivated the discussion with the
example of a billiard table with chaotic trajectories, and introduced the concept of conditionally
invariant measures. This idea has been investigated further by other authors, for example, Demers
and Young studied escape rates through the small holes [16].

In this paper, we combine these two approaches, studying sequences (xn) generated via maps
F : [0, 1] → R with xn+1 = F ({xn}) + ⌊xn⌋, where {xn} is the fractional part and ⌊xn⌋ is the
integer part of xn. Equivalently, we generate (xn) via earlier equation (1.1) with a map satisfying
F (x) = F ({x}) + ⌊x⌋. This way, it is only necessary to find invariant distributions on [0, 1], while
simultaneously allowing the consideration of maps which generate random variables with infinite
higher-order moments, so that we obtain a much larger variety of different behaviour of trajectories.
Such shift-periodic maps are formally defined in the next section, when we illustrate the dynamics
of (1.1) using simple examples of shift-periodic maps. In Section 3, we prove the convergence of
dynamics of (1.1) to discrete time random walks, while the convergence to continuous-time random
walks is established for a subclass of shift-periodic maps in Section 4.

Notation. We denote R ∪ {∞} ∪ {−∞} by R∞. For any x ∈ R let {x} denote the fractional
part of x and ⌊x⌋ denote the integer part of x. For any Lebesgue measurable set A we denote
its Lebesgue measure by λ(A). As it is common in the literature, the symbol ∼ will be used
in two different contexts. First, for functions f(x) and g(x) we write f ∼ g if f(x)/g(x) → ∞
as x → ∞. Second, we also use symbol ∼ to specify the distribution of a random variable, for
example, X ∼ N(0, 1) means that random variable X is normally distributed with zero mean and
unit variance. In Section 4 we also make use of the sup-norm on the space of bounded functions
from [0, 1] to R, defined by ||f ||

∞
= supx∈[0,1] |f(x)|.

2 Shift-Periodic Maps

This paper studies the behaviour of iterative sequences given by (1.1) for functions F defined on
the real line, which are periodic up to integer shifts. The key property of maps F is a shift-periodic
formula given in the next definition as condition (i), together with technical restrictions (ii) and
(iii) on properties of F . Note that, unlike in other works on this topic in the literature, we allow
F to have singularities.

Definition 2.1. A shift-periodic map is a map F : R → R∞ with the following properties:
(i) F (x) = F ({x}) + ⌊x⌋ for all x ∈ R;
(ii) There exist 0 = t0 < t1 < · · · < tk = 1 so that F is continuous, monotonic on (ti−1, ti)

for i = 1, 2, . . . , k;
(iii) |F (x)− F (y)| > |x− y| holds for all distinct x, y ∈ (ti−1, ti) when i = 1, 2, . . . , k.

This definition includes both continuous functions and functions with singularities. Points ti,
i = 0, 1, 2, . . . , k, in Definition 2.1(ii) are either local extrema of map F or its singularities, i.e.
points where F (ti) = ∞ or F (ti) = −∞. Our first example of a shift-periodic map is a simple
continuous piecewise linear map, which can demonstrate random walk properties of iterations (1.1).
It has one local maximum and one local minimum in interval [0, 1] and maps interval [0, 1] to a
larger interval, [−δ/4, 1+ ε/4], for parameters δ > 0 and ε > 0. An example of this map is plotted
in Figure 1(a) (as a red solid line) and it is formally defined below.
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Figure 1: (a) Two examples of shift-periodic maps. Continuous piecewise linear map F (x; ε, δ)
given in Example 2.1 for δ = ε = 10−2 (red solid line) and shift-periodic map with singularities
F (x;κ) given in Example 2.2 for κ = 1 (black solid line).
(b) Illustrative dynamics of shift-periodic map F (x; ε, δ) from Example 2.1 for δ = ε = 10−2. The
first 104 iterations xk+1 = F (xk; 10

−2, 10−2) are plotted for initial condition x0 = 0.9.

Example 2.1. We consider piecewise linear map F : R → R with parameters δ > 0 and ε > 0,
which is defined on [0, 1] by

F (x; ε, δ) :=
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


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






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
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






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[
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4

)

;
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2
, if x ∈

[1

4
,
1

2

)

;

(−2− δ)x+
(3 + δ)

2
, if x ∈

[1

2
,
3

4

)

;

(4 + δ)x− (3 + δ), if x ∈
[3

4
, 1
]

,

and with F (x; ε, δ) = F ({x}; ε, δ) + ⌊x⌋ for x ∈ R.

Choosing relatively small values δ = ε = 10−2, first 104 iterations of map from Example 2.1 are
shown in Figure 1(b). Identifying intervals [i, i + 1) with integer valued lattice points {i} for
i ∈ Z, we observe that sequence xk can be viewed as a random walk between these lattice points.
More precisely, we can map sequence xk to integer-valued sequence by ⌊xk⌋, which gives lattice
positions of a random walker that is jumping from site {i} to neighbouring sites {i−1} and {i+1}
with certain probabilities. In Section 4, we show how properties of such random walks depend on
properties of F and investigate limits in which the resulting random walk has independent waiting
times. Note that the behaviour of iterations (1.1) depends on the initial condition x0 and there are
initial conditions for which the sequence is eventually constant. For instance, when considering the
map in Example 2.1, if x0 is an integer, then all values of the sequence are equal to x0. However,
such a behaviour is relatively rare since the set of these special initial conditions is of measure zero.

A more general example of a shift-periodic map is illustrated in Figure 1(a) as a black solid line
and is formally defined as Example 2.2. It has two singularities in [0, 1], at one of them approaching
∞ and at the other one approaching −∞ and maps interval [0, 1] to R∞.

Example 2.2. We consider F : R → R∞ with parameter κ > 0, defined on [0, 1] by

F (x;κ) =
4−1/κ

2(1− 3−1/κ)

(

∣

∣

∣

∣
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3
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∣

∣

∣
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−

∣

∣

∣

∣

x−
1

4

∣

∣

∣

∣

−1/κ
)

+
1

2
,

and with F (x;κ) = F ({x};κ) + ⌊x⌋ for x ∈ R. The prefactor is chosen so that F (0;κ) = 0 and
F (1;κ) = 1.

In Figure 2, we plot illustrative trajectories for two different values of κ. For large κ (panel (a)),
the behaviour of iterations xk+1 = F (xk;κ) resembles Brownian motion, while for small κ (panel

3



0 5000 10000

k

-50

0

50

x
k

κ = 10

0 5000 10000

k

-8000

-6000

-4000

-2000

0

2000

x
k

κ = 1

(a) (b)

Figure 2: Illustrative dynamics of shift-periodic map F (x;κ) from Example 2.2. The first 104

iterations xk+1 = F (xk;κ) are plotted (a) for κ = 10 and initial condition x0 = 0.4; (b) for κ = 1
and initial condition x0 = 0.3.

(b)) it resembles Lévy flights. We write ”resembles” since we compare discrete dynamics with
continuous time stochastic processes. In Section 3 we make these statements rigorous. To do this,
we identify the index k in xk with time and introduce suitable scaling of time to get convergence
to a continuous time process. Before that, we study the random walk behaviour of a certain class
of shift-periodic maps when time is left unscaled.

3 Discrete-time Random Walks

While the iterative formula (1.1) uniquely determines the next iterate xk+1 from the knowledge of
xk, Figure 1(b) suggests that the next value ⌊xk+1⌋ is determined from ⌊xk⌋ only with a certain
probability. The goal of this section is to formalise this observation for certain shift-periodic maps
by studying the connections between the dynamics of (1.1) and random walks.

Definition 3.1. Consider a discrete-time stochastic process (Xn)n∈N and define Yn = Xn −Xn−1,
for n ∈ N, where we assume X0 = 0. We say (Xn)n∈N is a discrete-time random walk if Yn, n ∈ N,
are independent and identically distributed.

The next definition introduces a restriction on shift-periodic maps which for an appropriate dis-
tribution of the initial value guarantees that the behaviour of a sequence generated by such a
shift-periodic map will be that of a random walk. The necessity of this condition will be discussed
later on by considering Example 2.1.

Definition 3.2. Let F be a shift-periodic map with 0 = t0 < t1 < · · · < tk = 1 such that
F is continuous and monotonic on (ti−1, ti). We then say that F has integer spikes if for i ∈
{0, 1, . . . , k − 1} and for j ∈ {1, 2, . . . , k}

lim
x→t+i

F (x) ∈ Z ∪ {∞} ∪ {−∞} and lim
x→t−j

F (x) ∈ Z ∪ {∞} ∪ {−∞}.

Note that Example 2.2 satisfies the definition of being a shift-periodic map with integer spikes,
where t0 = 0, t1 = 1/4, t2 = 3/4 and t3 = 1. On the other hand, Example 2.1 in general does not
satisfy Definition 3.2, except when ε, δ are both integer multiples of 4. Utilising Definition 3.2, the
following theorem holds.

Theorem 3.1. Let F : R → R∞ be a shift-periodic map with integer spikes and let U be uniformly
distributed on [0, 1]. For any m ∈ Z let

pm = λ{x ∈ [0, 1] : ⌊F (x)⌋ = m}.
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There exists a map h : [0, 1] → [0, 1] so that for Xn = ⌊Fn(h(U))⌋ and X0 = 0, the stochastic
process (Xn)n∈N is an integer-valued discrete-time random walk and for any m ∈ Z

P(Xn −Xn−1 = m) = pm.

Before proving Theorem 3.1, we investigate a simple case, which will also be a key element in the
proof of the full theorem in subsection 3.3.

3.1 Piecewise linear maps

Theorem 3.1 is easy to verify for maps which are linear in between integer function values, in this
case map h can simply be taken to be the identity map. We will call such maps ”linear between
grid lines” and make the definition precise below.

Definition 3.3. Let F be shift-periodic with integer spikes. F is linear between grid lines if
whenever x, y ∈ [0, 1], x < y, with F (x), F (y) ∈ Z, F continuous on (x, y), but F ((x, y)) ∩ Z = ∅,
then F is linear on (x, y).

Lemma 3.1. Let F : R → R∞ be a shift-periodic map with integer spikes which is linear between
grid lines and let U be uniformly distributed on [0, 1]. Let

pm = λ{x ∈ [0, 1] : ⌊F (x)⌋ = m}.

Then for Xn = ⌊Fn(U)⌋ and X0 = 0, the random process (Xn)n∈N is a integer-valued discrete-time
random walk with P(Xn −Xn−1 = m) = pm.

In the proof of this Lemma and all further proofs we will associate with a shift-periodic map F a
map on the unit interval, which we call the ”restricted map”, Fr : [0, 1] → [0, 1] given by

Fr(x) =

{

{F (x)} if F (x) /∈ {∞,−∞};

0 if F (x) ∈ {∞,−∞}.

Note that the conditions placed on shift-periodic map F , in particular (i), ensure that whenever
{F (x), F 2(x), . . . , Fn(x)} does not coincide with {∞,−∞} then Fn

r (x) = {Fn(x)} and

Fn(x) = Fn
r (x) + ⌊F (x)⌋+

n
∑

k=2

⌊F (F k−1
r (x))⌋ for n ≥ 2. (3.1)

The crucial property of shift-periodic maps with integer spikes is that the corresponding restricted
map consists of a countable number of linear pieces, each of which starts at 0 and ends at 1, or
the other way around.

Proof of Lemma 3.1. Let F : R → R∞ be a shift-periodic map with integer spikes which is linear
between grid lines and let U be uniformly distributed on [0, 1]. Let Xn = ⌊Fn(U)⌋ for n ≥ 0.
There is a collection of open, pairwise disjoint intervals {(ai, bi) : i ∈ I} with countable indexing
set I, so that ai < bi,

[0, 1] \
⋃

i∈I

(ai, bi) is countable and Fr is linear on (ai, bi) with Fr((ai, bi)) = (0, 1).

⌊F (x)⌋ is constant on (ai, bi). For m ∈ Z let Im = {i ∈ I : ⌊F (x)⌋ = m if x ∈ (ai, bi)} and then
pm = λ(∪i∈Im(ai, bi)). Write Yn = Xn −Xn−1. Now Y1 = ⌊F (U)⌋ and, using expression (3.1), we
get that Yn = ⌊F (Fn−1

r (U))⌋ for n ≥ 2. For any subset S ⊆ [0, 1] we define

F−n+1
r (S) = {x ∈ [0, 1] : Fn−1

r (x) ∈ S}.

Then we see P(Yn = m) = λ(∪i∈ImF−n+1
r (ai, bi)). If we fix k ∈ N and choose m1,m2, . . . ,mk ∈ Z

then

P(Y1 = m1, . . . , Yk = mk) = λ





k
⋂

n=1





⋃

i∈Imn

F−n+1
r (ai, bi)







 . (3.2)
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Now consider a measurable subset S ⊆ (0, 1) and interval (ai, bi) for some i ∈ Im. Fr is linear on
(ai, bi) with image (0, 1), so that λ(F−1

r (S) ∩ (ai, bi)) = (bi − ai)λ(S). Summing over all i ∈ Im,
we find

λ

(

F−1
r (S) ∩

(

⋃

i∈Im

(ai, bi)

))

= pmλ(S). (3.3)

Now apply equation (3.3) with S = Sk = ∪i∈Imk
(ai, bi) and m = mk−1. Write Sk−1 = F−1(Sk) ∩

∪i∈Imk−1
(ai, bi). Then equation (3.3) can be written as λ(Sk−1) = pmk−1

λ(Sk) = pmk−1
pmk

.

Similarly define Sj−1 = F−1(Sj) ∩ ∪i∈Imj−1
(ai, bi) for j = k − 1, . . . , 2. Apply equation (3.3)

repeatedly to find λ(Sj) = pj . . . pk for j = k − 1, . . . , 2. But observing that

S1 =

k
⋂

n=1





⋃

i∈Imn

F−n+1
r (ai, bi)





and using equation (3.2) we thus get P(Y1 = m1, . . . , Yk = mk) = p1 . . . pk. By summing over all
choices of m1, . . . ,mk−1, using

∑

m∈Z
pm = 1, also P(Yk = mk) = pk. It follows immediately that

Y1, Y2, . . . are independent, identically distributed and the Lemma holds.

3.2 Topological conjugacy

To prove Theorem 3.1, we will identify the trajectories generated by a general shift-periodic map
with integer spikes with those of a map which is piecewise linear between grid lines, like in Lemma
3.1.

Definition 3.4. Maps f : [0, 1] → [0, 1] and g : [0, 1] → [0, 1] are topologically conjugate if there
exists a homeomorphism h : [0, 1] → [0, 1] such that g = h−1 ◦ f ◦ h.

In [17], Baldwin described all classes of topologically conjugate maps on [0, 1] which are continuous
and piecewise monotonic. A slight adaptation of his proofs establishes the Lemma below, which is
also valid for maps with infinitely, rather than finitely many, monotonic pieces, as was the case in
the original proof.

Lemma 3.2. Let f : [0, 1] → [0, 1] and suppose there exist pairwise disjoint intervals (ai, bi) with
i ∈ I, where I is a countable indexing set disjoint from [0, 1], such that the following conditions
are satisfied:

(i) For any i ∈ I, f is continuous and monotonic on (ai, bi) with f((ai, bi)) = (0, 1);
(ii) |f(x)− f(y)| > |x− y| holds for all distinct x, y ∈ (ai, bi), where i ∈ I.
(iii) Σ = [0, 1] \ ∪i∈I(ai, bi) is countable and f(Σ) = {0}.

Let g : [0, 1] → [0, 1] such that g is linear on (ai, bi) with limx→a+

i
g(x) = limx→a+

i
f(x) and

limx→b−i
g(x) = limx→b−i

f(x) for any i ∈ I and further g(x) = 0 for any x ∈ Σ. Then f and g are

topologically conjugate.

Proof. With any x ∈ [0, 1] we associate a sequence af (x) = (a0(x), a1(x), . . . ) where an(x) = i
if fn(x) ∈ (ai, bi) and an(x) = fn(x) if fn(x) ∈ Σ. Let b be a finite sequence of length n. For
sequence c, infinite or finite of length greater or equal n, we say c|n = b if the first n entries of b
and c coincide. For a finite sequence b of length n with entries in I ∪ Σ then write

Jf
b
= {x ∈ [0, 1] : af (x)|n = b}.

We now make the following observations: Suppose x 6= y. Because of condition (ii) it is clear that
for some n ∈ N the interval (fn(x), fn(y)) or (fn(y), fn(x)) intersects with Σ. We then easily
deduce af (x) 6= af (y).

Let again b be a finite sequence. From above we then note that Jf
b
is empty or a singleton if at

least one of the entries of b is in Σ. Otherwise Jf
b
is an open interval. This can easily be shown by

induction, and is a consequence of f((ai, bi)) = (0, 1) and of monotonicity of f on (ai, bi). Further,

for another finite sequence c, if c|n = b then Jf
c
⊆ Jf

b
. The same observations also apply to g,

where we define Jg
b
= {x ∈ [0, 1] : ag(x)|n = b}. The construction of g, in particular equality to f
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on Σ, ensures that Jg
b
is empty, a singleton or open interval if and only if Jf

b
is empty, a singleton

or an open interval, respectively.
The sets Jf

b
, where b are sequences of length n in I ∪ Σ, partition [0, 1]. Now we may define

a continuous, monotonically increasing map hn : [0, 1] → [0, 1] by sending each Jg
b
to the corre-

sponding set Jf
b
via an increasing linear map. Note that the upper bound on the length of Jf

b
for

sequences b with n entries goes to 0 as n goes to infinity. hn converges uniformly to a continuous,
strictly monotonically increasing map h with ag(x) = af (h(x)): Strict monotonicity can be seen
by noting that for x < y ∈ [0, 1] there must exist z1, z2 ∈ [0, 1] with x < z1 < z2 < y, so that ag(z1)
and ag(z2) have some entries contained in Σ. But then for large enough n the values of hn(z1) and
hn(z2) will become constant and so in the limit we obtain h(x) ≤ h(z1) < h(z2) ≤ h(y).

Now consider b = ag(x)|n for some n ∈ N. Since h maps x to Jf
b

for each such b, h(x)
must either have ag(x) = af (h(x)) or af (h(x)) intersects with Σ. There will be a point y with
ag(y) = af (h(x)) and in the latter case hn will be eventually constant and equal h at y. Then ag(y)
and af (h(y)) agree up to arbitrary length and ag(y) = af (h(y)). But af (h(x)) = ag(y) = af (h(y))
contradicts h being strictly increasing, unless x = y.

As h is continuous and strictly increasing, it is also a homeomorphism on [0, 1] with ag(x) =
af (h(x)). Note also that ag(x) = af (x) gives ag(g(x)) = af (f(x)). It is then easy to observe that
(h−1 ◦ f ◦ h)(x) = g(x) and thus f and g are topologically conjugate.

3.3 Proof of Theorem 3.1

Let U be uniformly distributed on [0, 1]. Let F : R → R∞ be a shift-periodic map with integer
spikes. The conditions placed on F , in particular integer spikes, ensure that there exists a countable
set I and (ai, bi) ⊆ [0, 1] for i ∈ I, pairwise disjoint, so that Fr is continuous and monotonic on
each (ai, bi) and Σ = [0, 1] \ ∪i∈I(ai, bi) is countable. Further, Fr((ai, bi)) = (0, 1) for each such
i ∈ I and |Fr(x)− Fr(y)| > |x− y| when x, y ∈ (ai, bi) are distinct. Additionally, by the definition
of Fr at the singularities of F we have that Fr(x) = 0 for x ∈ Σ. In short, all conditions in
Lemma 3.2 are satisfied. Fr is then topologically conjugate to a map Gr : [0, 1] → [0, 1] linear on
intervals (ai, bi) with Gr((ai, bi)) = (0, 1). Let h be the homeomorphism with Gr = h−1 ◦ Fr ◦ h.
Now consider G : R → R∞ with G(x) = Gr(x) + ⌊F (x)⌋ on [0, 1] and G(x) = G({x}) + ⌊x⌋ on
R. By construction this is a shift-periodic map with integer spikes, linear between grid lines. So
G satisfies Lemma 3.1 and therefore for Zn = ⌊Gn(U)⌋ the random process (Zn)n∈N is a discrete
random walk with

P(Zn − Zn−1 = m) = λ{x ∈ [0, 1] : ⌊G(x)⌋ = m} = λ{x ∈ [0, 1] : ⌊F (x)⌋ = m} = pm.

Let i1, i2, . . . , in be integers. Denote by KGr (i1, i2, . . . , in) the subset of [0, 1] whose elements
x satisfy ⌊G(x)⌋ = i1, ⌊G(Gr(x))⌋ = i2 − i1, . . . , ⌊G(Gn−1

r (x))⌋ = in − in−1. Similarly define
KFr (i1, i2, . . . , in) to be the subset of [0, 1] whose elements satisfy ⌊F (x)⌋ = i1, ⌊F (Fr(x))⌋ =
i2 − i1, . . . , ⌊F (Fn−1

r (x))⌋ = in − in−1. Recall that for a sequence b of length n in Σ ∪ I, h
bijectively maps the set JGr

b
of elements in [0, 1] which have initial trajectory b with respect to Gr

to the set JFr

b
of such elements with respect to Fr. Recall also that ⌊F (x)⌋ and ⌊G(x)⌋ are equal

to the same constant on set (ai, bi). Then there exists a collection B of sequences in Σ ∪ I such
that KGr (i1, i2, . . . , in) = ∪b∈BJ

Gr

b
and KFr (i1, i2, . . . , in) = ∪b∈BJ

Fr

b
. Using equation (3.1), we

can then observe that

{x ∈ [0, 1] : ⌊F (h(x))⌋ = i1, . . . , ⌊F
n(h(x))⌋ = in}

= {x : h(x) ∈ KFr (i1, . . . , in)} = KGr (i1, . . . , in).

Let Xk = ⌊F k(h(U))⌋. Using the observation above and Lemma 3.1, we can then easily deduce

P(X1 = i1, . . . , Xn = in) = P(U ∈ KGr (i1, . . . , in)) = P(Z1 = i1, . . . , Zn = in)

= P(Z1 = i1) . . .P(Zn − Zn−1 = in − in−1)

= P(X1 = i1) . . .P(Xn −Xn−1 = in − in−1)

and P(Xk −Xk−1) = m) = λ{x ∈ [0, 1] : ⌊G(x)⌋ = m} = λ{x ∈ [0, 1] : ⌊F (x)⌋ = m}.
�
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Corollary 3.1. Let U be distributed uniformly on [0, 1]. Let h be the map from Theorem 3.1.
Then h(U) is an invariant distribution with respect to Fr, meaning that for any x ∈ R

P(Fr(h(U)) ≤ x) = P(h(U)) ≤ x).

Proof. This can be shown using the same methods as for the proof of Theorem 3.1: Let b be a finite
sequence and let again JFr

b
= {x ∈ [0, 1] : aFr

(x)|n = b} and JGr

b
= {x ∈ [0, 1] : aGr

(x)|n = b}.
We denote by ab the sequence starting with a and followed by b.

P
(

Fr(h(U)) ∈ JFr

b

)

= P

(

h(U) ∈
⋃

a∈Σ∪I

JFr

ab

)

= P

(

U ∈
⋃

a∈Σ∪I

JGr

ab

)

= P
(

Gr(U) ∈ JGr

b

)

= P
(

U ∈ JGr

b

)

= P
(

h(U) ∈ JFr

b

)

,

where we used that U is an invariant distribution for GR. The latter follows easily from linearity
of Gr on each (ai, bi) and from Gr((ai, bi)) = (0, 1) for i ∈ I. Any interval [0, x] with x ∈ [0, 1]
can be approximated arbitrarily closely by a union of countably many JFr

b
so that we also find

P(Fr(h(U)) ≤ x) = P(h(U) ≤ x), as desired.

3.4 Alpha-stable processes

We now consider how sequences generated by shift-periodic maps F with integer spikes behave
when the time between consecutive entries is scaled to go to zero. More precisely, we change
discrete-time process Xn = ⌊Fn(h(U))⌋, used in Theorem 3.1, to a sequence of continuous-time
process

V (n)(t) =
1

bn

(

X⌊nt⌋ − ant
)

, where n ∈ N, (3.4)

and an and bn are appropriately chosen translation-scaling and space-scaling constants. Since the
generated random variables X⌊nt⌋ behave like a random walk, we can apply Functional Central
Limit Theorems (FCLTs) [13]. The classical example is Donsker’s theorem, which treats the con-

vergence of processes of the form
1

bn

(

∑⌊nt⌋
k=1 Yk − ant

)

to the Wiener process when the independent

random variables Yk are following a normal distribution. This convergence is with respect to the
Skorohod metric on the space of right-continuous functions on with existing left limits [18, 13]. We
later refer to such a space of functions on [0,∞) as D([0,∞),R), when we study convergence to
Lévy motions, which first require us to define a special class of α-strictly stable processes.

Definition 3.5. For α ∈ (0, 2] and β ∈ [−1, 1], with β = 0 when α = 1, we define α-strictly stable
distribution S(α, β) to be the distribution with characteristic function

φ(t;α, β) = exp
(

−|t|α
(

1− iβ sgn(t) tan
(πα

2

)))

.

With Definition 3.5 it can be shown that
∑n

k=1 Xk ∼ n1/αS(α, β) where Xk ∼ S(α, β) are inde-
pendent [19]. In fact, this property is usually used to define α-strictly stable distributions, but it
is not actually needed here. Note that S(2, β) is a normal distribution with mean 0 for any value
of β, while S(1, 0) is a Cauchy distribution.

A key component of the proof of Donsker’s Theorem is the standard CLT, but a generalized
version of the CLT due to Kolmogorov and Gnedenko [20] also applies to stable distributions with
infinite variance and corresponds to a generalized FCLT for α-strictly stable processes, called Lévy
motions [13].

Definition 3.6. A Lévy motion is a stochastic process V (t;α, β), t ≥ 0 with α ∈ (0, 2] and β ∈
[−1, 1], where β = 0 when α = 1, satisfying the following properties:

(a) Every sample path of V (t;α, β) is contained in D([0,∞),R). Also, V (0) = 0.
(b) For 0 ≤ s1 < · · · < sn, the increments V (s2;α, β) − V (s1;α, β), . . . , V (sn;α, β) −

V (sn−1;α, β) are independent.
(c) For s ≥ 0, t > 0 we have V (s+ t;α, β)− V (s;α, β) equal in distribution to t1/αS(α, β).
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A standard example of such a Lévy motion is the Wiener process for α = 2. Lévy motions allow
the following generalisation of Donsker’s Theorem.

Theorem 3.2 (FCLT for α-stable Lévy motions). Let Y1, Y2, . . . be independent, identically dis-
tributed random variables with cumulative distribution FY (x) satisfying

1− FY (M) ∼ c+M
−κ as x → ∞ and FY (M) ∼ c−|M |−κ as x → −∞

where κ > 0, c+ ≥ 0 and c− ≥ 0 are constants such that c+ and c− are not both zero and c+ = c−
if κ = 1. Let

α = min{κ, 2} and β =
c+ − c−
c+ + c−

and depending on κ, choose an and bn from the table below.

κ an bn

0 ¡ κ ¡ 1 0 (π(c+ + c−)(2Γ(α) sin(απ/2))
−1n)1/α

κ = 1 β(c+ + c−)n log(n) π/2(c+ + c−)n
1 ¡ κ ¡ 2 nE[Yi] (π(c+ + c−)(2Γ(α) sin(απ/2))

−1n)1/α

κ = 2 nE[Yi] (c+ + c−)
1/2(n log(n))1/2

κ > 2 nE[Yi] (Var(Yi)/2)
1/2n1/2

Then the stochastic processes defined by

V (n)(t) =
1

bn





⌊nt⌋
∑

k=1

Yk − ant



 ,

converge, with respect to the Skorohod metric on D([0,∞),R), to the Lévy motion V (t;α, β).

Proof. This is a simple consequence of combining Uchaikin’s version of generalized CLT [19] with
the discussion of FCLTs arising from CLTs in Whitt [13].

We can now rephrase this theorem in terms of our sequences of iterates of shift-periodic maps.
The following statement is a direct corollary of Theorem 3.1 and Theorem 3.2.

Corollary 3.2. Let F : R → R∞ be a shift-periodic map with integer spikes. Suppose that

λ{y ∈ [0, 1] : ⌊F (y)⌋ > M} ∼ c+M
−κ and λ{y ∈ [0, 1] : ⌊F (y)⌋ < −M} ∼ c−M

−κ as M → ∞,

where κ > 0, c+ ≥ 0 and c− ≥ 0 are constant with c+ and c− not both zero and c+ = c− if κ = 1.
Choose α, β, an and bn as in Theorem 3.2. Let h be as described in Theorem 3.1, so that h(U),
with U uniformly distributed on [0, 1], is an invariant distribution of F . Define V (n)(t) by (3.4).
Then these stochastic processes converge, with respect to the Skorohod metric on D([0,∞),R), to
the Lévy motion V (t;α, β).

Note that while we required c+ > 0 or c− > 0 in Corollary 3.2, effectively excluding continuous
shift-periodic maps, the random variables Yn = ⌊Fn(h(U))⌋ − ⌊Fn−1(h(U))⌋ generated by a con-
tinuous shift-periodic map F with integer spikes have finite second moments, so that Donsker’s
Theorem conveniently covers this case and we get Brownian motion upon an appropriate scaling
in time and space.

Let us briefly return to map F (x;κ) in Example 2.2. Simple calculations show us that that
there is some c > 0 such that

λ{y ∈ [0, 1] : ⌊F (y;κ)⌋>M} ∼ cM−κ and λ{y ∈ [0, 1] : ⌊F (y;κ)⌋<−M} ∼ c|x|−κ as M → ∞.

Corollary 3.2 then tells us that for appropriately chosen an and bn the stochastic process V (n)(t),
as defined in equation (3.4), behaves in a limit like a Lévy motion Y (t;α, β). Here α = min{κ, 2}.
In particular, we get a Wiener process for κ ≥ 2. This is also confirmed with a numerical example
in Figure 2.
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4 Continuous-time Random Walks

Simple examples show that the restriction on shift-periodic maps introduced in Section 3, namely
that local extrema shall only take integer values, is necessary to obtain well-behaved stochastic
processes.

Example 4.1. Consider the shift-periodic map F : R → R∞ with κ > 0 and

F (x) =











2x if x ∈ [0, 1/4]

1− 2x if x ∈ [1/4, 1/2]

F (x;κ) if x ∈ (1/2, 1)

and F (x) = F ({x}) + ⌊x⌋ on R. Here F (x;κ) is the map defined in Example 2.2. This shift-
periodic map has a local maximum with value 1/2. Observe that F ([0, 1/2]) = [0, 1/2] and that
the Lebesgue measure of the subset of [0, 1] on which Fn

r (x) ∈ [0, 1/2] converges to 1 as n → ∞.
But Fn

r (x) ∈ [0, 1/2] implies that for all m ≥ n ⌊Fn(x)⌋ = ⌊Fm(x)⌋. The behaviour of sequences
⌊xn⌋ for xn defined as in equation (1.1) is then completely different from what we have observed
before. For instance, if we choose the initial value to be x0 from an uniform distribution on [0, 1]
then the sequence will be eventually constant with probability 1 and the same is true for many
other initial distributions.

In Section 2, we already discussed that sequences generated by some shift-periodic maps without
integer spikes still display random-walk like properties. By studying Example 2.1 more closely,
we will now demonstrate how this statement can be made more precise in a limit for some maps
and also highlight where difficulties arise when considering these more general-shift periodic maps.
Many of these findings could be extended to a wider range of maps, in particular those for which
only a small subset of [0, 1] is mapped outside the unit interval.

4.1 Invariant density

Recall from Section 3 that we decomposed sequences (xn) defined in equation (1.1) as xn =
⌊xn⌋ + Fn

r (x0). In order to study the behaviour of ⌊xn⌋ we first find the invariant density with
respect to Fr. While this was relatively straightforward in the case of maps with integer spikes,
by using topological conjugacy to a set of maps with a particularly nice invariant density, this
approach cannot be used for more general shift-periodic maps. We instead apply more general
results on invariant densities for piecewise linear maps due to Góra [14] to maps F (x; ε, δ) defined
in Example 2.1.

Lemma 4.1. Consider shift-periodic map F (x; ε, δ) defined in Example 2.1, where ε > 0 and
δ > 0. For parameters A ∈ [0, 1] and B ∈ R \ {0} define the indicator function 1 : [0, 1] → {0, 1}
by

1(x;A,B) =

{

1 if x ∈ [0, A], B > 0 or x ∈ [A, 1], B < 0;

0 otherwise.

We define the cumulative derivative β(x, n) iteratively by

β(x, n) = β(x, n− 1) · F ′
r(F

n−1
r (x; ε, δ); ε, δ), for n ≥ 2, and β(x, 1) = F ′

r(x; ε, δ),

where we leave function β(x, n) undefined when the derivatives do not exist. This is the case
only for finitely many points in (0, 1) for each n. We further define two cumulative derivatives at
c1 = 1/4 and c2 = 3/4 by

βL(ci, n) = lim
x→c+i

β(x, n) and βR(ci, n) = lim
x→c−i

β(x, n) for i = 1, 2.
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The invariant density of F (x; ε, δ) is given by

fi(x; ε, δ) =
1

K



1 +
2
∑

j=1

DL
j

∞
∑

n=1

1(x;Fn
r (cj),−βL(cj , n))

|βL(cj , n)|

+
2
∑

j=1

DR
j

∞
∑

n=1

1(x;Fn
r (cj), β

R(cj , n))

|βR(cj , n)|



 , (4.1)

where K is a normalisation constant, chosen so that fi integrates to 1 over [0, 1] and DL
1 , D

L
2 ,

DR
1 , D

R
2 are constants dependent on ε, δ with DR

i → 1 and DL
i → 1 as ε, δ → 0, for i ∈ {1, 2}.

Proof. This is just an application of Góra’s results on invariant densities of eventually expanding
maps in [14]. Here D = (DL

1 , D
R
1 , D

R
1 , D

R
2 ) is the solution of (−ST + I)DT = (1, 1, 1, 1)T where

S = (Si,j) is a matrix with entries dependent on Fn
r (c) and β(c, n), c ∈ {cL1 , c

R
1 , c

L
2 , c

R
2 }, converging

to 0 as the parameter ε and δ of Fn
r (x; ε, δ) converge to 0. For more details on S see page 7 of

[14].

That way, when we choose X to be distributed according to the distribution corresponding to
fi(x; ε, δ), all F

n(X; ε, δ) will have the same distribution and random variables Xn = Fr(X; ε, δ)
will be identically distributed.
For small choices of parameters ε, δ, say ε, δ < 10−6, numerical calculations tell us that

fi(x; ε, ε) ≈ 1 + 1/4n for x ∈ In

where In are defined by

I1 = (0, F (1/4; ε, ε)) ∪ (1− F (1/4; ε, ε), 1)

In = (Fn(1/4; ε, ε), Fn+1(1/4; ε, ε)) ∪ (1− Fn+1(1/4; ε, ε), 1− Fn(1/4; ε, ε)) for n ≥ 2.

This approximation is accurate up to three decimal digits. In Figure 1 we used larger values of
parameters, ε = δ = 10−2. Table 4.1 gives the invariant density fi(x; 10

−2, 10−2) on intervals I up
to three decimal digits.

For ε, δ = 0 map F (x; ε, δ) is linear between grid lines, so of the type discussed in Section 3, and has
invariant density equal 1. So one might expect that fi(x; ε, δ) → 1 as ε, δ → 0. This convergence
is not uniform on [0, 1], but we can make the important observation below:

Corollary 4.1. Let fi(x; ε, δ) be the invariant density of F (x; ε, δ), described in Lemma 4.1. For
any d > 0 we have fi(x; ε, δ) → 1 as ε, δ → 0 uniformly on [d, 1− d].

Proof. Let d > 0. For any fixed n ∈ N we have that Fn
r (c1) → 0 and Fn

r (c2) → 1 as ε, δ → 0, so
that the length of the interval on which 1(x;Fn

r (cj),−βL(cj , n)) 6= 0 or 1(x;Fn
r (cj), β

R(cj , n)) 6= 0
also goes to zero, for j = 1, 2. Noting that |βL(cj , n)| ≥ 2n and |βR(cj , n)| ≥ 2n, then the integral
of the weighted sum of four infinite sums in equation (4.1) over [0, 1] goes to 0 as ε, δ → 0. Adding
1 to this integral, we get K. So we have K → 1. By the same argument, for sufficiently small
ε > 0 and δ > 0 we have Fn

r (c1) < d and Fn
r (c2) > 1 − d for all n ∈ {1, 2, . . . , N}, so that we

achieve bound
1

K
≤ fi(x; ε, δ) ≤

1

K

(

1 +
DL

1 +DL
2 +DR

1 +DR
2

2N

)

valid on [d, 1 − d] for small ε and δ. But N was chosen arbitrarily. Recall from Lemma 4.1 that
also DR

i , D
L
i → 1 for i = 1, 2. Combining these results, we find that fi(x; ε, δ) → 1 uniformly on

[d, 1− d].

We briefly also note that this invariant density additionally gives us a description of how the
fractional parts Fn

r (x0) of sequence xn behave long-term, by a simple application of Birkhoff’s
Ergodic Theorem.
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I fi(x) I fi(x) I fi(x)
(0, ε/4) 1.959 (0.206, 0.354) 0.986 (0.794, 0.839) 0.984

(0.0025, 0.01) 1.224
(0.354, 0.646) 0.988

(0.839, 0.96) 0.995
(0.01, 0.04) 1.041 (0.96, 0.99) 1.041
(0.04, 0.161) 0.995 (0.99, 0.9975) 1.224
(0.161, 0.206) 0.984 (0.646, 0.794) 0.986 (1− ε/4, 1) 1.959

Table 1: The values of fi(x; ε, ε) with ε = 10−2 up to three decimal digits.

4.2 From maps to continuous-time random walks

Now consider X distributed according to the invariant distribution of Fr(x; ε, δ) on [0, 1] and
Xn = ⌊Fn(X; ε, δ)⌋. For now we say a jump occurs when Xn 6= Xn+1. By Corollary 4.1 the
invariant density of Fr(x; ε, δ) is close to 1 at the spikes 1/4 and 3/4 of the map for small parameters
ε and δ. Further, direct calculation shows that the length of the subset of [0, 1] mapped outside
the unit interval by F (x; ε, δ) is

ℓ(ε) + ℓ(δ) where ℓ(x) =
x(3 + x)

2(x+ 2)(x+ 4)
. (4.2)

This calculation suggests that the probability of a jump is about 3(ε+ δ)/16. However, successive
jump probabilities are not independent, since for small parameters successive jumps are impossible.
We fix this issue by introducing a scaling in time, together with a scaling of the parameters. This
scaling gives us behaviour resembling a continuous-time random walk, defined below.

Definition 4.1. Consider a continuous-time stochastic process Y (t), t ≥ 0 with Y (0) = 0 which
takes values in Z and is right-continuous. Let T0 = 0. For j ≥ 1 define the time of the j-th jump
by

Tj = min{t ∈ (Tj−1,∞) : Y (t) 6= Y (Tj−1)}.

Suppose T1, T2, . . . are independent. Then we say Y (t) is a continuous-time random walk.

Theorem 4.1. Let δ, ε > 0. For m ∈ N let Xm be distributed according to the invariant distribu-
tion, fi(x; ε/m; δ/m), with respect to F (x; ε/m, δ/m). Define

Ym(t) =
⌊

F ⌊mt⌋(Xm; ε/m, δ/m)
⌋

.

Let Tm,1, Tm,2, . . . denote the jump times of Ym(t), that is,

Tm,j = min{t ∈ (Tm,j−1,∞) : Ym(t) 6= Ym(Tm,j−1)}

where Tm,0 = 0. Then for any k ≥ 0 we have

P
(

Tm,k+1 ≤
⌊mtk⌋

m
+ τ

∣

∣

∣

∣

Tm,k =
⌊mtk⌋

m
, . . . , Tm,1 =

⌊mt1⌋

m

)

→ 1− exp(−γτ)

as m → ∞, where

γ =
3(δ + ε)

16
. (4.3)

Let Y (t) be a continuous-time random walk with waiting times, Tj−Tj−1, exponentially distributed
with mean 1/γ. Then Theorem 4.1 says that for Ym(t) the probability of the (k + 1)-th jump
occurring at time ⌊mtk⌋/m+τ , given that the first k jumps occurred at times ⌊mt1⌋/m, ⌊mt2⌋/m,
. . . , ⌊mtk⌋/m, converges to the probability of the (k+1)-th jump of Y (t) occurring at time tk + τ ,
given that the first k jumps occurred at t1, t2, . . . , tk.
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4.3 Conditionally invariant distribution

While we extensively discussed invariant distributions of Fr(x; ε, δ) above, to prove Theorem 4.1 it
will actually be more convenient to work with conditional distributions on [0, 1] which are invariant
with respect to F (x; ε, δ) conditioned on the event that the iterative sequence stays in [0, 1]. For a
probability density f of a distribution on [0, 1], the density after application of F (x; ε, δ), conditional
on not mapping outside [0, 1], is given by the Frobenius-Perron operator [15]

Pε,δ(f)(t) =























1

C

(

f
(

F−1
1 (t)

)

4 + ε
+

f
(

F−1
3 (t)

)

2 + δ
+

f
(

F−1
4 (t)

)

4 + δ

)

if t ∈ (0, 1/2),

1

C

(

f
(

F−1
1 (t)

)

4 + ε
+

f
(

F−1
2 (t)

)

2 + ε
+

f
(

F−1
4 (t)

)

4 + δ

)

if t ∈ (1/2, 1),

(4.4)

where F−1
1 , F−1

2 , F−1
3 , F−1

4 denote the inverses of F (x; ε, δ) restricted to (0, 1/4), (1/4, 1/2),
(1/2, 3/4), (3/4, 1), respectively, and normalisation constant C is chosen so that Pε,δ integrates to
1 over the unit interval.

Lemma 4.2. There exists a unique density fc(x; ε, δ) with fc(x; ε, δ) = ν on interval (0, 1/2)
and fc(x; ε, δ) = 2 − ν on (1/2, 1) such that Pε,δ(fc) = fc. We will subsequently call this the
conditionally invariant density. It satisfies fc(x; ε, δ) → 1 as ε, δ → 0.

Proof. Suppose f is a density which is constant equal ν on (0, 1/2) and 1−ν on (1/2, 1). It satisfies
Pε,δ(f) = f if and only if ν satisfies the following equation

ν

(

1

2

(

ν

4 + ε
+

2− x

2 + δ
+

2− ν

4 + δ

)

+
1

2

(

ν

4 + ε
+

ν

2 + ε
+

2− ν

4 + δ

))

=

(

ν

4 + ε
+

2− ν

2 + δ
+

2− ν

4 + δ

)

.

This equation is obtained from the first line of equation (4.4), the left corresponds to normalisation
constant C multiplied by ν. Solving this quadratic equation, we obtain for all ε, δ ≥ 0 a unique
solution ν with both ν ≥ 0 and 2 − ν ≥ 0, and also the unique conditionally invariant density
f(x; ε, δ) described in Lemma 4.2. This solution linearises to

fc(x; ε, δ) ≈

{

1 + ε/12− δ/12 if x ∈ (0, 1/2),

1− ε/12 + δ/12 if x ∈ (1/2, 1),

for small ε, δ. In particular fc(x; ε, δ) → 1 as ε, δ → 0.

4.4 Convergence to the conditionally invariant density

In this subsection we make a first step towards proving Theorem 4.1. We show for some initial
densities k that Pn

ε,δ(k) does not only converge to the corresponding conditionally invariant density
fc, but that there is an upper bound on the convergence speed which works for all ε > 0 and δ > 0.
Pianigiani and Yorke extensively studied existence of and convergence to conditionally invariant
densities for expanding maps in [15]. While their approach does not give us the desired bound on
convergence speed, one of their results, the lemma stated below, will be very useful in our proof.

Lemma 4.3 (Pianigiani-Yorke). Let PF be the Frobenius-Perron operator corresponding to a map

F on [0, 1]. Suppose f , g are Lebesgue integrable over [0, 1] with
∫ 1

0
f(x) dx =

∫ 1

0
g(x) dx = 1,

inf
[0,1]

f(x) > 0, supn ||P
n
F (g)||∞ < ∞ and supn ||P

n
F (1)||∞ < ∞. Then there exists some L such that

for n ≥ 1
||Pn

F (f)− Pn
F (g)||∞ ≤ L||f − g||

∞

is satisfied. More precisely, we may take

L =
1

inf
[0,1]

f

(

sup
n

||Pn
F (1)||∞ + sup

n
||Pn

F (g)||∞

)

.
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Proof. We can apply [15, Proposition 1]. It requires f, g ∈ K = {f ∈ C([0, 1]) : sup[0,1] f(x) <

∞, inf10 f(x)dx > 0,
∫ 1

0
f(x)dx = 1}, but the proof also works for the assumptions in Lemma 4.3.

Note that here inf [0,1] f = inf{s ∈ R : λ({x ∈ [0, 1] : f(x) < s}) = 0}.

We now have all the necessary tools to prove Theorem 4.1. The key idea is to approximate densities
by piecewise constant densities.

Lemma 4.4. Let µ > 0. Then there exists ω > 0 and N ∈ N such that for any piecewise constant
density k : [0, 1] → [0, 2] with

k(t) =

{

x if t ∈ (0, 1/2),

2− x if t ∈ (1/2, 1),
(4.5)

whenever n ≥ N , x ∈ [0, 2] and 0 < ε, δ < ω then

||Pn
ε,δ(k)− fc( · ; ε, δ)||∞ < µ,

where fc( · ; ε, δ) : [0, 1] → R is the conditionally invariant density.

Proof. By [15, Theorem 3], densities Pn
ε,δ(k) converge to invariant density fc as n → ∞. Lemma

4.4 says that this convergence is uniform over all choices of k. Now let k be an arbitrary function
satisfying the conditions of the Lemma. Density Pn

ε,δ(k) is constant for each n ∈ N on both (0, 1/2)
and (1/2, 1). First we bound ratio

r(x, ε, δ) =
k − Pε,δ(k)

Pε,δ(k)− P2
ε,δ(k)

,

where x is the value of k appearing in equation (4.5). Note that on (0, 1/2)

Pε,δ(k) =
1

c1(x)

(

x

4 + ε
+

2− x

2 + δ
+

2− x

4 + δ

)

=
a1(x)

c1(x)
;

where c1(x) is the normalisation constant C from formula (4.4). Moreover, we obtain Pε,δ(k) =
2− a1(x)/c1(x) on (1/2, 1) from normalisation. Further, on (0, 1/2),

P2
ε,δ(k) =

1

c2(x)

(

a1(x)/c1(x)

4 + ε
+

2− a1(x)/c1(x)

2 + δ
+

2− a1(x)/c1(x)

4 + δ

)

=
a2(x)

c1(x)c2(x)
,

where c2(x) is again the normalisation constant C from formula (4.4) and a2(x) is a linear poly-
nomial equal to c1(x)c2(x)P

2
ε,δ(k). Note that for fixed parameters ε and δ denominators c1(x) and

c1(x)c2(x) can also be written as linear polynomials of x and are non-zero. With this notation r
can be expressed as

r(x, ε, δ) =
c21(x)c2(x)x− c1(x)c2(x)a1(x)

c1(x)c2(x)a1(x)− c1(x)a2(x)
,

a quotient of two polynomials. As a quotient of a cubic and quadratic polynomial, an explicit
calculation shows that denominator and enumerator have the same positive root and that this root
has multiplicity 1 and is equal to the value of the conditionally invariant density ν from Lemma
4.2. So r can be extended to a continuous function in x, ε and δ for x ≥ 0, ε ≥ 0, δ ≥ 0. For
ε = δ = 0 a calculation gives r(x, 0, 0) = −2. By continuity we can choose some ω > 0 such that
ε, δ < ω and x ∈ [0, 2] implies |r(x, ε, δ)| > 3/2. By repeatedly applying this result,

|Pn
ε,δ(k)(y)− Pn+1

ε,δ (k)(y)| < (2/3)n|k(y)− Pε,δ(k)(y)| ≤ 2(2/3)n, for y ∈ (0, 1/2) ∪ (1/2, 1)

But as each Pn
ε,δ(k) is constant on (0, 1/2) and equal to 2 − Pn

ε,δ(k)(1/4) on (1/2 − 1), it follows
that

||Pn
ε,δ(k)− fc( · ; ε, δ)||∞ ≤ 6(2/3)n

for each n.
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Densities with three constant pieces are more convenient for approximating a density conditional
on a jump having just occurred, something we will look at in the later parts of the proof of Theorem
4.1. So we now focus our attention on such densities.

Definition 4.2. For S ≥ 0, we define set KS of piecewise constant densities k : [0, 1] → [0,∞)

with
∫ 1

0
k(t) dt = 1, which can be written in one of the following two forms

k(t) =











k1 if t ∈ (0, b),

k2 if t ∈ (b, 1/2),

k3 if t ∈ (1/2, 1),

where |k1 − k2| ≤ S for b ∈ (0, 1/2), (4.6)

or

k(t) =











k1 if t ∈ (0, 1/2),

k2 if t ∈ (1/2, b),

k3 if t ∈ (b, 1),

where |k2 − k3| ≤ S for b ∈ (1/2, 1), (4.7)

where k1, k2, k3 are non-negative constants. We define further map Ψ : KS → [0,∞) with

Ψ(k) =

{

|k1 − k2| for b ∈ (0, 1/2)

|k2 − k3| for b ∈ (1/2, 1),
(4.8)

where b is as defined in equations (4.6)–(4.7).

Lemma 4.5. Let S > 0. Then there exist ω > 0 and B ∈ [0, 1) such that for 0 < ε, δ < ω and any
k ∈ KS we have Pε,δ(k) = k′ ∈ KS with Ψ(k′) ≤ BΨ(k).

Proof. Let k ∈ KS . Let b be as defined in equations (4.6)–(4.7). First, assume b(4 + ε) < 1/2. A
direct calculation leads to

Pε,δ(k)(t) =































k′1 =
1

C

(

k1
4 + ε

+
k3

2 + δ
+

k3
4 + δ

)

if t ∈ (0, b(4 + ε)) ,

k′2 =
1

C

(

k2
4 + ε

+
k3

2 + δ
+

k3
4 + δ

)

if t ∈ (b(4 + ε), 1/2) ,

k′3 =
1

C

(

k2
4 + ε

+
k2

2 + ε
+

k3
4 + δ

)

if t ∈ (1/2, 1) ,

where C is the normalisation constant. The difference between the values of Pε,δ(k) on (0, 1/2) is
given by

|k′1 − k′2| =
1

C

|k1 − k2|

4 + ε
.

Proceeding in the same way for all other possible choices of b we get

Ψ(k′) ≤ Ψ(k)/(2C). (4.9)

Now we want to bound C below. Say b > 1/2. If k2 > m, then k3 > m− S and as the density is

non-negative,
∫ 1

0
k(t) dt > (m− S)/2. But as

∫ 1

0
k(t) dt = 1 we get a contradiction for m ≥ 2 + S.

Similarly if instead k3 > m. We also need k1 ≤ 2. For k constant on (1/2, 1) we proceed in the
same way. So all functions in KS are bounded above by 2 + S. Let ℓ(ε) + ℓ(δ) be the Lebesgue
measure of the subset of [0, 1] which is mapped outside the unit interval by F (t; ε, δ), as in equation
(4.2). Then ℓ(ε)+ ℓ(δ) → 0 as ε, δ → 0. For sufficiently small parameters, say 0 < ε, δ < ω, we will
have normalisation constant C ≥ 1− (ℓ(ε) + ℓ(δ))(2 +S) ≥ 2/3. Then substituting into inequality
(4.9), we obtain inequality (4.9).

Next we note how Lemma 4.3 can be applied to densities of this piecewise constant form.

Corollary 4.2. Let S ≥ 0 and s > 0. Let KS be as described in Lemma 4.5. There exists L > 0
and ω > 0 such that for any 0 < ε, δ < ω, g ∈ KS, density f with inf [0,1] f > s and n ≥ 1

||Pn
ε,δ(f)− Pn

ε,δ(g)||∞ ≤ L||f − g||
∞
.
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Proof. By Lemma 4.5 there exists ω > 0 such that 0 < ε, δ < ω and g ∈ KS imply Pn
ε,δ(g) ∈ KS

for each n ≥ 1. Using the last paragraph of the proof of Lemma 4.5, then supn ||P
n
ε,δ(g)||∞ ≤ 2+S.

Also, since Pε,δ(1) is constant on both (0, 1/2) and (1/2, 1), we have ||Pn
ε,δ(1)||∞ ≤ 2. By applying

Lemma 4.3, we find that for 0 < ε, δ < ω, density f with inf [0,1] f > s satisfies

||Pn
ε,δ(f)− Pn

ε,δ(g)||∞ ≤ L||f − g||
∞
,

where L = (4 + S)/s.

Lemma 4.6. Let µ > 0 and S > 0. There exist ω > 0 and N ∈ N such that for all n ≥ N ,
0 < ε, δ < ω and k ∈ KS

||Pn
ε,δ(k)− fcε,δ ||∞ < µ.

Proof. First, use Lemma 4.5 to observe that for any S1 ∈ (0, S) there exist ω1 > 0 and N1 ∈ N such
that for any k ∈ KS and 0 < ε, δ < ω1 we have PN1

ε,δ (k) ∈ KS1
. But S1 can be chosen small enough

that there is some s > 0 such that for any k ∈ KS and N2 ≥ N1 + 1 we have inf [0,1] P
N2

ε,δ (k) > s.

Apply Corollary 4.2 with f = PN2

ε,δ (k) to find some L > 0 and ω2 > 0 such that when 0 < ε, δ < ω2,
N2 ≥ N1 + 1 and g ∈ KS then

∣

∣

∣

∣PN2+n
ε,δ (k)− Pn

ε,δ(g)
∣

∣

∣

∣

∞
≤ L

∣

∣

∣

∣PN2

ε,δ (k)− g
∣

∣

∣

∣

∞
. (4.10)

Also by Lemma 4.5 we can choose N2 such that for any k ∈ KS and 0 < ε, δ < min{ω1, ω2}, there
exists a piecewise constant density g ∈ KS such that g is constant on (0, 1/2), g is constant on
(1/2, 1) and ||PN2

ε,δ (k)− g||
∞

< µ/(2L). Then by equation (4.10), we get

∣

∣

∣

∣PN2+n
ε,δ (k)− Pn

ε,δ(g)
∣

∣

∣

∣

∞
≤

µ

2

for n ≥ 1. By Lemma 4.4 we also find N3 ∈ N and ω3 > 0 such that for 0 < ε, δ < ω3 and n ≥ N3

||Pn
ε,δ(g)− fcε,δ || <

µ

2
.

Now take N = N2 +N3 and ω = min{ω1, ω2, ω3} to complete the proof.

4.5 Proof of Theorem 4.1

Recall from Corollary 4.1 that invariant density fi,m(x) converges uniformly to 1 on [d, 1 − d] as
m → ∞ for any d > 0. In our proof we need this convergence to be extended to all of [0, 1].
Therefore we first prove an alternate version of Theorem 4.1, in which we do not start with the
invariant density fi, but a related density f ′

i and process Y ′
m, defined below.

Definition 4.3. Fix some 0 < d < 1/2 and define

f ′
i(x; ε/m, δ/m) =

{

fi(x; ε/m, δ/m) if x ∈ [d, 1− d]

km elsewhere,
(4.11)

where km is chosen so that f ′
i(x, ε/m, δ/m) integrates to 1 over [0, 1]. Define

Y ′
m(t) =

⌊

F ⌊mt⌋(X ′
m; ε/m, δ/m)

⌋

,

where X ′
m is distributed according to f ′

i(x; ε/m, δ/m). Let T ′
m,1, T

′
m,2, . . . denote the jump times of

Y ′
m(t), that is,

T ′
m,j = min{t ∈ [T ′

m,j−1,∞) : Y ′
m(t) 6= Y ′

m(T ′
m,j−1)}

where T ′
m,0 = 0.

We now describe the behaviour of the first jump T ′
m,1 for process Y ′

m(t). To simplify our notation,
we will subsequently write

fc,m(x) = fc(x; ε/m, δ/m), Fm(x) = F (x; ε/m, δ/m),

fi,m(x) = fi(x; ε/m, δ/m), Pm = Pε/m,δ/m,

f ′
i,m(x) = f ′

i(x; ε/m, δ/m).
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Lemma 4.7. Let δ, ε > 0. Let 0 < 1/2 < d. For m ∈ N let Y ′
m(t) and T ′

m,1 be as described in
Definition 4.11. Then for τ > 0

P(T ′
m,1 ≤ τ) → 1− exp(−γτ), as m → ∞,

where γ is given by equation (4.3).

Proof. Apply Corollary 4.2 with s = 1/2, S = 0 to find L > 0 such that for large enough m, say
m ≥ M1, and densities f with inf [0,1] f > 1/2

||Pn
m(f)− Pn

m(1)||
∞

≤ L||f − 1||
∞
. (4.12)

Choose µ > 0 small enough so that µ(1 + 2d) < d. Then for large enough m, say m ≥ M2 ≥ M1,
we have |fi,m(x) − 1| < µ on [d, 1 − d] and by considering bounds on km, the value of f ′

i,m on
(0, d) ∪ (1 − d, 1), we get ||f ′

i,m − 1||
∞

≤ µ(1 + 1/(2d)). Since µ(1 + 1/(2d) < 1/2, we have f ′
i,m

bounded below by 1/2. Then using equation (4.12) we have

||Pn
m(f ′

i,m)− Pn
m(1)||

∞
≤ Lµ

(

1 +
1

2d

)

, (4.13)

when n ≥ 1 and m ≥ M2. By Lemma 4.4 there also exists some M3 ≥ M2 and N ∈ N such that
when m ≥ M3 and n ≥ N we have ||Pn

m(1) − fc,m||
∞

< µ. Write B(d) = 1 + L(1 + 1/(2d)) and
observe, using equation (4.13), that whenever m ≥ M3 and n ≥ N

||Pn
m(f ′

i,m)− fc,m||
∞

≤ µB(d). (4.14)

Let τ > 0. Then pick m > max{M3, N/τ} and consider the probability that no jump occurs until
time τ for Y ′

m(t),

P(T ′
m,1 > τ) =

⌊mτ⌋
∏

n=1

P
(

Fn
m(X ′

m) ∈ [0, 1) | F 1
m(X ′

m), . . . , Fn−1
m (X ′

m) ∈ [0, 1)
)

.

Write Am for the subset of [0, 1] mapped outside the unit interval by Fm. As in equation (4.2),
denote by ℓ(ε/m) + ℓ(δ/m) the length of Am. Write fc,m = νm on (0, 1/2) and fc,m = 2− νm on
(1/2, 2). Using equation (4.14), we get the following upper estimate

⌊mτ⌋
∏

n=N+1

P
(

Fn
m(X ′

m) ∈ [0, 1) | F 1
m(X ′

m), . . . , Fn−1
m (X ′

m) ∈ [0, 1)
)

=

⌊mτ⌋
∏

n=N+1

∫

[0,1]\Am

Pn−1
m (f ′

i,m)(x) dx

≤

(

1−
(

νm − µB(d)
)

ℓ
( ε

m

)

−
(

2− νm − µB(d)
)

ℓ

(

δ

m

))⌊mτ⌋−N

.

Since mℓ(ε/m) +mℓ(δ/m) → γ as m → ∞, where γ is given by equation (4.3), and νm → 1 as
m → ∞ by Lemma 4.2, the upper bound converges to exp[−γ(1 − µB(d))τ ] as m → ∞. By a
similar argument we have a lower bound converging to exp[−γ(1 + µB(d))τ ] as m → ∞.

Let AN
m be the subset of [0, 1], which is mapped outside [0, 1] within at most N applications

of Fm. The Lebesgue measure of AN
m goes to 0 as m → ∞. From equation (4.1) we notice that

supm ||fi,m||
∞

< ∞ and also supm ||f ′
i,m||

∞
< ∞. So by integrating over AN

m, we obtain

N
∏

n=1

P
(

Fn
m(X ′

m) ∈ [0, 1) | F 1
m(X ′

m), . . . , Fn−1
m (X ′

m) ∈ [0, 1)
)

= 1−

∫

AN
m

f ′
i,m(x) dx → 1

as m → ∞. So P(T ′
m,1 > τ) is bounded above by a product converging to exp[−γ(1 − µB(d))τ ]

and below by a product converging to exp[−γ(1 + µB(d))τ ] as m → ∞. But µ > 0 was arbitrary,
so P(T ′

m,1 ≤ τ) → 1− exp(−γτ) as m → ∞.
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Now we will prove an alternate version of Theorem 4.1 for Y ′
m(t). Lemma 4.7 established such a

statement already for the first jump. The key component in the general proof will be the following
lemma, which helps in describing how the densities develop after a jump, conditional on no further
jump occurring, provided we start off close to the conditionally invariant density fc,m.

Lemma 4.8. Let

A1
m =

(

1

4
−

ε/m

4(4 + ε/m)
,
1

4

)

denote the subset of (0, 1/4) mapped outside of [0, 1] by Fm. Take 0 < µ < 1/4 and let gm be
a density with ||gm − fc,m||

∞
< µ. Let Vm be distributed according to that density and g⋆ denote

the density corresponding to the distribution of Fr(Vm; ε/m, δ/m), conditional on Vm ∈ A1
m. Then

there exists B > 0, M ∈ N and N ∈ N such that for all m ≥ M and n ≥ N + ⌈log(m/ε)/ log(4 +
ε/m)⌉ and for any sequence of gm satisfying above properties we have

||Pn
m(g⋆m)− fc,m||

∞
< µB. (4.15)

Proof. Since Vm ∈ A1
m, we have Fr(Vm; ε/m, δ/m) ∈ [0, ε/(4m)]. On (ε/(4m), 1) we then have

g⋆m = 0, while we have

g⋆m(x) =
1

c0

(

gm

(

1 + x

4 + ε/m

))

, for x ∈
(

0,
ε

4m

)

, (4.16)

where c0 is a constant so that g⋆m integrates to 1 over [0, 1]. Let um denote the smallest integer such
that Fum+1

r (1/4; ε/m, δ/m) = (4 + ε/m)umε/(4m) ≥ 1/4. Then um = ⌈log(m/ε)/ log(4 + ε/m)⌉.
From equation (4.4) we deduce that for n ≤ um, density Pn

m(g⋆m) is obtained from g⋆m via a scaling
of the form

Pn
m(g⋆m)(x) =

1

cn
g⋆m

(

x

(4 + ε/m)n

)

=
1

c0cn

(

gm

(

1 + x/(4 + ε/m)n

4 + ε/m

))

, (4.17)

where cn is a constant dependent on m, such that Pn
m(g⋆m)(x) integrates to 1 over [0, 1]. By Lemma

4.2, there exists M1 ∈ N such that m ≥ M1 implies 1/2 < fc,m < 3/2. Since µ < 1/4, we obtain a
bound gm(y) ≥ 1/4 and estimate

Pum
m (g⋆m)(x) ≥

1

4c0cum

for x ∈ Ium
=
(

0,
ε

4m

(

4 +
ε

m

)um
)

. (4.18)

Using (4 + ε/m)umε/(4m) ≥ 1/4 and equation (4.18), we get c0cum
≥ 1/16, since Pum

m (g⋆m) must
integrate to 1 over [0, 1]. But recall that ||gm − fc,m||

∞
< µ and fc,m constant on (0, 1/2).

Combining this with equation (4.17) gives us that the values of Pum
m (g⋆m) on Ium

are contained in a
subinterval of (0,∞) of length 32µ. But applying equation (4.4) again, we see that for Pum+1

m (g⋆m)
the unit interval can be split into three subintervals (0, b1), (b1, b2) and (b2, 1), where b1 = 1/2
or b2 = 1/2, on each of which the values of Pum+1

m (g⋆m) are contained in an subinterval of (0,∞)
of length 32µ/C. Here C is the normalisation constant from equation (4.4). From fc,m < 3/2
and µ < 1/4 we get gm(y) < 2 and Pum

m (g⋆m)(x) ≤ 2/(c0cum
) ≤ 32, since we deduced earlier

from equation (4.18) that c0cum
≥ 1/16. For m large enough, say m ≥ M2 > M1, we will have

ℓ(ε/m) + ℓ(δ/m) < 1/64, where ℓ is defined as in equation (4.2). Considering the integral of
Pum
m (g⋆m) over the subset of [0, 1] mapped outside the unit interval by Fm, we obtain a lower bound

of 1−32/64 = 1/2 on C. So the values of Pum+1
m (g⋆m) on each of (0, b1), (b1, b2), (b2, 1) are contained

in intervals of length 64µ. Using (4.4), calculations show that we can find a bound, independent of
choice of gm with ||gm−fc,m||

∞
< 1/4, on the range of values of Pum+1

m (g⋆m) over all of (0, 1/2) and
(1/2, 1) respectively. Call this bound S. We now may choose a piecewise constant map km ∈ KS ,
as defined in Definition 4.2, so that

||Pum
m (g⋆m)− k||

∞
< 32µ.

Recalling that fc,m > 1/2, we get gm > 1/4, and equation (4.17) gives us lower bound of 1/4 on
Pum
m (g⋆m) and by equation (4.4) a lower bound on Pum+1

m (g⋆m), which could be taken for example
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as 1/20. We then apply Corollary 4.2 with f = Pum+1
m (g⋆m), g = km, s = 1/20 and to find L such

that for n ≥ 1 we have
||Pum+n

m (g⋆m)− Pn
m(km)|| < µ32L, (4.19)

regardless of choice of gm. By Lemma 4.6 there exists N such that for all m ≥ M2 and for n ≥ N
we have ||Pn

m(km)− fc,m||
∞

< µ. Take B = 32L+ 1 and M = M2 to obtain equation (4.15).

Lemma 4.9. Let Am denote the subset of [0, 1] mapped outside of [0, 1] by Fm. Take 0 < µ < 1/4
and let gm be a density with ||gm − fc,m||

∞
< µ. Let Vm be distributed according to that density

and g⋆ denote the density corresponding to the distribution of Fr(Vm; ε/m, δ/m), conditional on
Vm ∈ Am. Then there exists B > 0, M ∈ N and N ∈ N such that for all m ≥ M and n ≥
N + ⌈log(m/ε)/ log(4 + ε/m)⌉ and for any sequence of gm satisfying above properties we have

||Pn
m(g⋆m)− fc,m||

∞
< µB. (4.20)

Proof. We partition on events Vm ∈ (0, 1/4), Vm ∈ (1/4, 1/2), Vm ∈ (1/2, 3/4) and Vm ∈ (3/4, 1),
then apply the same arguments as for Vm ∈ (0, 1/4) in Lemma 4.8.

Lemma 4.10. Let δ, ε > 0. Let 0 < 1/2 < d. For m ∈ N let Y ′
m(t) and T ′

m,j, j = 1, 2, . . . , be as
described in Definition 4.3. Then for any k ≥ 1 and 0 < t1 < · · · < tk we have

P
(

T ′
m,k+1 ≤

⌊mtk⌋

m
+ τ

∣

∣

∣

∣

T ′
m,k =

⌊mtk⌋

m
, . . . , T ′

m,1 =
⌊mt1⌋

m

)

→ 1− exp(−γτ)

as m → ∞, where γ is given in equation (4.3).

Proof. We first describe how the density corresponding to F
⌊mt⌋
r (X ′

m; ε/m, δ/m) develops, condi-
tional on T ′

m,k = ⌊mtk⌋/m, . . . , T ′
m,1 = ⌊mt1⌋/m. Let µ > 0. Using equation (4.14), there exist

N1 ∈ N and M1 ∈ N so that n ≥ N1 and m ≥ M1 implies ||Pn
m(f ′

i,m) − fc,m||
∞

≤ µB(d). For
large enough m we will have ⌊mt1⌋ > N1. Choosing µ small enough, we will have µB(d) < 1/4

and so can apply Lemma 4.9 with gm = P
⌊mt1⌋−1
m (f ′

i,m). Write g
(1)
m = g⋆m for the density after

the jump at time ⌊mt1⌋/m. There exists N ∈ N and B > 0 such that for large enough m and
n ≥ N + ⌈log(m/ε)/ log(4 + ε/m)⌉ = N + S(m)

∣

∣

∣

∣

∣

∣
Pn
m

(

g(1)m

)

− fc,m

∣

∣

∣

∣

∣

∣

∞

< µB(d)B.

Between time ⌊tjm⌋/m and time ⌊tj+1m⌋/m, the density of F
⌊mt⌋
r (X ′

m; ε/m, δ/m) develops as
given by applying operator Pm. Provided that µ < B−k/4 and m is large enough so that
N + S(m) < ⌊mtj+1⌋ − ⌊mtj⌋ for j = 1, 2, . . . , k, we can iteratively apply Lemma 4.9 with

gm = P
⌊mtj+1⌋−⌊mtj⌋−1
m

(

g
(j)
m

)

, where g
(j)
m is the density after the j-th jump has occurred, at time

⌊mtj⌋/m. Then for large enough m and n ≥ N + S(m) we in particular find

∣

∣

∣

∣

∣

∣Pn
m

(

g(k)m

)

− fc,m

∣

∣

∣

∣

∣

∣

∞
≤ µB(d)Bk. (4.21)

But Pn
m

(

g
(k)
m

)

describes the densities of F
⌊mt⌋
r (X ′

m; ε/m, δ/m) conditional on T ′
m,k = ⌊mtk⌋/m, . . . ,

T ′
m,1 = ⌊mt1⌋/m and no further jump occurring. Choose τ > 0. Then

P

(

T k
m > tk + τ

∣

∣

∣

∣

∣

T k
m =

⌊mtk⌋

m
, . . . , T 1

m =
⌊mt1⌋

m

)

=

⌊mτ⌋
∏

n=1

∫

[0,1]\Am

Pn−1
m

(

g(k)m

)

(x) dx,

where Am is defined as in Lemma 4.9. Since equation (4.21) holds, we can use the same arguments
as in the proof of Lemma 4.7 to find lower and upper bounds on

⌊mτ⌋
∏

n=S(m)+1

∫

[0,1]\Am

Pn−1
m

(

g(k)m

)

(x) dx
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converging to exp[−γ(1 + µB(d)B)τ ] and exp[−γ(1− µB(d)B)τ ], respectively, as m → ∞. Using
equation (4.19) from Lemma 4.8, there are lm ∈ KS and L > 0 such that

∣

∣

∣

∣

∣

∣Pum+n
m

(

g(k)m

)

− Pn
m(lm)

∣

∣

∣

∣

∣

∣

∞
< 32µB(d)BkL,

for n ≥ 1, implying that Pn
m

(

g
(k)
m

)

stays close to a piecewise constant function in KS as soon as

jumps are possible. This tells us that an upper bound b on the densities Pn
m

(

g
(k)
m

)

can be found,
valid for all n ≥ um and all m large enough. But then

(1− b(ℓ(ε/m) + ℓ(δ/m)))
S(m) ≤

S(m)
∏

n=1

∫

[0,1]\Am

Pn−1
m

(

g(k)m

)

(x) dx ≤ 1.

The expression on the left converges to 1 as m → ∞ since S(m) grows like log. But combining
this with our earlier bounds with limits exp[−γ(1± µB(d)B)τ ] and letting µ → 0, we find that

P
(

T ′
m,k+1 ≤

⌊mtk⌋

m
+ τ

∣

∣

∣
T ′
m,k =

⌊mtk⌋

m
, . . . , T ′

m,1 =
⌊mt1⌋

m

)

→ 1− exp(−γτ) as m → ∞.

Theorem 4.1 is now simply a corollary of Lemma 4.10. Let Ym(t) and Y ′
m(t) be as defined in Theo-

rem 4.1 and Definition 4.3 respectively, recalling that Y ′
m depends on a choice of 0 < d < 1/2. Write

E and E′ for events
(

Tm,k = ⌊mtk⌋/m, . . . , Tm,1 = ⌊mt1⌋/m
)

and
(

T ′
m,k = ⌊mtk⌋/m, . . . , T ′

m,1 =

⌊mt1⌋/m
)

, respectively. By definition of initial distributions of Ym and Y ′
m, Xm and X ′

m, with
underlying densities fi,m and f ′

i,m, we have that

P
(

Tm,k+1 ≤
⌊mtk⌋

m
+ τ
∣

∣

∣E,Xm ∈ [d, 1− d]

)

= P
(

T ′
m,k+1 ≤

⌊mtk⌋

m
+ τ
∣

∣

∣E′, X ′
m ∈ [d, 1− d]

)

.

We have already noted in the proof of Lemma 4.7, that supm ||fi,m||
∞

< ∞ and supm ||f ′
i,m||

∞
<

∞. Conditioning on the events Xm, X ′
m ∈ [d, 1− d] and Xm, X ′

m /∈ [d, 1− d], we get

∣

∣

∣

∣

P
(

Tm,k+1 ≤
⌊mtk⌋

m
+ τ
∣

∣

∣E
)

− P
(

T ′
m,k+1 ≤

⌊mtk⌋

m
+ τ
∣

∣

∣E′
)

∣

∣

∣

∣

≤ P(Xm /∈ [d, 1− d]) + P(X ′
m /∈ [d, 1− d]) ≤ 2d

(

sup
m

||fi,m||
∞

+ sup
m

||f ′
i,m||

∞

)

.

Since 0 < d < 1/2 was chosen arbitrarily, we can then apply Lemma 4.10 and let d → 0 to conclude
the proof.

�

5 Conclusion

Our discussion has shown how sequences (1.1) generated from shift-periodic maps can give rise to
a large variety of stochastic processes. The results on integer spikes in Section 3 describe well the
behaviour of (xn) for a subclass of shift-periodic maps, both in unscaled form with discrete-time
random walks, and in scaled form, with Lévy motions and continuous-time random walks.

While the treatment of maps with non-integer spikes is more difficult and we restricted our
attention in Section 4 to the specific example of maps given in Example 2.1, the ideas can easily be
extended to a variety of other maps. We could, for instance, replace F (x; ε/m, δ/m) in Theorem 4.1
by a sequence of shift-periodic maps Fm : R → R∞ such that the conditionally invariant density of
Fm on interval [0, 1] converges uniformly to 1, as m → ∞, and they satisfy λ{x ∈ [0, 1] : Fm(x) /∈
[0, 1]} → 0 and mλ{x ∈ [0, 1] : Fm(x) /∈ [0, 1]} → γ, as m → ∞. Only minor amendments to the
proof would again show us that we obtain behaviour like that of a continuous-time random walk
in a limit, this time with waiting times distributed according to an exponential distribution with
mean 1/γ.
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