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We study nematic equilibria on a square with tangent Dirichlet conditions on the edges, in three different
modelling frameworks: (i) the off-lattice Hard Gaussian Overlap and Gay-Berne models; (ii) the lattice-
based Lebwohl-Lasher model; and the (iii) two-dimensional Landau-de Gennes model. We compare the
modelling predictions, identify regimes of agreement and in the Landau-de Gennes case, find up to 21
different equilibria. Of these, 2 are physically stable.
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1. Introduction

Nematic liquid crystals (LCs) are complex anisotropic liquids that combine the fluidity of liq-
uids with a degree of long-range orientational order characteristic of solids, i.e. the constituent
nematic molecules typically align along some preferred directions, referred to as directors in the
literature [1, 2]. Nematics, like most complex materials, can be modelled using both microscopic
molecular-level models and continuum phenomenological models. Continuum theories, such as the
Oseen-Frank theory or the Landau-de Gennes (LdG) theory, have been hugely successful for ne-
matic LCs, especially in the context of spatially inhomogeneous confined systems. Molecular-level
theories that incorporate details about the molecular shape and molecular interactions have also
been used to simulate spatially homogeneous systems to estimate bulk properties or transition
temperatures [3, 4]. As experimentalists are able to design severely confined systems, it is desirable
to simulate spatially inhomogeneous systems with more detailed molecular-level models which are
computationally intensive, since the validity of continuum descriptions is not clear for small sys-
tems. We model a toy confined nematic system with boundaries using three different approaches -
two off-lattice molecular-level models, one lattice-based mesoscopic-level model and the continuum
(macroscopic) LdG model, ordered in terms of decreasing detail. The purpose is to firstly sim-
ulate an inhomogeneous system with molecular-level models on a regular desktop computer and
ascertain the limits of what can be achieved and then compare it to less detailed computational
approaches. Secondly, we want to identify regimes of correspondence between the three different
modelling regimes, i.e. where do the model predictions match, where do they differ, and how do we
interpret the differences. Such exercises may allow us to precisely define limits of applicability for
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coarse-grained theories and design new multiscale methods that can effectively couple molecular,
lattice-based and continuum approaches [5, 6].

We re-visit the square wells filled with nematic LCs, reported by Tsakonas et al. [7], where the
authors design a prototype LC system comprising a periodic array of three-dimensional shallow
wells filled with nematic LCs. The experimental work is accompanied by two-dimensional (2D)
LdG modelling in [7] and the authors numerically reproduce the diagonal and rotated solutions.
These wells have a square cross-section and are typically shallow with the vertical dimension being
smaller than the cross-section dimension. Typical well dimensions are 20 × 20 × 12 microns or
80×80×12 microns. The well surfaces are treated so as to induce planar degenerate conditions on
the well surfaces i.e. the nematic molecules on the surfaces prefer to be in the plane of the surfaces.
Therefore, the molecules are preferentially tangent to the edges where two well surfaces meet i.e. if
we orient a square well along a standard Cartesian frame of reference centered at the bottom left
well vertex, then the molecules prefer to align in the x-direction on the edges common to the faces
in the xy and xz-planes. This induces a natural mismatch in the molecular orientations at the well
vertices where three edges intersect.

Tsakonas et al. [7] experimentally observe at least two nematic equilibria, both of which have
long-term stability without an external field. They observe that the experimentally observed profiles
are invariant across the height of the well, for shallow square wells and it suffices to examine the
profile on the bottom square cross-section. They observe a diagonal solution where the molecules,
on average, align along a diagonal on the square cross-section and a rotated solution for which the
molecules, on average, rotate by π radians between a pair of opposite square edges. There are two
diagonal solutions and four rotated solutions, so the wells are truly multistable. The experimental
work in [7] is accompanied by two-dimensional (2D) LdG modelling and the authors numerically
reproduce the diagonal and rotated solutions.

The work in [7] has been vigorously followed up in the continuum framework. The continuum
theories generally have an associated energy functional and the experimentally observed equilibria
are modelled by energy minimizers although there may be multiple unstable equilibria that cor-
respond to non-energy minimizing critical points of the continuum energy. Lewis et al. [8] report
similar experimental observations for viruses confined to rectangular chambers and the authors
compute semi-analytic expressions for the diagonal and rotated solutions in the simpler continuum
Oseen-Frank framework. Luo et al. [9] study the diagonal and rotated solutions as a function of the
anchoring strength in a 2D LdG framework, which is a measure of how strongly the tangent con-
ditions are enforced on the well surfaces. They compute a bifurcation diagram which suggests that
the rotated solutions can only be observed if the anchoring is greater than a material-dependent
and temperature-dependent critical threshold and hence, rotated solutions are not as ubiquitous
as the diagonal solutions. Kusumaatmaja and Majumdar [10] study the solution landscape in the
2D LdG framework and compute the transient states or unstable critical points of the LdG en-
ergy that connect the stable diagonal and rotated solutions in the LdG framework. Kralj and
Majumdar [11] adopt a three-dimensional (3D) LdG model and find a novel well order reconstruc-
tion solution (WORS), in addition to the conventional diagonal and rotated solutions, when the
well cross-section is comparable to a material-dependent and temperature-dependent characteristic
length scale, referred to as the biaxial correlation length ξb, i.e. when the well cross-section, D, is
D ≤ ηξb and the critical η depends on both the material and the temperature. In some cases, η
could be 7 and in other cases, η could be as large as 20. The work in [7] has motivated authors
to consider more complex geometries and the effects of nematic confinement therein [12] and to
study patterned geometries with mixed boundary conditions such as a combination of tangent and
normal boundary conditions [13]. Davidson and Mottram [14] use a Schwarz–Christoffel conformal
mapping technique to show that these methods can be used to simulate switching behaviour of
a nematic confined in a 2D square well. Gârlea and Mulder [15] simulate long rod-like lyotropic
molecules in a quasi-2D square geometry, using a Metropolis Monte Carlo method and hard rods
with length 20

73 times the size of the domain. They found a single fixed len-shaped pattern similar to
the diagonal solution in [7]. Slavinec et. al. [16] use a 3D molecular-level Lebwohl-Lasher model in a
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confined square well to show that the nematic structure is effectively two-dimensional. Most of the
modelling to date has been done in the continuum framework and the continuum modelling reveals
the rich solution landscape and how the landscape can be manipulated by geometry, temperature,
material properties, boundary effects and external fields.

This paper compares both molecular-level and continuum LdG models of these nematic-filled
wells, using off-lattice molecular-level Hard Gaussian Overlap (HGO) and Gay-Berne (GB) mod-
els, a lattice-based Lebwohl-Lasher (LL) model and a continuum LdG model. These models are
ordered in terms of decreasing detail and decreasing computational complexity. The molecular-level
models contain information about the molecular shape and nature of molecular interactions and
are therefore well-suited to describe the effect of microscopic interactions on averaged quantities
of interest. The LdG model parameters are largely phenomenological and we have not been able
to trace clear empirical relations between the LdG model parameters and the parameters in the
molecular-level models. These models are described in detail in the next sections. We take our
computational domain to be a square in all cases and compute averaged quantities of interest in
the molecular framework and the macroscopic order parameter fields in the LdG framework. We do
not recover the rotated solution with the off-lattice models but only observe the diagonal and 2D
variants of the WORS in the off-lattice case. This is consistent with continuum results which show
that rotated solutions have higher energies than diagonal solutions and are unstable at small well
sizes. We perform a temperature sweep of the LL model and study the emergence of diagonal and
rotated solutions from disordered solutions as the temperature decreases. In the 2D LdG frame-
work, we compute a detailed bifurcation diagram of the LdG solutions as a function of the well
size. We numerically demonstrate the existence of hitherto unreported LdG equilibria, which have
multiple interior defects and though unstable, can be of importance in transient dynamics. In a
particular case, we find 81 LdG equilibria on a square with tangent boundary conditions, of which
only the conventional diagonal and rotated solutions are stable. Whilst performing three parallel
numerical studies, we identify regimes of qualitative agreement between the molecular-level, meso-
scopic and continuum models and we hope that the presented results will constitute the foundation
for more detailed model comparisons in the future.

2. Microscopic and mesoscopic molecular-level models

In this section, we review two off-lattice molecular-level models: the HGO [17] and GB models [18],
respectively, and one lattice-based mesoscopic model, the LL model [19] for nematic LCs. In the
off-lattice and lattice-based simulations, we measure length in units of σs, where σs = 0.5 nm is
the assumed width of the nematic molecules. The computational domain is a square box with side
length, D = 50σs for the off-lattice simulations and D = 100σs for the lattice-based simulation,
and the number of molecules, N , is calculated in terms of average density % to be N = D2σ−2

s %.
We impose a molecular version of planar Dirichlet boundary conditions along the square edges, i.e.
we place a line of molecules along each edge whose orientations are tangent to the edge in question
and the position and orientation of these boundary molecules are fixed in time. For both classes
of models, we compute nematic equilibria on squares, with the fixed planar boundary conditions
on the edges using Markov Chain Monte Carlo (MCMC) methods that are described in detail in
Section 3. We only find the diagonal solution or some variant of the diagonal solution with the
off-lattice simulations and do not recover the rotated solution. A further interesting feature of the
off-lattice simulations is the asymmetric nature of the corner defects i.e. the off-lattice simulations
show that some corner defects are more pronounced than others in the sense that the associated
regions of reduced nematic order are larger for some corners than for others and this has not been
previously captured by continuum simulations. Continuum simulations show that all four vertices
are equivalent. The lattice-based simulations are less computationally demanding and we perform a
more systematic parameter sweep with the LL model, capturing the emergence of both the diagonal
and rotated solution branches as we vary model parameters.
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(a) (b)

Figure 1. (a) A schematic of off-lattice HGO and GB models. The potential between two particles is described using their

orientations (mi and mj) and relative position ri,j . The width of each particle is set to σs = 1. (b) A schematic of lattice-based
LL model. The orientation of particle i is given by mi and the lattice spacing is set to h = σs = 1

2.1 Hard Gaussian overlap and Gay-Berne models

The off-lattice models describe the nematic state by the molecular positions and orientations,
(xi,mi), 1 ≤ i ≤ N , where xi ∈ R2 is the location of the i-th molecule and the unit vector,
mi ∈ S2, is the orientation of the i-th molecule, i = 1, 2, . . . ,N, see Figure 1(a).

The HGO model is a hard particle model based on purely repulsive forces and excluded-volume
effects between the interacting LC molecules; see [4] for applications of the HGO model in the con-
text of LCs. The HGO model prescribes an intermolecular potential which is infinite for overlapping
molecules and is zero for non-overlapping molecules. In Section 3, we apply MCMC simulations to
estimate the equilibrium properties of the HGO model. If we considered time-dependent simula-
tions, the HGO intermolecular potential would translate into a free movement of a molecule until it
collides with another molecule [20]. By only considering equilibrium properties, the molecular-level
model requires less parameters, but it cannot provide dynamic information. The same is also true
for continuum models. For example, Luo et al. [9] propose a dynamic model for the switching mech-
anisms between rotated and diagonal states in the LdG framework by introducing an additional
parameter, effectively controlling the characteristic timescale.

LC molecules are labelled as being overlapping when the distance between their centres of masses
is less than an explicitly prescribed shape parameter, σ. We take the shape parameter, σ, of the
HGO model to be identical to the GB shape parameter and hence, one can compare the HGO
and GB models. The HGO potential, UHGO(mi,mj , ri,j), between a pair of molecules, i and j, is
a function of the molecular orientations mi, mj and ri,j = xi − xj , where xi and xj are positions
of molecules i and j, and UHGO is given by

UHGO(mi,mj , ri,j) =

{
∞, for ri,j < σ(mi,mj , r̂i,j),

0, otherwise,

where ri,j = ‖ ri,j ‖ and r̂i,j = ri,j/ri,j . The shape parameter σ, also referred to as the range
parameter, is the interaction distance between two ellipsoids taken from the Gaussian overlap
model of Berne [21]:

σ(mi,mj , r̂i,j) = σs

{
1− χ

2

[
(mi · r̂i,j + mj · r̂i,j)2

1 + χ(mi ·mj)
+

(mi · r̂i,j −mj · r̂i,j)2

1− χ(mi ·mj)

]}−1/2

. (1)
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The parameter χ is a molecular property, related to the shape anisotropy by

χ =
κ2 − 1

κ2 + 1
,

where κ = σe/σs is a measure of the molecular aspect ratio and σe, σs are proportional to the
length and width of the molecules, respectively. More precisely, σe and σs are the distances at
which the GB potential (see equation (2) below) is zero when the two interacting molecules are in
the end-to-end or the side-by-side configurations, respectively.

The GB model is one of the most successful off-lattice models for nematic LCs. It has (at least)
four tuning parameters and has thus the potential of simulating a wide range of liquid crystalline
materials, perhaps more so than the HGO model which has fewer tunable parameters. The GB
intermolecular potential, UGB(mi,mj , ri,j), is a soft-core Lennard-Jones type potential, with both
attractive and repulsive components, given in [18] by

UGB(mi,mj , ri,j) = 4E(mi,mj , r̂i,j)
(
q12(mi,mj , ri,j)− q6(mi,mj , ri,j)

)
. (2)

The first term E(mi,mj , r̂i,j) is an energetic term and the second term (q12−q6) is a Lennard-Jones
type contribution with both attractive and repulsive contributions. Here

q ≡ q(mi,mj , ri,j) =
σs

ri,j − σ(mi,mj , r̂i,j) + σs
,

where the range parameter σ is identical to equation (1) in the HGO model. The energy term in
equation (2) is written as

E(mi,mj , r̂i,j) = Eν(mi,mj)E
′µ(mi,mj , r̂i,j),

where

E(mi,mj) =
(
1− χ2(mi ·mj)

2
)−1/2

,

E′(mi,mj , r̂i,j) = 1− χ′

2

[
(mi · r̂i,j + mj · r̂i,j)2

1 + χ′(mi ·mj)
+

(mi · r̂i,j −mj · r̂i,j)2

1− χ′(mi ·mj)

]
and

χ′ =
κ′1/µ − 1

κ′1/µ + 1
,

where κ′ is the well-depth ratio for the end-to-end and side-by-side configurations, and well-depth
refers to the depth of the Lennard-Jones potential well.

The four tuning parameters of the GB model are κ, κ′, µ, ν and we work with the commonly used
set of values (κ, κ′, µ, ν) = (3, 5, 1, 3) [4]. These values have been successfully used to reproduce the
nematic-isotropic phase transition in homogeneous samples [22] and it is reasonable to use them
to simulate inhomogeneous samples too. We note that the GB model has more parameters and a
complex energetic structure compared to the HGO model, and although we use the same algorithm
to simulate both models, we cannot expect the same results. In fact, the differences between the two
sets of results may be useful for understanding the relative importance of the tunable parameters
in the GB model.
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2.2 Lebwohl-Lasher lattice-based model

The LL model is a lattice-based model for nematic LCs, based on the principle that clusters
of molecules are pinned at the sites of a regularly spaced lattice and interact with their nearest
neighbours [19]. Such models suppress the translational freedom of molecules and inevitably contain
less physics than the off-lattice models, but are relatively computationally tractable, making them
a good compromise or even a (mesoscopic) bridge between molecular (microscopic) and continuum
(macroscopic) theories. In Figure 1(b), we impose a two-dimensional square lattice of spacing h = 1
(in units of σs) on the computational domain and the LL potential is then given by

ULL = L
∑
(i,j)

(
1− (mi ·mj)

2
)
,

where L is a measure of the strength of intermolecular interactions (we take L = 1), i, j are indices
for neighbouring lattice sites, mi and mj are the respective cluster orientations and the sum is
taken over all pairs of connected lattice sites. The potential, ULL, is minimized when (mi ·mj)

2 = 1
for all i and j, i.e. in the case of perfect alignment.

The LL model is one the simplest lattice models in the literature and there are several variants and
generalizations which include more complex interactions [23, 24]. However, the presented LL model
is a good benchmark for lattice-based approaches (i.e. how do they compare to other approaches)
and suffices for the purposes of this paper.

3. Numerical methods: Monte Carlo simulations

We use a MCMC method to find minimizers of the HGO, GB and LL potentials, using
the Metropolis-Hastings algorithm [25]. This algorithm takes individual samples from a high-
dimensional probability distribution representing the likelihood of different particle configurations.
Each sample is close (in configuration space) to the previous sample in the chain, but the particular
chain of samples does not represent physical time. Nevertheless, the analogy comparing the chain
of samples to time is a useful one, and we will make use of this for the remainder of the paper.
For example, ”transient behaviour” refers to changes in particle configuration along the chain of
samples, and ”temporal averaging” refers to averaging over a section of this chain.

For the off-lattice models (HGO and GB), at each step of the algorithm, we randomly choose a
molecule i and alter its position xi and orientation mi using random variables uniformly distributed
between −σs/40 ≤ ux, uy < σs/40 and −2π/50 ≤ φm < 2π/50 respectively. The lattice case
operates similarly but without altering the position. We define the corresponding perturbations by
ui = (ux, uy) and um = (cosφm, sinφm) respectively and the updated positions and orientations
are given by:

xn+1
i = xni + ui,

mn+1
i = mn

i + um

The change in potential energy, ∆U , is given by

∆U =
∑
(i,j)

[
U(mn+1

i ,mn+1
j , rn+1

i,j )− U(mn
i ,m

n
j , r

n
i,j)
]
,

where rn+1
i,j = xn+1

i − xn+1
j and rni,j = xni − xnj . The proposed move is accepted with probability

exp(∆U/T ) (for ∆U < 0), where T is a dimensionless re-scaled temperature [26] and rejected
otherwise (for ∆U ≥ 0). For the off-lattice simulations, we use T = 3.2 in our acceptance criterion,
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following the values used in [26]; we do not relate this temperature to physical temperature or the
temperature variables used in continuum models. If the move is accepted, then we continue the
algorithm with the updated positions and orientations, and if not, the previous values of (xni ,m

n
i )

are retained.
We perform Nb passes of the MCMC algorithm and each pass comprises N random moves, where

N is the number of nematic molecules. We perform spatial averaging over the molecular orientations
to obtain a Q-tensor (see next paragraph) after every 10 passes. At the end of the algorithm, we
take the arithmetic average of the Q-tensor fields to yield a temporally averaged configuration. We
expect the temporally averaged configuration, computed at the end of Nb passes, to approximate
the stationary solutions for sufficiently large Nb. Our simulations suggest that we typically need
Nb = 108 to compute stationary solutions or solutions which seem to be in equilibrium for off-lattice
models.

We compute the spatially averaged two-dimensional Q-tensor over an artificial lattice with spac-
ing 2σs, and calculate a spatial average within a circle of fixed diameter 5σs around each lattice site,
to obtain the Q-tensor, Qαβ = 〈2mαmβ − δαβ〉 , where m is the particle orientation and δαβ is the
Kronecker delta symbol. By means of comparison with the continuum LdG theory, the Q-tensor
can be rewritten in terms of the scalar order parameter s, a measure of the degree of orientational
order, and the director n, or the locally preferred average orientation i.e. Qαβ = s(2nαnβ − δαβ),
where n is the principal eigenvector with the positive eigenvalue, s. The averaging procedure yields
Q, with two independent components, Q11 and Q12. We extract s and n from the numerical data
by using the relations

s2 = Q2
11 +Q2

12, n1 =

√
1

2

(
Q11

s
+ 1

)
and n2 =

Q12n1

Q11 + s
.

If Q12 = 0, then we simply set n = (1, 0). From the averaged definition of Q above, 0 ≤ s ≤ 1
and s = 0 describes isotropic or disordered regions that are typically associated with defects. We
present some prototypical simulation results for the off-lattice models in Section 4.

In the case of the lattice-based LL model, we use the same MCMC algorithm as for the off-
lattice models. The temperature in the acceptance criterion of the LL model cannot be related to
the acceptance criterion in the GB model, since the LL temperature is weighted by the interaction
parameter L and we cannot precisely relate L to the GB parameters. As in the off-lattice case,
we perform spatial and temporal averaging to obtain the director, n, and order parameter, s, as
outlined above. Here, the spatial averaging is done over neighbouring lattice sites (as opposed to a
disc in the off-lattice case) and the temporal averaging is done after Nb = 104 passes of the MCMC
algorithm.

4. Results of MCMC simulations

The off-lattice simulations are computationally expensive and the runs can take up to a week
on a regular desktop computer. We typically need Nb = 105 passes to attain a quasi-stationary
configuration and there is no perceptible change or movement in the temporally averaged Q-
tensor after Nb = 108 passes. We terminate the algorithm after Nb = 108 passes. The number of
molecules, N = 750 and % = 0.3, for this set of parameter values. We have performed some parallel
simulations with N = 3, 000 in the off-lattice framework and the qualitative conclusions remain
unchanged (compare Figure 2 and Figure 3).

In Figure 2, we plot two different particle configurations for the HGO model in the left column
and the spatially and temporally averaged n and s fields after Nb = 105 passes in the right column.
The solutions are not stationary after 105 passes. The instantaneous molecular configurations do
not exhibit a noticeable degree of ordering for the ellipsoidal particles. The averaged configurations
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Figure 2. Typical configuration for HGO off-lattice model. After averaging over Nb = 105 passes, the solutions are not

stationary and the top and bottom rows show two example configurations. Plots on the left show a single particle configuration,

while plots on the right show the spatially and temporally averaged s and director fields over the Nb = 105 passes. Parameters
are N = 750, % = 0.3, κ = 3, and σs = 0.5.

Figure 3. Typical configuration for HGO off-lattice model for a larger number, N = 3, 000, of simulated molecules. The plot
on the left shows a single particle configuration, while the plot on the right shows the spatially and temporally averaged s and

director fields over the Nb = 105 passes. Other parameters are as in Figure 2.

exhibit a largely diagonally oriented pattern for n, with s ≈ 0.8 away from the four vertices. The
order parameter drops drastically near the vertices, with s < 0.2 near the corners. Further, the
regions of reduced order fluctuate in size, as can be seen by comparing the two snapshots in the
right column, and individual defects of reduced order can break away from the corner and move
into the centre of the domain. In both cases, the regions of reduced order are asymmetrically
distributed between the four vertices and there is a distinct difference between “splay” vertices and
“bend” vertices. The splay vertices are associated with a radial or splay director profile (see the
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(a) (b)

Figure 4. (a) Stationary configuration for HGO off-lattice model. Stationary s and director fields are obtained by averaging

over an increased number of passes Nb = 108. Parameters are N = 750, % = 0.3, κ = 3, and σs = 0.5. (b) Stationary

configuration for the GB off-lattice model. Parameters are N = 750, % = 0.3, T = 3.2, κ = 3, κ′ = 5, µ = 1, ν = 3, σs = 0.5
and Nb = 108.

bottom right and top left vertex in the bottom right snapshot in Figure 2) and the director field
bends around a bend vertex, as in the bottom left and top right vertices of the bottom right panel
of Figure 2. The “bend” vertices have a larger neighbourhood of reduced order and these regions
can stretch along almost a third of the domain width (e.g. lower right plot in Figure 2), or retreat
to become point defects at the corners (e.g. upper right plot in Figure 2). This is in line with the
diagonal solutions reported in experimental work and macroscopic LdG models for this problem [9]
and we expect to see reduced order near the vertices, originating from the mismatch in molecular
alignments at the vertices.

We increase the number of MCMC passes to Nb = 108 and find a stationary n field, as shown in
Figure 4(a). This shows a clear diagonal ordering pattern with corner defects. In contrast to the
numerical results for LdG models models in the literature [9], the vertex profiles vary significantly.
There are two pairs of vertices as described above. The “splay” vertices are highly localized neigh-
bourhoods of reduced order whereas there are clear defect lines (with s ≈ 0) emanating from the
“bend” vertices, and the neighbourhoods of reduced order (i.e. with lower s) are larger than for
the “splay” vertices. We have not observed the rotated solution in the HGO simulations.

We repeat the same simulations (using N = 750) with the GB model. The results are qualitatively
similar to the HGO model, in the sense that we obtain a non-stationary diagonal orientation pattern
for Nb = 105 passes with point defects and defect lines emanating from each vertex, some of which
are longer than those observed in the HGO model and traverse almost half the diagonal length,
see Figure 5. We obtain a stationary solution for Nb = 108 passes, as illustrated in Figure 4(b).
There are differences compared to the HGO stationary solution. The diagonal pattern is localized
near the centre of the square surrounded by a constant eigenframe pattern where the molecules
are effectively oriented tangent to the edges. There is reduced order near the centre of the square,
there are defect lines emanating from the “bend” vertices and the asymmetry between the splay and
bend vertices is evident. The degree of order is maximal near the edges. We can provide a partial
explanation for this stationary pattern based on numerical observations of the MCMC iterations.
The diagonal pattern switches its primary orientation by 90◦ after approximately N = 5 × 107

passes, halfway through the cycle of 108 passes, as shown in Figure 6. We conjecture that the
reduced order near the square centre and the constant eigenframe away from the centre (such that
n effectively follows the square edges in this region) could follow from the superposition of the two
different diagonal solutions. This could be a microscopic explanation for the WORS reported for
the continuum LdG model in [11].

In both cases (HGO and GB models), we fail to recover the rotated solution and both models
suggest differences between the defect structures at “splay” and “bend” vertices. The “bend” ver-
tices have a longer persistence length for reduced order. The two off-lattice models yield somewhat
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Figure 5. Typical configuration for GB off-lattice model. After averaging over Nb = 105 passes, the solutions are not stationary

and the top and bottom rows show two example configurations. Plots on the left show a single particle configuration, while

plots on the right show the spatially and temporally averaged s and director fields over the Nb = 105 passes. Parameters are
N = 750, % = 0.3, T = 3.2, κ = 3, κ′ = 5, µ = 1, ν = 3, and σs = 0.5.

Figure 6. Sequence of averaged configurations showing switching between diagonal solutions in the GB off-lattice model. The
plots show a sequence of three different averages, each using Nb = 105 passes, over a total of Nb = 3 × 105 passes of the

MCMC algorithm. Parameters are N = 750, % = 0.3, T = 3.2, κ = 3, κ′ = 5, µ = 1, ν = 3 and σs = 0.5.

different stationary solutions. The HGO model yields the conventional diagonal solution whilst
the GB model yields a superposition of two different diagonal solutions, with a reduced square
of smaller s near the centre. The GB stationary solution is more reminiscent of the continuum
WORS. We conjecture that the HGO and GB models (for the parameter values employed here)
correspond to different parameter regimes of the continuum approach and hence, yield different
stationary solutions. In the absence of a rigorous off-lattice to continuum derivation, it is difficult
to give precise reasons for these differences.

The mesoscopic lattice-based LL model can yield both the diagonal and rotated solutions, see
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bottom left and right panels in Figure 7, respectively, although diagonal solutions are still more
common. For example, we have performed 100 simulations using different random initial conditions
for the lattice director mi in the LL framework, at a fixed temperature T = 0.05. In 88 out of these
100 simulations, we have found a stationary diagonal solution and for the remaining 12, we have
found a stationary rotated solution. In Figure 7, we report results of a temperature sweep, where we
compute the stationary equilibria of the LL model as the system temperature T is varied between
0.4 < T < 2.5. There is no systematic reason for this choice of temperatures except that the sweep
captures the transition from disordered equilibria at high temperatures to the conventional diagonal
and rotated solutions at lower temperatures. For each temperature, we run two simulations, with
a diagonal and rotated initial condition respectively. These initial conditions are obtained from the
continuum LdG model solved in Section 5. For higher temperatures around T = 1 or higher, the
system tends towards a largely disordered steady state with s ≈ 0 almost everywhere, except near
the edges where we have imposed a molecular version of Dirichlet boundary conditions. As the
temperature is decreased to T ≈ 0.8, we recover the GB stationary solution in the sense we have
a constant eigenframe near the edges and an interior square-like region of low order and largely
diagonal director field. There is no visible asymmetry between the four vertices and we cannot make
a distinction between “splay” and “bend” vertices. For 0.6 < T / 0.7, the disordered regions with
s ≈ 0 disappear and the order parameter s ≥ 0.25 over the whole domain. We solely recover the
diagonal solution in this regime, irrespective of the initial condition. As T further decreases, say for
T ≈ 0.6, the steady state randomly approaches either a diagonal or a rotated solution. There are
no marked differences between the vertex profiles at the “splay” and “bend” vertices. For T / 0.4,
we recover the familiar diagonal and rotated solutions as seen in the continuum model and the
stationary solution is dictated by the initial condition, i.e. if the initial condition is the continuum
diagonal solution, the final stationary LL solution is also the diagonal solution and similar remarks
apply to the rotated solution.

5. Landau-de Gennes model

The last part of this paper focuses on the LdG model in two dimensions. As mentioned in Section 1,
the LdG theory is one of the most successful continuum theories for nematic LCs and describes the
state of a nematic by a macroscopic order parameter, the Q-tensor, which is defined in terms of
macroscopic quantities such as the dielectric anisotropy or the magnetic susceptibility [1]. The LdG
Q-tensor can be viewed as a macroscopic measure of anisotropy or degree of orientational order.
The LdG Q-tensor need not necessarily agree with the mean-field Q-tensor defined in Section 3.
In fact, the LdG order parameters can take values greater than unity for low temperatures [27]
whereas the mean-field order parameters are less than unity, and the LdG theory is known to
fail near critical temperatures, near defects and interfaces. In spite of some limitations, the LdG
theory has been used in the literature to study nematic equilibria in square wells [7, 9, 11, 28]. We
build on the existing work by conducting a numerical study of solution branches and their stability
as a function of domain size and this yields novel insight into the emergence of bistability and
multistability in these devices.

We adopt a strictly two-dimensional approach to LdG equilibria on the square domain, i.e. we
describe the nematic state by a symmetric, traceless 2× 2 matrix which can be written as

Q =

(
Q11 Q12

Q12 −Q11

)
,

with two degrees of freedom, (Q11, Q12). This can be thought of as a modified Ericksen approach
for uniaxial nematic phases, that can be fully described by a two-dimensional unit-vector field, n,
and a scalar order parameter, s, that accounts for the degree of orientational order about n; similar
approaches have been successfully used in [7, 9] and [10]. The degrees of freedom vector, (Q11, Q12),
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Figure 7. In each column, temperature parameter sweep for the lattice-based LL model. In each row, the MCMC simulations

were run with either a D1-solution (left column) or a R1-solution (right column) of the continuum LdG model used as the
initial condition. Each row corresponds with a different value for the (dimensionless and re-scaled) temperature T . Parameters
are L = 1, N = 50 and Nb = 105.
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is related to the director, n = (cos θ, sin θ), and the scalar order parameter, s, by Q11 = s cos(2θ)
and Q12 = s sin(2θ). The LdG theory is a variational theory and observable equilibria correspond
to minimizers of an appropriately defined LdG energy [2]. We work with a particularly simple form
of the LdG energy density, comprising the one-constant elastic energy density and a non-convex
bulk potential as shown below:

ELdG[Q] =

∫
Ω
we (∇Q) + wb(Q) dA

where Ω = {0 ≤ x, y ≤ D}, D is the square edge length in units of microns and

we (∇Q) =
L

2
|∇Q|2 =

L

2

∑
ij,k

(
∂Qij

∂xk

)2

, wb(Q) =
A

2
trQ2 − B

3
trQ3 +

C

4

(
trQ2

)2
,

L is a material-dependent elastic constant, A is the re-scaled temperature and B > 0 and C > 0
are positive material-dependent constants. For such 2× 2 matrices, trQ2 = 2s2 and trQ3 = 0. We
work at a fixed temperature below the critical supercooling temperature so that A < 0 and the
bulk potential, wb, is a minimum for trQ2 = |A|/C. We non-dimensionalize the LdG energy using
the scalings x̄ = x/D, ȳ = y/D, Q̄ij = QijC

1/2|A|−1/2 and define the following dimensionless LdG
energy [9]:

Ē [Q̄] ≡ ELdG (Q)
C

L|A|
=

∫
Ω̄

1

2

∣∣∇̄Q̄∣∣2 +
1

ε2

(∣∣Q̄∣∣2 − 1
)2

dĀ, (3)

where ∇̄ is the gradient with respect to the re-scaled coordinates, Ω̄ is the unit square and ε−2 =
|A|D2/(4L). In what follows, we fix |A|, L and vary D; this has the same effect as varying the
temperature A if D and L were kept fixed. In other words, we can either increase D or increase
|A| (move to lower temperatures) and both parameter sweeps are equivalent to decreasing ε and
investigating structural changes in the ε→ 0 limit.

On the boundary, we prescribe Dirichlet boundary conditions, consistent with the tangent bound-
ary conditions which require that θ is an integer multiple of π on the horizontal edges and that θ
is an odd integer multiple of π/2 on the vertical edges. Following [9], these conditions translate to:
Q11 ≥ 0 for horizontal edges, Q11 ≤ 0 for vertical edges and Q12 = 0 for ∂Ω. Local minimizers of
equation (3) are solutions of the corresponding weak formulation [9], given by

0 =

∫
Ω
∇Q11 · ∇v11 +

2

ε2

(
Q2

11 +Q2
12 − 1

)
Q11v11 dA, (4)

0 =

∫
Ω
∇Q12 · ∇v12 +

2

ε2

(
Q2

11 +Q2
12 − 1

)
Q12v12 dA, (5)

where v11 and v12 are arbitrary test functions. There are generally six different solutions to equa-
tions (4)–(5), two diagonal, D1-D2, and four rotated, R1-R4, states. Examples of D1 and R1 can
be seen in the bottom row of Figure 8, and the remainder (D2, R2-4) are simply rotated ver-
sions of D1 and R1. All six solutions can be generated using a finite element discretization, with
suitable initial conditions [9] by computing solutions of the Laplace equation ∇2θ = 0 subject to
the boundary conditions shown in Table 2. The initial Q tensor field is then constructed from
(Q11, Q12) = s(cos 2θ, sin 2θ), where s = 1 at the interior nodes and s = |g| at the boundary nodes.
As in [9], we define g by a trapezoidal function that smoothly decays to zero at each vertex, to
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Solution x̄ = 0 x̄ = 1 ȳ = 0 ȳ = 1

D1 π/2 π/2 0 0

D2 π/2 π/2 π π

R1 π/2 π/2 π 0

R2 π/2 π/2 0 π

R3 3π/2 π/2 π π

R4 π/2 3π/2 π π

Table 2. Dirichlet boundary conditions resulting in optimal solutions D1-D2 and R1-R4.

avoid discontinuities at the square vertices:

g =

{
(T (x), 0), on y = 0 and y = 1;

(−T (y), 0), on x = 0 and x = 1;

where

T (z) =


z/d, 0 ≤ z < d;

1, d ≤ z < 1− d;

(1− z)/d, 1− d ≤ z < 1,

Once we define the six distinct initial Q-tensor conditions, we use these initial fields to solve
equations (4)–(5) using the FEniCS package [29, 30]. Lagrange elements of order 1 are used for the
spatial discritization, and the resulting non-linear system of equations are solved using a Newton
solver (with a linear LU solver for each iteration).

We have performed a similar parameter sweep as has been done for the LL model in Figure 7.
The results for the LdG model are reported in Figure 8. The LdG model is at a fixed temperature
below the nematic-isotropic phase transition and we investigate structural changes by varying the
domain size D. We use typical values L = 10−11 N m, C = 106 N/m and |A| = 7.2×105 N/m [31] in
the definition of ε above. We perform a continuous parameter sweep in terms of D ∈ [0.1, 1.2]µm,
using two different initial conditions - the D1 and R1 initial Q-tensor fields constructed above
(refer to Table 2). For D < 0.1µm, we uniquely recover a two-dimensional (2D) version of WORS
reported in [11], irrespective of the initial condition. This 2D WORS is characterized by an isotropic
cross (with s = 0) connecting the four square vertices along the two square diagonals. The cross
partitions the square into four quadrants and n is constant in each quadrant, i.e. n is either the
unit-vector in the x-direction if the quadrant contains a horizontal edge or n is the unit-vector
in the y-direction if the quadrant contains a vertical edge. For D > 1.2µm, we get the diagonal
solution with the D1 initial condition and the rotated solution with the R1 initial condition as
expected and there are no appreciable structural changes for larger values of D.

For each value of D, we calculate the stability of the final solution in terms of the smallest real
eigenvalue of the Jacobian of the RHS of equations (4)-(5). This is comparable to a linear stability
analysis and we interpret a zero or positive eigenvalue as a signature of instability and a spectrum
of negative eigenvalues as a numerical demonstration of linear stability. A sample of solutions with
varying D are shown in Figure 8 for both initial conditions and we compare the respective energies,
Ē versus D in Figure 9. It is clear the D1 and R1 solutions branches coincide for small D, separate
at some critical value of D and the R1 branch always has higher energy than the D1 branch,
consistent with the fact that the D1 solution is more frequently observed in experiments than the
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Figure 8. Bifurcation solutions for the LdG model for a D1-solution (left column) and for a R1-solution (right column). The

values for D for each column are D = 0.1, 0.38, 0.52, 0.70, 0.90, 1.20 µm. The tick marks on the D axis show the approximate
locations of the solution bifurcations, e.g. the first bifurcation from the single stable WORS solution to the stable diagonal and
unstable WORS solutions occurs at D = 0.36.
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Figure 9. Total LdG energy Ē for the R1 and D1 solutions plotted against domain size D. The blue/red lines correspond to

the diagonal/rotated solutions presented in Figure 8 (left/right column). Solid lines indicate a stable solution branch, while

dashed lines indicate an unstable solution branch.

R1 solution [8].
Next, we discuss the diagonal and rotated solution branches separately. For small D, the D1

initial condition converges to the 2D WORS. This is expected since one can analytically prove
that there is a unique equilibrium in the D → 0 limit. Moreover, Majumdar et. al. [32] prove
the existence of a three-dimensional WORS on a square with tangent boundary conditions for all
values of D. On similar grounds, one would expect that the 2D WORS exists for all values of D
and is the unique globally stable equilibrium for small D.

As D increases, the D1 initial condition converges to a more diagonally ordered solution with
isotropic lines originating from the four vertices. In contrast to the off-lattice (HGO or GB) simu-
lations, all four vertices have identical order profiles. For example, for D ∈ [0.35, 0.5] µm, the D1
solution has s ≥ 0.5 almost everywhere in the square domain except near the vertices. As D further
increases, the D1 solutions maintain the diagonal profile but have enhanced interior order and the
regions of low order retreat to the vertices. As D further increases, the interior order parameter
almost approaches the maximal value 1, the director profile is prominently diagonal and there are
localized small regions of reduced order near the vertices. The D1 solutions are always numerically
stable and have lower energy than the corresponding R1 solutions (see Figure 9).

We perform a parallel numerical study of LdG equilibria with the R1 initial conditions. The R1
branch converges to the 2D WORS for small D. From Figure 8, we deduce that there exists a
bifurcation point at some D = D∗ ∈ (0.2, 0.4) µm such that the 2D WORS is the unique solution
(and hence stable) for D < D∗, is unstable for D > D∗ (from numerical computations but the 2D
WORS exists for all D > D∗) and the stable D1 solution branch appears for D > D∗. There are
multiple equilibria for D > D∗ and the R1 branch and the D1 branch separate at D = D∗. The
R1 solutions are unstable for intermediate values of D or for D close to D∗; they separate from
the 2D WORS branch and lose the isotropic cross as D increases. As D increases, the isotropic
cross deforms to localized transition layers (with s = 0) near a pair of opposite square edges. The
transition layers partition the square into three distinct regions and n is approximately constant
in each region, determined by whether the region contains horizontal or vertical square edges (see
third panel of Figure 8).

For D ≈ 0.9µm, the R1 solution converges to the familiar rotated solution. The director has
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a visibly rotated profile, the order parameter s is approximately unity in the square interior and
there are localized regions of reduced order near the vertices, originating from the mismatch in
the imposed Dirichlet conditions. Again, there is no perceptible asymmetry in the order profiles
for the four vertices. For D close to 1µm, the R1 solutions are numerically stable (see Figure 9).
Hence, our numerical search suggests that the R1 solutions follow the 2D WORS for D ∈ (0, D∗),
follow a different unstable solution branch characterized by localized edge transition layers for
D ∈ (D∗, D∗∗) and then follow the stable rotated solution branch, which seems to exist only for
D > D∗∗.

In the continuum simulations, we do not find solutions that demonstrate an interior diagonally
ordered profile (with small s) surrounded by a constant eigenframe solution, with n tangent to
the square boundary as in the GB simulations or some of the LL simulations at intermediate
temperatures. The 2D WORS could be interpreted as the continuum counterpart of these molecular
solutions, in the sense that the 2D WORS has an interior region of reduced order (small values
of s) around the centre of the square and has a constant eigenframe (i.e. n is constant) almost
everywhere inside the square.

We conclude this section by computing a bifurcation diagram of the LdG solution branches as
a function of D. We start be defining two new measures Qx =

∫
ΩQ11 dA, and Qy =

∫
ΩQ12 dA,

and then solve the LdG equations using, as initial conditions, each of the six previously identified
solutions (i.e. D1-D2 and R1-R4). We then calculate Qx and Qy from the final solution and plot
these measures versus D, again using solid/dashed lines for stable/unstable branches. Using the
new measures Qx and Qy enables us to visualize each solution branch separately. The detailed
bifurcation diagram in Figure 10 illustrates the qualitative features mentioned above: the unique
2D WORS for small D, a bifurcation at some critical D = D∗; the 2D WORS exists as an un-
stable solution branch for D > D∗ and there are two further new stable solution and unstable
solutions branches respectively. The rotated solution branches in Figure 8 follow the unstable so-
lution branches. There is at least another critical value, D = D∗∗ > D∗ at which each unstable
solution branch bifurcates into two stable solution branches. These stable solution branches are
the conventional rotated solutions, yielding a total of four numerically stable rotated solutions for
D > D∗∗ as expected.

The solution landscape and the multiplicity of equilibria near the critical point D = D∗∗ is not
clear from Figure 10. In an attempt to identify the distinct equilibria of the system as D is varied,
we apply the deflated continuation algorithm of Farrell et. al. [33] to the LdG model. In contrast
to the classical bifurcation analysis algorithm of Keller [34], deflated continuation is capable of
computing connected and disconnected bifurcation diagrams and does not require the solution of
nonscalable subproblems, allowing it to scale to fine discretizations of partial differential equations.

At the heart of the algorithm is a deflation technique for discovering distinct solutions to nonlinear
problems [35]. Let F (Q) be the discretized residual of a nonlinear PDE, and suppose that k distinct
solutions Q1, Q2, . . . , Qk are known for this problem, i.e. F (Qi) = 0 for all i = 1, 2, . . . , k. We
construct a new nonlinear problem G(Q) via

G(Q) =

(
1 +

1

‖Q−Q1‖2

)
· · ·
(

1 +
1

‖Q−Qk‖2

)
F (Q).

This deflated problem G(Q) = 0 has two properties of interest. First, any solution of G not in
{Qi} is also a solution of F . Second, Newton’s method will not converge to the known solutions
Qi from any initial guess, as long as each known solution satisfies some mild regularity conditions.
Thus, if Newton’s method converges from some initial guess, it must have converged to a previously
unknown solution; this solution can also be deflated and the process repeated. In this way, deflation
allows for the discovery of several solutions from the same initial guess. Deflation and nested
iteration were combined in [36] to investigate distinct solutions of an Oseen-Frank LC model.

This is used to compute bifurcation diagrams as follows. Given a set of solutions {Q0
i }, i =

1, 2, . . . , k at parameter value D = D0, we wish to compute the set of solutions for D1. The
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Figure 10. Bifurcation diagram for the LdG model, plotting averaged quantities Qx and Qy versus domain side D in order to

show all the solution branches. Top: Plot of Qx and Qy versus D. Bottom: orthogonal 2D projections of the full 3D plot. Solid
red/blue lines: stable D1/D2 solutions. Solid black/purple/green/cyan lines: stable R1/R2/R3/R4 solutions. Dashed lines:

unstable solutions leading to rotated branches. Solid dark cyan line (for D < 0.36): stable WORS solution

algorithm proceeds in two phases. In the first phase, each known branch is continued from D0 to
D1: each previous solution Q0

i is used as initial guess for Newton’s method, yielding Q1
i . In the

second phase, new solutions are sought, such as those arising via a bifurcation on a known branch,
or on other disconnected branches that have come into existence between D0 and D1. All known
solutions {Q1

i } for D = D1 are deflated, and each solution at D = D0 is used again as initial
guess for Newton’s method. If Newton’s method succeeds, a new solution has been discovered, and
Newton’s method is attempted from that initial guess once more. When Newton’s method has
failed from all available initial guesses, the algorithm increments the value of D and repeats the
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process. For more details, see [33].
For the bifurcation problem of current interest, it is reasonable to start from the single known

WORS solution at small D and apply deflated continuation to compute the solutions for larger
values of D. Using deflated continuation we find 81 different LdG equilibria at D = 1.5µm, of
which only the conventional diagonal and rotated solutions are stable. Once rotational symmetries
are discarded, 21 solutions remain, which are shown in Figure 11 ordered by increasingly large
values for the largest eigenvalue λm of the Jacobian of the RHS of equations (4)-(5) (values of λm
are given in Table 3). We expect that those equilibria with lesser eigenvalues (i.e. ordered soonest)
will contribute more to the transient dynamics.

In the order presented in Figure 11, the 21 solutions can be classified into the following groups:

(1) The first two panels show the familiar rotated and diagonal solutions, which have negative
eigenvalues and are therefore stable. They have 2 splay vertices and 2 bend vertices each.
Associating a topological charge of +1/4 to a splay vertex and a topological charge of -1/4 to
a bend vertex, it can be seen that the total topological charge is zero (the topological charge
has to be zero in all cases).

(2) In panels 3-5, we see the same number of splay and bend vertices and a pair of roughly aligned
+1/2 and -1/2 defects. These solutions (and all those below) have positive eigenvalues and
are unstable.

(3) In panels 6-7, we see four splay or four bend vertices accompanied by a pair of interior -1/2
or +1/2 defects.

(4) In panels 8-9, we see 3 splay (bend) vertices, 1 bend (splay) vertex and one -1/2 (+1/2)
interior defect close to the bottom left vertex.

(5) The solution in panel 10 has 2 splay and 2 bend vertices and a pair of +1/2 and -1/2 defects
close to the square centre, almost annihilating each other.

(6) In panels 11-12 and 14-15, we see the 2 splay and 2 bend vertices along with a pair of +1/2
and -1/2 defects localized along either one edge or a pair of opposite edges.

(7) The 13th panel is slightly different. There is a pair of +1/2 and -1/2 defects near the left edge
and a +1/2 defect near the right edge, neutralizing the two corner bend defects of charge
-1/4 each. The remaining corners contain one splay and one bend defect.

(8) In the remaining six panels (16-21), we see clear defect lines connecting the square vertices.

Lewis [37] analytically constructs nematic equilibria with interior defects on a square within
the simpler continuum Oseen-Frank framework. We believe that there may be additional equilibria
featured by a richer configuration of defects and whilst they are necessarily unstable, such equilibria
can certainly be important for transient dynamics or may even be stabilized with external forces.

Panel # λm Panel # λm
1 -16.0 12 64.5
2 -15.6 13 65.2
3 10.6 14 66.0
4 11.4 15 92.1
5 11.4 16 115.1
6 15.3 17 120.9
7 15.3 18 121.0
8 22.1 19 121.7
9 22.1 20 121.7
10 30.9 21 225.6
11 60.0

Table 3. The largest eigenvalue λm of the Jacobian of the RHS of equation equations (4)-(5) is given here for each panel of
Figure 11, where the panel numbers are ordered from left to right and top to bottom.
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6. Discussion

We have numerically investigated off-lattice, lattice-based and continuum models for inhomoge-
neous nematic equilibria in square wells, subject to tangent Dirichlet boundary conditions. More
specifically, we have studied the microscopic HGO and GB models, mesoscopic LL model and
macroscopic LdG model for this confined system. Each approach provides different and comple-
mentary modelling perspectives. The off-lattice models are physically the most realistic with a large
number of parameters that can be tuned to a wide variety of materials. Unlike LdG model, they
do not fail near defects or near critical temperatures and can be used to probe critical phenomena.
However, they are also the most computationally demanding with long simulation times, making
it expensive to perform parameter sweeps with such models.

At the other end of the spectrum, it is easier to obtain stationary solutions for continuum PDE-
based models such as LdG model, and thus these models are far more amenable to parameter
sweeps. In addition, standard tools such as stability analysis are available and can provide further
insights into solution properties. These models are widely used but their validity in extreme regimes,
where geometrical and material length-scales become comparable (say on the nanometre scale when
the domain size is comparable to the molecular size), is questionable. Lattice-based models offer
an intermediate approach between the off-lattice and continuum approaches but they suppress the
translational degrees of molecular freedom and are probably not effective in situations with fluid
flow.

For nematics confined to square boxes as studied in this paper, both the off-lattice HGO and GB
models fail to recover the familiar rotated solution. This is explained by the stability analysis in
the LdG framework which clearly shows that the stable rotated solution branches only exist above
a certain critical size, if the temperature and material constants are kept fixed. The square boxes
in the HGO and GB simulations are smaller than this critical size and this is one explanation for
the absence of the rotated solution in the off-lattice simulations. Since we do not have well-defined
mappings between the GB parameters and the LdG elastic constants and temperature variable, it
is difficult to make precise comparisons at this stage. A further feature is the clear difference in the
order profiles of “splay” and “bend” vertices in the off-lattice models. This has not been picked
up by either the lattice-based or continuum simulations. This could be a distinctive feature that
is captured by the more realistic off-lattice models or the off-lattice models naturally correspond
to materials with elastic anisotropy and hence, should be compared to LdG energies with elastic
anisotropy or unequal material elastic constants, unlike the one-constant LdG energy used in this
paper.

The LL simulations demonstrate a clear transition from a disordered state to the familiar diagonal
and rotated solutions, induced by gradually decreasing the temperature. The GB stationary solution
in Figure 4(b) is comparable to the third panel with T = 0.83 in the LL simulations in Figure 7.
On comparing the GB, LL and LdG simulations, we speculate that the models can be compared in
the regimes specified by Figure 4(b), the third panel of Figure 7 and the first two rows of the right
panel of Figure 8 for which all models converge to a solution which has reduced order near the
centre of the square and has a constant eigenframe away from the centre. On comparing the HGO,
LL and LdG simulations, we speculate that these models are comparable in the regimes specified
by Figure 4(a), the fourth row of Figure 7 and the second row of the left panel in Figure 8. In future
work, one could investigate these specific parameter regimes more exhaustively to understand the
correspondences more closely.

We conclude this discussion by comparing the 2D WORS with the GB stationary pattern. The
2D WORS is a continuum LdG solution that is globally stable for small nanoscale wells (wells that
are typically tens of nanometers in lateral dimension for prototype LC materials). The 2D WORS
has a constant eigenframe everywhere on the square domain whereas the GB stationary solution has
a constant eigenframe away from the centre of the square. Both solutions have a region of reduced
order near the center of the square and the GB stationary solution exhibits diagonal ordering within
the region of reduced order. One could argue that the director profile in regions of low order is not
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of importance and since the GB and 2D WORS profiles match away from the centre, in regions of
enhanced order, these are the same solutions. We further speculate that the constant eigenframe
arises from the averaging of two different diagonal solutions in the GB or molecular framework. This
does raise a natural question - are there truly molecular-level solutions with a constant eigenframe
everywhere as the 2D WORS or is the 2D WORS a macroscopic approximation of the GB stationary
solutions? It is equally possible that had we used different parameter values for the GB and LL
simulations, we would recover a one-to-one correspondence with the 2D WORS, in the sense that
we get a molecular-level solution with an approximately constant eigenframe everywhere inside the
square domain. This numerical study raises several interesting questions about the relationships
between molecular-level and continuum modelling, and we hope to pursue these questions in future
work.
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[16] Slavinec M, Klemen EII, Ambro MDI, Krašna M. Impact of nanoparticles on nematic ordering in square
wells. Adv Cond Matter Phys. 2015;2015.

[17] Allen MP, Wilson MR. Computer simulation of liquid crystals. J Comput Aided Mol Des. 1989;3(4):335–
353.

[18] Gay J, Berne B. Modification of the overlap potential to mimic a linear site–site potential. J Chem
Phys. 1981;74(6):3316–3319.

[19] Lebwohl P, Lasher G. Nematic-liquid-crystal order–A Monte Carlo calculation. Phys Rev A. 1972;
6(1):426–429.

[20] Erban R. From molecular dynamics to Brownian dynamics. Proc R Soc A. 2014;470(2167):20140036.
[21] Berne BJ. Gaussian model potentials for molecular interactions. J Chem Phys. 1972;56(8):4213.
[22] Berardi R, Emerson APJ, Zannoni C. Monte Carlo investigations of a Gay-Berne liquid crystal. J Chem

Soc, Faraday Trans. 1993;89(22):4069.
[23] Luckhurst G, Simpson P. Computer simulation studies of anisotropic systems: VIII. The Lebwohl-Lasher

model of nematogens revisited. Mol Phys. 1982;47(2):251–265.
[24] Chiccoli C, Pasini P, Zannoni C. A Monte Carlo simulation of the inhomogeneous Lebwohl-Lasher

lattice model. Liq Cryst. 1987;2(1):39–54.
[25] Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika.

1970;57(1):97–109.
[26] Billeter J, Smondyrev A, Loriot G, Pelcovits R. Phase-ordering dynamics of the Gay-Berne nematic

liquid crystal. Phys Rev E. 1999;60(6):6831–6840.
[27] Majumdar A. Equilibrium order parameters of nematic liquid crystals in the Landau-de Gennes theory.

Eur J Appl Math. 2010;21(02):181–203.
[28] Anquetil-Deck C, Cleaver D. Nematic liquid-crystal alignment on stripe-patterned substrates. Phys Rev

E. 2010;82(3):031709.
[29] Logg A, Mardal KA, Wells GE. Automated solution of differential equations by the finite element

method: The FEniCS book. Vol. 84. Springer Science & Business Media; 2012.
[30] Alnæs M, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME,

Wells GN. The FEniCS project version 1.5. Archive of Numerical Software. 2015;3(100):9–23.
[31] Mottram NJ, Newton CJ. Introduction to Q-tensor theory. arXiv preprint arXiv:14093542. 2014;.
[32] Majumdar A, Milewski PA, Spicer A. Front propagation at the nematic-isotropic transition tempera-

ture. SIAM J Appl Math. 2016;.
[33] Farrell PE, Beentjes CHL, Birkisson A. The computation of disconnected bifurcation diagrams. 2016;

arXiv:1603.00809 [math.NA].
[34] Keller HB. Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Rabinowitz PH,

editor. Applications of Bifurcation Theory. New York: Academic Press; 1977. p. 359–384.
[35] Farrell PE, Birkisson A, Funke SW. Deflation techniques for finding distinct solutions of nonlinear

partial differential equations. SIAM J Sci Comput. 2015;37(4):A2026–A2045.
[36] Adler JH, Emerson DB, Farrell PE, MacLachlan SP. A deflation technique for detecting multiple liquid

crystal equilibrium states. arXiv preprint arXiv:160107383. 2016;.
[37] Lewis A. Defects in liquid crystals: Mathematical and experimental studies [dissertation]. University of

Oxford; 2016.

22



January 24, 2017 Liquid Crystals lc

Figure 11. The deflation technique finds 81 equilibria for the LdG model at D = 1.5µm. Once rotational symmetries are

discarded, 21 equilibria remain, which are depicted above ordered from left to right and top to bottom by the largest eigenvalue
λm of the Jacobian of the RHS of equations (4)-(5) (values of λm are given in Table 3). The first two equilibria are the
diagonal and rotated solutions, with negative eigenvalues (i.e. stable), the remainder have positive eigenvalues (i.e. unstable).
The equilibria are shown coloured by the order parameter s (blue at s = 0, increasing to red at s = 1) and transparent white

lines indicate the director direction n.
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