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Mathematical Modelling of Turning Delays in Swarm Robotics
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We investigate the effect of turning delays on the behaviour of groug#fefential wheeled robots and
show that the group-level behaviour can be described by a traregpaation with a suitably incorporated
delay. The results of our mathematical analysis are supported by mwatrgmulations and experiments
with E-Puckrobots. The experimental quantity we compare to our revised model im¢aa time for
robots to find the target area in an unknown environment. The tranepagtion with delay better
predicts the mean time to find the target than the standard transport equiltiont delay.
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1 Introduction

Much theory has been developed for the coordination and@oot distributed autonomous agents,
where collections of robots are acting in environments inctvlonly short-range communication is
possible (Reif and Wang, 1999). By performing actions basethe presence or absence of signals,
algorithms have been created to achieve some greater groelptask; for instance, to reconnoitre an
area of interest whilst collecting data or maintaining fatimns (Desai et al., 2001). In this paper, we
will investigate an implementation of searching algorighsimilar to those used by flagellated bacteria,
in a robotic system.

Many flagellated bacteria such Bscherichia coli (E. coliuse a run-and-tumble searching strategy
in which movement consists of more-or-less straight rumsriopted by brief tumbles (Berg, 1983).
When their motors rotate counter-clockwise the flagella fardnundle that propels the cell forward with
a roughly constant speed; when one or more flagellar mottaterolockwise the bundle flies apart and
the cell ‘tumbles’ (Kim et al., 2003). Tumbles reorient thellén a more-or-less uniformly-random
direction (with a slight bias in the direction of the prevéorun) for the next run (Berg and Brown,
1972). In the absence of signal gradients the random walkligased, with a mean run time 1sec
and a tumble time- 0.1sec. However, when exposed to an external signal gradientell responds
by increasing (decreasing) the run length when moving tds/éaway from) a favourable direction, and
therefore the random walk is biased with a drift in that diet (Berg, 1975; Koshland, 1980). Similar
behaviour can be observed in swarms of animals avoidingapwesiand coordinating themselves within
a group (Couzin et al., 2002).

The behaviour oE. coliis often modelled as a velocity jump process where the tirmatspmbling
is neglected as it is much smaller than the time spent runj@tgmer et al., 1988; Erban and Othmer,
2004). In such a velocity jump process, particles follow&egivelocityu from a set of allowed ve-
locitiesV ¢ RY, d = 2,3, for a finite time. The particle changes velocity probatiisly according
to a Poisson process with intensity i.e. the mean run-duration i’A. A new velocityv is chosen
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according to the turning kern@l(v,u) : V x V — R. Formally the turning kernel represents the proba-
bility of choosingv as the new velocity given that the old velocity wasTherefore, it is necessary that
JT(v,u)dv=1=1andT > 0.

Denoting byp(t, x, V) the density of bacteria which are, at timeat positionx with velocity v, the
velocity jump process can be described by the transportiequ@thmer et al., 1988)

‘;—{)(t,x,v) +Vv-Oxp(t,x,v) = —Ap(t,x,v) + A /VT(v,u) p(t,x,u)du. (1.1)
Assuming tha? andT are constant, one can show that the long-time behaviouedehsityo(t,x) =

Jv p(t,x,v)dv is given by the diffusion equation (Hillen and Othmer, 2000} depends on an external
signal (e.g. nutrient concentration), then the resultialpeity jump process is biased and its long time
behaviour can be described by a drift-diffusion equatiangd@¢Othmer and Hillen, 2002; Erban and
Othmer, 2005).

In this paper, we will study an experimental system baseH-®tuckrobots (Bonani and Mondada,
2004). We programme these differential wheeled robotsltovica run-and-tumble searching strategy
in order to find a given target set. In the first set of experitsileme concentrate on the simplest possible
scenario: an unbiased velocity jump process in two spaitia¢dsions with the fixed speeds R, the
constant mean run timé~! € R*, and the turning kernel which is independentiof

S(lvll —s)

(1.2)

A special feature of th&-Puckrobots is that they can perform turns on the spot as in thesickls
velocity jump process described by (1.1). In this paper, vleimvestigate in how far (1.1) presents
a good description of the behaviour of the robotic systemwaeadvill develop an extension of (1.1)
that results in a better match between experimental datareidematical model. We then apply this
extended velocity jump theory to a biased random walk thinathg incorporation of signals into the
experimental set up.

The paper is organized as follows: in Section 2, we introdbeeexperimental system as well as
the obtained data. This data is compared to the classicatityejump theory. In Section 3, we extend
the velocity jump theory to include finite turning times fanhiased random walks and compare it to
our experimental data, showing a much improved match. Téigtheory is in Section 4 applied to a
situation with an external signal and therefore a biasedaarwalk. We conclude our paper, in Section
5, by discussing the implications of our results .

2 Velocity jump processes in experiments with robots

Equation (1.1) introduced the density behaviour of the ganvelocity jump process that we are aiming
to investigate using the experimental set-up describe@@ti& 2.1. In particular, we will initially con-
centrate on a simple unbiased velocity jump process witfixed speed € R, the mean run duration
A~ € R* and the turning kernel (1.2). In Section 4 we will preseniations, where the turning fre-
guency changes according to an external signal, as is ingeachon in biological applications (Erban
and Othmer, 2005). This fixed-speed velocity jump procesdeaviewed as a starting point for consid-
ering more complex searching algorithms. We will demonsttiaat by including a small modification
(the introduction of a delay to the turning kernel), we caerahis simple velocity jump process so that
it models the behaviour of tHe-Puckrobots.
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We are interested in comparing the idealised velocity jumgeess, given in (1.1)—(1.2), to robotic
experiments. Due to a restriction in humbers of robots, @mnot feasibly talk about a “density” of
robots that could be compared pt, x,v) as given in (1.1). Therefore, our experiments concentrate
on the escape of robots from a given domain. We may interpigts the target finding ability of the
E-Puckrobots. Using these experiments, we can infer data bothefiuk at the barrier and the exit
times and can compare those to numerical results of velpgoitp processes in Sections 2.3 and 2.4.

2.1 Experimental set-up and procedure

To obtain the empirical data, an experimental system ctingisf 16 E-Puckrobots was used=-Puck
robots are small differential wheeled robots with a progreahle microchip (Bonani and Mondada,
2004). The diameter of each robotis- 75 mm with a height of 50 mm and weight of 200g. Throughout
the experiments, the speed was chosen te 5€5.8 x 10-2m/sec. The robots turn with an angular
velocity w = 4.65/sec. Full specifications along with a picture are given in éugix A.

In the experiments, we use a rectangular a®@naith walls on three of the 4 edges and an opening
to the target are@ along the fourth edde A diagram of the arena along with the notation used can
be seen in Figure 1 and a photo is shown in Figure 5(b) in Apgefnd When considering such an
arena, one has to distinguish between the size of the physieaa and the effective arena (shown in
blue in Figure 1) that the robot centres can occupy. The @ffearena used in the experiments has the
dimensiondx = 1.183m and.y = 1.145m= Ly — £/2. The reflective (wall) boundary and the target
boundary will be denoted a&Q,, andd Q », respectively, and can be defined as

0Q;,=QNT, 0Q=0Q\0Q5. (2.1)

Throughout the remainder of the paper, we will alsomiggresp.n ) to denote the outwards pointing
normal on the reflective (resp. target) boundary.

During the experiments, robots were initialised insiderageable square pef? of effective edge
lengthLy = 0.305m, shown in Figure 1 and Figure 5(b) in Appendix A. A shertipd of free movement
within the pen before its removal allowed us to reliably aske all robots into the full domai@ at the
same time as well as randomising their initial positionshimitthe pen. We recorded the exit time
for each of the robots, when its geometric centre enteredatyet area7. Each repetition of the
experiment was continued for 300sec or until all 16 robotslké the arena.

The robots were programmed usifigand a cross-compiling tool, with the firmware being trans-
ferred onto the robots via bluetooth. A pseudo-code of tigerdthm implemented on the robots is
shown in Table 1. This algorithm represents a velocity jumgeess in the limit adt — O (Erban et al.,
2006), and gives a good approximation as long &s¢ < 1. In the experiments we usdd= 0.25sec !
implying a mean run duration of 4sec aAtl= 0.1sec, resulting il At = 2.5x 102 < 1. Note that,

s, w andA can be changed on a software level onEaRuck For w we chose the maximum possible
value, whilst fors we chose a value below the physical maximum. Choosing a leelecity means
that we mitigate the effects of acceleration and decetarat the running speed since the robots can-
not do this instantaneously as the basic velocity jump madslimes. In a practical setting, one could
interpretsandw as given characteristics of the system, whilstan be chosen in a way that accelerates
the target finding process for the given application with¢heice ofA likely to represent a trade-off
between sampling an area and time spent reorienting.

IWe haveQ N.7 =0, butQ N7 #0, i.e. Q and.7 touch but do not overlap.
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FiG. 1. Schematic showing of the experimental set-up along witmttation used throughout this paper. Dotted border lines
correspond to the effective arena and bold lines to the dettema. For further details see the text.

In addition to the algorithm in Table 1, robots were also madenplement an obstacle-avoidance
strategy using the four proximity sensors placed at angitta5° and+47.5° from the centre axis in
the front part of theE-Puck Reflective turns were carried out based on the signalsvesteit these
sensors. As the robots are incapable of distinguishingdetwvalls and other robots, those reflections
occur whether a robot collides with the wall2,, or another robot. As a consequence we discuss the
importance of robot-robot collisions on the experimengslults in the next section.

2.2 Relevance of collisions for low numbers of robots

For non-interacting particles which can change directimtantaneously, equation (1.1) accurately de-
scribes the mesoscopic density through time. However, ixperiments the robots undergo reflective
collisions when they come into close contact, rather thasipg through or over each other. For a low
number of particles, we used Monte Carlo simulations to destrate that collisions are not the domi-

nant behaviour and have little effect on the distributiopaiticles. In panels (a) and (b) of Figure 2, we

compare two Monte Carlo simulations: (a) in which partices allowed to pass through one another
and (b) in which collisions are modelled explicitly. In Figu2(c) we present the solution of equation

(1.1). This comparison demonstrates that the mean derfsiitye ainderlying process converges to the
solution of transport equation (1.1). The parameters eyepldn this model comparison are taken di-

rectly from the equivalent robot experime(s; A, €) = (5.8 x 1072 m/sec 0.250 sec?, 7.5x 1072 m).

In Figure 2(c), for the differential equation, we use a foster numerical scheme witho = 11/20,
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[1] Robot is started at positior(0) € Qp. Generate; € [0, 1] uniformly at random, set= 0 and
_ coS 2y
v(0) _S< sin 2y ) ’
[2] Position is updated according Xt + At) = x(t) + At v(t).

[3] Generate;, € [0,1] uniformly at random. Ifrz < A At, then generates € [0,1] uniformly at
random and set
COS 23 )

v(t+at) =s < sin 23

[4] Sett =t + At and continue with stef®].

Table 1.An algorithmic implementation of the velocity jump process

(©
15 LY 15
1 1
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o 0 o
X O
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FiG. 2. Comparison of individual-based simulations w{th1). Each plot shows the resulting density at the final time of the
simulation,20sec. (a) Individual-based simulation usints x 4 x 10* point particles. (b) Individual-based simulation, average
over4 x 10* runs usingl6 particles with hard-sphere interactiong(c) Numerical solution tq{1.1) using a finite volume method
with parameters given in the text.

Ax = Ly/200 andAt = 102sec.

In the Monte Carlo simulations we initialise particles irethffective pen for 20sec where they
undergo hard-sphere collisions. They are then releasedhietlarger arena where in one simulation
they are point-particles and in the other they undergo maflecollisions as hard-spheres. Instead of
removing particles at the target boundary as shown in Figui@s we do in the robot experiments),
this edge of the domain is closed so that all edges corresmoreflective boundary conditions. For
transport equation (1.1), we model the initial conditioraagep function over the pen. These densities
are visualised in Figure 2. Formally, this initial conditioan be written as

_ XayS(IIvI| -9
O (2.2)

wherey o, denotes the indicator function of the initial regi®. The corresponding boundary condition
is p(t,x,v) = p(t,x, V') for x € Q4 where the reflected velocity is defined as

vV =v-2(v-ng)ng, (2.3)

whereng, is the outward pointing normal at the positinre 0 Q.
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After 20sec, we record the density in each of the scenaridspagsent the results in Figure 2.
There is minimal visible discrepancy between the Monte @ainulations presented in Figure 2 for
our choice of parameter values. In order to compare the ireelations given in Figure 2 we also
employed a pairwise Kolmogorov-Smirnov test (Peacock3).98 value (of the Kolmogorov-Smirnov
metric) close to zero denotes a good fit between the two stinnfa It corresponds to the probability
that one can reject the hypothesis that the distributioesdantical. When comparing the two Monte
Carlo simulations, a value of 27 x 10-2 was obtained; when comparing equation (1.1) with the hard-
sphere Monte Carlo simulation, a value 085x 10-2 was obtained; finally when comparing equation
(1.1) with the point-particle Monte Carlo simulation, awalbof 340x 10-2 was obtained. This supports
the visual observation that all three density distributiane all highly similar.

In the limit whereN — oo, for N being the number of robots, transport equation (1.1) cantbeed
by the addition of a Boltzmann-like collision term (Harri¢®71; Cercignani, 1988). It can be shown
that the effects of collisions between robots are neglgibt the presented study (Franz et al., 2014).

2.3 Comparison between theory and experiments: loss of massime

In this and subsequent sections we compare the results apaditions of the experiments described
in Section 2.1 with numerical results obtained by solving tlorresponding mathematical equations.
One way of interpreting the experimental exit-time datayi€bnsidering the expected mass remaining
inside the aren® at a given time. For the experimental data this quantity astedl as a solid (black)
line in Figure 3(a). We compare this result to the variatiéthe remaining mass with time from a
numerical solution of (1.1) combined with the following balary conditions:

p(t,x,v) =0, XE€EIQz,V-Ngy <0,

2.4
pLXV) = Pt X,Y),  XE0Qy, =4

where the reflected velocity is defined by (2.3). As demonstrated in Section 2.2, such gadson is
reasonable since collisions do not have a major impact ipan@meter regime chosen here. The initial
condition for transport equation (1.1) is identical to tlmndition given in equation (2.2). The mass
remaining in the domain is then defined as

m(t):/Q/Vp(t,xN)dxdv,

and is plotted as a dotted (red) line in Figure 3(a). Thedhitiass is normalized to 1. An obvious
observation from Figure 3(a) is that the transport equatiestription does not match the experimental
data well, with the robots exiting the arena significantigwadr than predicted. In this figure, we use
a first-order finite volume method with8 = 711/20, Ax = 1.183ny200 andAt = 10~3sec in order to
solve transport equation (1.1).

2.4 Comparison between theory and experiments: mean exit tiotdemn

An alternative way to interpret the experimental data isdnsider mean exit times. Throughout the
experiments only 708 of the 808-(50 x 16) robots left the arena befotg,y= 300sec. The average
exit time of those 708 robots was 122sec. In order to be able to compare experimental exit times
with the mean exit time problems, it is necessary to estirtegenean exit time of all 800 robots. Using
the best exponential fit on the mass over time relation (dfufé 3(a)), we can estimate the mean exit
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FiIG. 3. (Colour available online.)Comparing the experimental results (solid black line) ttusons of(1.1) and (3.2)~3.3).
Panel(a) shows the relative mass of the system over time. The datedréid) shows the numerical solution to equatfari)

with boundary condition$2.4), the dashed line (blue) shows the numerical solution of yiséesn of equationg.2)-3.3) with
boundary condition$3.4). Panel(b) shows the mean exit time averaged over all velocity direstis the x-coordinate along the
arena edge. The adsorbing boundary is at x=1.183 m. Thediétie (red) shows the mean exit time computed using equation
(2.5) with boundary conditiong2.6), the dashed line (blue) shows the mean exit time computed esjuation(3.21) with
boundary condition$3.22) In order to allow direct comparison with the experimentatal the shorter bold lines represent the
average of theoretically derived exit times over the redily from which the robots were released in the experimentaiate.

For both plots parameters and numerical methods are deedrib the text.

time of the remaining 92 robots to be 488sec. The approximate mean exit time established in the
experiments is therefore 158l sec; this value is plotted as the solid (black) line in Fegg(b). In order

to be able to compare this value to analytic results, onedesformulate the transport equation (1.1)
into a mean exit time problem. Let us therefore define the negérime 1 = 1(xo, Vo) of a robot that
starts at positiorg € Q with velocity vp € V. This mean exit time satisfies the following equation

Vo - Ox T(X0, Vo) — A T(Xo, Vo) + A /VT(uo,vO)r(xo, Up)dug = —1. (2.5)

In Section 3, in which delays are modelled, a derivationvegifor the mean exit time problem; setting
the delay term to zero allows one to see how equation (2.5¢iivetl. This so-called “backwards
problem” satisfies the following boundary conditions

T(Xo,Vo) =0, Xo€0Qgz Vo-ny >0,

2.6
T(Xo,Vo) = T(Xo,Vp), X0 € 9Qg, (2.6)

wherevj is again the reflected velocity with respecttpas defined in (2.3). Due to the arena shape, by
taking the spatial average in thadirection

1 rLy/2
e, v0) = | / PRCRADLY @.7)
Ly

one can further simplify the mean exit time problem. In theecevhere the turning kernel is given by
equation (1.2), one can obtain a problem with two parameteasd8, wheref € (—m, 11 is the angle



8 0of 20 TAYLOR-KING, FRANZ, YATES AND ERBAN
defining the velocitywg by vo = s(cog68),sin(8)). For 1x = Tx(Xo, 8)

scos(e)%—/\r +i/nr( Vdo=-1
0X0 X 27_[ . X XO;(D (P— 9
1%(0,0) = (0, T— 6), (2.8)
T 7T
Tx(Lx79):0, 96 |:—§,§:|
When initial direction cannot be specified, the mean-exietfrom a giverx-position is given by

1 m

%[nrx(m79)d9,

whereTy is the solution of (2.8). This is plotted as the dotted (ré in Figure 3(b). The numerical
solution was performed using an upwind-scheme inxukérection withAx = 1.1825nm/200 and an
angular discretisation i 8 = 11/20. Additionally, we take the spatial average of the meahtare
from the initial regionQg and plot this as the bold dashed line in Figure 3(b). Thisdiaes not match
well with the corresponding average mean-exit time founthirobot experiments. The numerical
solution of equation (2.8) predicted a mean exit time of.498ec, meaning an underestimation of
19.25sec or 13% compared to the experimental exit time of I&6sec. In the following section we
will extend the classical velocity jump theory to improvéstmatch with the experimental data.

3 Modelling turning delays

In Section 2.2, we observed that collisions between robo¢s ot play a major role in explaining the
discrepancy between the transport equation (1.1) and theriexental data presented in Sections 2.3 and
2.4. As well as assuming independently moving particlestridnsport equation (1.1) is also predicated
on the assumption that the reorientation phase takes ajii#glamount of time compared to the running
phase. Since this assumption is not satisfied in our robarampnts, this section extends the original
model through the inclusion of finite turning times.

3.1 Introduction of a resting state

Let us initially state two assumptions that apply to the tebqeriment, but might not extend to velocity
jump processes in biological systems, like the run-andstammotion ofE. Coli (Berg, 1983), which
has motivated the searching strategies implemented ons:obo

(a) a new directionv’ € V is chosen as soon as the patrticle enters the reorientatiomligfe”)
phase;

(b) the time it takes for a particle to reorient (“tumble”) froralacityv € V to v’ € V is specified
by the functionK (v/,v) : V xV — R™.
Assumption(b) implies that the turning time is constant in time and equalefach particle and, in
particular, does not depend on the particle’s history. Rerrbbots studied in this paper, we can ad-
ditionally assume that reorientation phase is equivalera tlirected rotation with a constant angular
velocity w € R*. Therefore, the turning time depends only on the angle stviiee current velocity
v €V and the new velocity’ € V andK takes the form

1 vV
K(V = — — . 1
Vov) warcc°s<||v|||v’|> (1)
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We now extend the classical model (1.1) through the intridoof aresting state (t,x, v, ) that for-
mally defines the number of particles currently “tumblingir6ing) towards their new chosen velocity
v and remaining turning timg. The densityp(t,x,v) will now only denote the particles which are at
timet in the run phase. The update of the extended system is giveugh

TP t%,9) + V- DhBlt. V) = ~AP(LXY) +1(tX,V,0°), @2
Tty — o xvn) =4 [ pxwTwwsn -Kwud.  (33)
ot on \Y

In (3.2) we can see that running particles will enter a tungiblase with raté and particles that have
finished the tumble signified through= 0 will re-enter the run-phase. Equation (3.3) represergs th
linear relation between and n and shows that particles enter the tumble phase dependinigean
newly chosen velocity direction. In order to guarantee eoration of mass throughout the system, we
introduce the non-negativity condition fgrthrough

r(t,x,v,n) =0, for t>0, x€Q, veV and n<oO.

Additionally, the boundary conditions for the system (3(3)3) are given through

p(t,x,v) =0, XedQy,v-ny <0,
p(t,X,V) = —r(t,X,V,0+)/(V- n%)’ Xe aQ%a V'n,% < 07

3.4

%(t,xm,n)—g—;(nx,v,n):6(:7—K(v,v’))(v’.n%)p(t,x,v’), XE0Qy,Vv-ny <0, (34)
r(t7X7V>r’):Oy XE@Q%’>,V-”(%>O7

whereV' is the reflected velocity of given by (2.3). In order to show that the system (3.2)—(3s3) i
actually consistent, we prove that mass in the system iseteed if no target is present.

LEmMMA 3.1 The total mass in systef®.2)-(3.3) with the boundary conditions given {8.4)in the case
of reflective boundaries everywhed, = 0Q ,0Q 7 = 0) given through

M(t):/ /p(t,x,v)dvdx+/7// f(t,%,v,n)dn dvdx,
QJV QJVvJo

is conserved.
Proof. We define for every point € d Q4 the two subset¥ ™ andV~ of V as follows
VH(x)={veV :v.ng>0}, V (X)={veV :v.-ny<O0}. (3.5)
Additionally, let us define
R(t,x,v):/(;wr(t,x,v,n)dn.
Integrating (3.3) with respect tp € [0, ), we obtain after reordering for¢ 9Q:

i—?(t,xm) = —r(t,x,v,O*)—s—/\/ p(t,x,u)T(v,u)du.
v
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Hence, for every point ¢ dQ we obtain

2PV FREX V)] = ~AP(X V) +A [ pX T4 0) =V TPt X ).
Integrating this with respect toe Q andv €V gives

/Q/V%[p(t,x,v)—kR(t,x,v)}dvdx:—/Q/Vv-Dxp(t,x,V)dvdX. (3.6)

Using the divergence theorem, we can evaluate the integrdeoright hand side to be

/ /V~Dxpdvdx = / /(v~nt@(x))p(t,x,v)dvdx

alv a0
/ / (V-ng) txvdvdx+/ / (V-ng) p(t,x,v)dvdx
30 N+ (x

/ / (v-ngz) p(t,x,v) dvdx—/ / r(t,x,v,0")dvdx,
9Q JV+(x) 9Q JV—(x)

where we have used the second boundary condition in (3.4heitest step. Additionally, fox € 0Q
andv €V~ (x), we obtain by integrating the third boundary condition ir§3vith respect taj € [0, )

TR xv) = (X V,07) 4 (V1) Pt V).

Integrating this with respect ® € dQ andv € V and using the last boundary condition in (3.4) we
obtain

/ / —dvdx = / / dvdx

00 o)

/ / r(t,x,v,0") dvdx+/ / (V' -ng) p(t,x,V') dvdx
20

/ / r(t,x,v,0") dvdx+/ / (v-ng) p(t,x,v)dvdx. (3.7)
00 V+(x)

Summing up the results from (3.6) and (3.7), we obtditydt = 0 and hence the total makKt) in the
system is conserved. O

3.2 Transport equation with turning delays

We eliminate the resting state from system (3.2)—(3.3) aril/el the generalization of the transport
equation (1.1) to a transport equation with a suitably ipoocasited delay. This can be done by solving
(3.3) forr using the method of characteristics, which results in

r(t,x,v,0) =r(0,x,v,t)+A /\;T(v,u) p(t —K(v,u),x,u)H(t — K(v,u))du, (3.8)

whereH is the Heaviside step function. Let us assume Kxat u) is given by (3.1). TheiK(v,u) <
11/w. Considering times$ > 11/ w, we haver (0,x,v,t) = 0. We can now substitute (3.8) into (3.2) to
obtain

ap

Pt (t,x,v)+Vv-Ox p(t,x,v) = —A p(t,X,V) +)\/T (v,u) p(t —K(v,u),x,u)du, (3.9)
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fort > m/w. Note that (3.9) only considers particles in the runninggghand hence does not strictly
conserve mass. The boundary conditions for transport eugd.9) are

p(t,x,v) =0, X€EIQs V-Ng <0,

3.10
p(t,x,v) = pt —K(v,V'),x,V), x€dQp,v-ngy <O0. (3.10)
3.3 Equation for mean-exit time
Equation (3.9) can be rewritten ag p = 0, where the operato#Z is given by
ap
MPp=— 3t —Vv-Oxkp—Ap+A / T(v,u)p(t — K(v,u),x,u)du. (3.11)

For a forward problem specified by p= 0, coupled with initial and boundary conditions, the backward
problem is given by the adjoint operatet™q = 0, with final condition and adjoint boundary conditions
(Lewins, 1965). The adjoint operator is given by:

(4p.G) = (p,.#*q) where (p,q / //ptxv (t,x,v) dvdxd.

Using integration by parts and the divergence theorem, we se

(Ap,q) = / //( —v-Oxp— /\p+)\/Tvup(t—K(v u)xu)du)qdvdxdt

/ / / < +v-Oxgq— /\q+)\/T (u,v)q(t+K(u,v),x u)du) dvdxdt
+/ / / p(t,x,v)q(t,x,v)[v-n]dS dvdt (3.12)
J—00JV JOQ
where we used the boundary conditions
t"nl p(t,Xx,V) :tlirpmq(t,x,v) =0. (3.13)
We will also assume the following boundary conditions

q(t,x,v) =0, X€0Qs ,V-ngy >0,

3.14
q(t,X,V):q(t—FK(V/,V),X,V/), XEngg,V'n%‘?>0. ( )

Then the last term in (3.12) is equal to zero as it is shown ipefglix B. Using (3.12)—(3.14) and
the variable sefto, Xo, Vo) to indicate starting times and positions, we can write trekbvards equation
#*q =0 in the following form:

d
—J(to7X0,Vo) Vo - onq(to,XO,Vo) =-A q(to,Xo,Vo) +A /\/T(Uo,Vo)Q(to-‘r K(Uo,Vo),Xo, Uo)dUo.

dtg
(3.15)
More precisely, we should writg(tp, X0, Vo) = p(t,X,V|to,Xo, Vo), i.€. q gives the probability that the
particle is at the positior with velocity v at timet given that its initial position and velocity at tintg
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wereXxg andvop, respectively. Lep = p(t,xp, Vo) be the probability that the particle is @ at timet
given that the initial position and velocity is givenxasandvy, respectively. Then

pltxavo) = [ [ pitxvioxovo)dvex= [ [ p(O.xv] ~tx0.v0) dve.
QJVv QJV

Substitutingg = —t into (3.15) and using the Taylor expansion, we obtain

d
afﬁt)(t,XO,Vo)7V0'onp(t,Xo,Vo) = 7)\p(t,X0,V0)+)\/\/T(Uo,Vo)p(tfK(Uo,Vo),Xo,Uo)dUo
= —AP(t.x0.v0) +A [ T(Uo,vo) p(t,Xo,Uo) dug
" 0p
=) [ T (o, vo)K (o, vo) 52 (1 X0, Uo) g+ ... (3.16)

The probability of a single particle leavirng in time intervallt,t +dt) is p(t, Xo, Vo) — p(t +dt,Xo, Vo) &
—dp/dt(t,Xo, Vo) dt. Consequently, the expected exit time is given by

00 a {oe]
txov) = - [ 152 (txovo) k= [ pltxa o),
o Ot 0
where we use the fact thpaft, xo,vo) — 0 ast — . Integrating (3.16) over time, we obtain

Vo DT (X0,V0) — AT (X0, V) + A /V T (Uo, Vo) T (X0, Uo) dug

(3.17)

=- <1+/\ / T(Uo,Vo)K(Uo,Vo)dUo) ,
\Y

where we neglected the higher order terms. By Taylor-exipanthe boundary terms from equation
(3.10) and integrating in time, we obtain the following bdary conditions
T(Xo,Vo) =0, XoGng, Vo-Ng >0,

3.18
T(Xo,Vp) = T(X0,Vo) +K(Vo, Vo), Xo€0Qy, Vo-ng >0, (3.18)

where the reflected velocit, is given by (2.3), i.evy = vo— 2(Vo - Nz )N.

3.4 Comparison between the transport equation theory withydetand experimental results

Let us now compare the extended theory developed in Se@idr8.3 to the experimental data using
the same approach as in Sections 2.3 and 2.4. For the case afdha given in Figure 1, we write
Q = (0,Ly) x (—Ly/2,Ly/2) and T = (Lx,») x (—Ly/2,Ly/2) and we simplify equation (3.17) by
integrating over thg-direction to obtain an average value fofor our position along th&-axis. Let us
define this average:

1 [L/2
h00.8)= 1 [ T00Y0.v0)dbo (3.19)
-y

By writing vo = (vo?,vY)), integrating (3.17) and using (3.18), we obtain the follogvequation forry

0 9% 1" IK(vp.vo)

0 9xo L, —AT+A _/\/T(Uo,vo)rx(xo,uo)duo

. (3.20)
=— (1—1—)\ ./VT(uo,vo)K(uo,vo)duo) .
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In the case where is the unbiased, fixed-speed, 2-dimensional turning kegireh by (1.2) and using

(3.1), we haveyg = (vg(),véy)) = s(cosB, sinB) and we can evaluate the second integral term in equation
(3.20) explicitly to be

d M1 ide— T
/VT(U07V0)K(U07V0) Uo—/gin ETE' — 6, =50

Then (3.20) can be rewritten as follows

scos(G)Z—Z AT+ %T/_ZTX(X(), o)dg — — (1+ ;% - Zij(j)) , (3.21)
whereA(9) is defined by
—(m+0)sin(0), for 6¢(—m—m/2,
A(B) =< 0sin(0), for 6e[-m/2,m/2,
(r—0)sin(0), for 6 ¢ [m/2,m.

Interestingly, the contribution of free turning on the rigtand side of (3.21) is given asA /(2w),
which can be explained using a simple averaging argumecause every tumble takes an average time
of /(2/omega.

The boundary conditions (3.18) simplify to

x(Lx,0) =0, 0ec(—m/2,m/2),

TX(an) = TX(O, m— 9)+%M’ 0c (,7-[/2’ 7-[/2)' (3'22)

The numerical solution of (3.21)—(3.22) can be further difiggl by considering the symmetry in angle
Tx(X0, 0) = (X0, —0), i.e. it is sufficient to solve (3.21) wherllo, 6) are restricted to the domain
(0,Lx) x (0, ) with boundary conditions (3.22).

3.4.1 Comparison between theory and experiments: loss s maer time

In this section, we show that the transport theory with delagtter explains the experimental data with
robots by considering the loss of mass over time, as we dicegti@ 2.3. In Figure 3(a), we plot
the mass remaining in the system against time. The solidKplane represents the experimental data,
whilst the results of the classical theory are shown as ddtel) line. The dashed (blue) line shows a
numerical solution of system (3.2)—(3.3) that incorpasdlte finite reorientation time into the analysis.
The numerical solution was achieved using a first order fvideme method paired with an upwind
scheme for (3.3). For (3.2) we uséd = 1.183my200, At = 103sec andA8 = 11/20. For (3.3) we
used the samAt = 10-3sec and a discretisation df) = 3.38 x 10~?sec corresponding to the time
it takes to turn from one velocity direction to the next. Fig3(a) demonstrates that the inclusion of
turning delays provides an improved match to the experiaielata.

3.4.2 Comparison between theory and experiments: meatiragiproblem

The mean exit time problem from Section 2.4 can also be betbdelelled by the transport equation the-
ory with suitable incorporated delays as is demonstrat&iguare 3(b). The solid (black) line represents
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again the experimental data, whilst the classical resvétshown as dotted (red) lines. The numerical
solution of (3.21) with the boundary conditions (3.22) iswh as the dashed (blue) line. This numerical
solution was obtained using the same method as in Sectican?.4ve again plot the average over the
initial pen as a bold dashed line. The bold dashed line inesca predicted mean exit time of 183sec
compared to the experimental value I56sec, an error of approximately726 or 431sec. This repre-
sents a strong improvement to the discrepancy ad%w2seen for the model that neglected the turning
events (dotted red line) and goes to show that turning time&aeed non-negligible and can be built
into our model in a consistent manner.

4 Incorporation of a signal gradient

In this section, we are aiming to formulate velocity jump ralsdthat incorporate changing turning
frequencies\. In particular, we are interested in turning frequencies ttepend on the current velocity
of the robot as well as its position in the domain, Ae= A (x,v). The general velocity jump model for
this case can be formulated as (cf. (1.1))

ap

2t +v-Oxp=—-A(X,v) p+/ A(X,u)T(v,u) p(t,x,u)du, (4.1)

V

with the boundary conditions given in (2.4). Similarly, wancformulate this system by incorporating
the resting period (cf. (3.2)—(3.3))

%H.Dxp: —2 (X,V) P(t,X, V) +F(t,x,v,0"),
Jr or 2
3 " an :./\/A(X’u) p(t,x,u) T(v,ux) &(n —K(v,u))du,

with boundary conditions (3.4). The system (4.2) can agaifobmulated in the form of a delay differ-
ential equation (cf. (3.9))

%er Oxp=—A(X,V) p+/ A(X,u)T(v,u) p(t —K(v,u),x,u)du, (4.3)
v

where boundary conditions take the form (3.10). Similadythie derivation in Section 3.3, one can
derive the backwards problem, with the mean first passagedgmation taking the form (cf. (2.5))

vo-DXOT—A(xo,vo)r+)\(xo,vo)/T(u,vo)r(xo,u)du
v (4.4)
__ <1+/\(x0,v0)/vT(u,vo)K(u,vo) du) :

with boundary conditions given in (2.6).

4.1 Experiments with a signal gradient

In order to compare these generalised velocity jump moadetxperimental results, we introduce an
external signal into the robot experiments presented inid@e2.1. The signal is incorporated in the
form of a colour gradient that can be measured by the lighd@aron the bottom of the-Puckrobots.
The colour gradient is layed out in such a way that it changeggethex-axis in Figure 1 with the darker
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end closer to the target area. The reaction of the robotsgedhour gradient is implemented using the
internal variablez and a changing turning frequengyz) that are updated according to

dj_S—z
d  ta (4.5)
)\:/\o+)\o(1fa(872)),

whereSe [0, 1] represents the measured signal with increasing valuBsnaficating a darker colour in
the gradient. The way the turning frequency is changed isvatetd by models of bacterial chemotaxis
Erban and Othmer (2004).

According to results from Erban and Othmer (2005), a maaiscdensity formulation for the
robotic system is given through the hyperbolic chemotagisation

10%n on & aAosty
Yooz ot~ gt (nd)\o(l—i-)\ota) DS)’ (4.6)

whereS: Q — R indicates the colour gradient amdt, x) describes the concentration of robots(n
Equation (4.6) can be approximated by the velocity jump @ssd4.1) with the form for the turning
frequency given by

_ ataAg
Y= 14 Agta

Because the gradient of the colour sigBalias chosen to be parallel to theaxis in the experimental
setting, we can again simplify the formulation of the exihé problem (4.4) by averaging along the
y-axis. The resulting equation takes the form

A(X,V) =Ap—yv-0OX), 4.7)

scos6 ot + 2ssing min(6,m—0) —A(x,0) T+ A(x6)
ox  Lyw m

% 6.)d6, = -1-A(x0) L. (4.8
/OT(X7 *) + — — L (Xa )%7 ()

whereA (x, 0) is given through

A (x,8) = Ao — yscosO 03(;) . (4.9)
Because the colour changes linearly alongxtais, we approximate the sign&lx) by a linear func-
tion. The values at the end-points were taken directly frobot measurements and hengg) takes

the form
X 2S 1
S(x) = 0.2340.39—, — ~0.33m . (4.10)
Ly ox
We will use this linear form ofS(x) for all comparisons between experimental data and the eteriv

models.

4.2 Comparison between models and experimental results

We now want to compare the experimental data to the genedalislocity jump models presented
in (4.1)—-(4.9). The numerical solutions were achieved gisite exact same methods and parameters
as in Section 2.3 and the results can be seen in Figure 4. Taenpter values used for the robots
areldg = 0.25sec?, a = 8, t; = 10sec and = 5.8 x 10 ?m/sec. The experimental procedure was
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FIG. 4. (Colour available online) Comparison between velocity guptocess and experimental data for experiment including
colour gradient.(a) Mean mass in system over time. Solid line (black): experiahelata; dotted line (red): numerical solution
of (4.1), dashed line (blue): numerical solution @f.2). Turning frequency (x,v) as given in(4.7).

(b) Mean exit time averaged over all velocities. Solid line ¢Bla experimental data; dotted line (red): numerical sadat

of (4.8) for w = o; bold dotted line (red): average of dotted line ov@p; dashed line (blue): numerical solution ¢4.8) for

w = 4.65rad sec’; bold dashed line (blue): average of dashed line o@gr Turning frequency (x, 8) as given in(4.9)

For both plots parameters and numerical methods are givethertext.

equivalent to the one presented in Section 2, i.e. we repe¢hgeexperiment 50 times with 16 robots,
each time waiting until all of the 16 robots have left the aen

In Figure 4(a) we plot the mass left in the system over timee 3dlid (black) line represents the
percentage of robots still in the arena at that point in tifitee dotted (red) line is a numerical solution
of the velocity jump equation (4.1) with the correspondiogibdary conditions (2.4). The dashed (blue)
line is a numerical solution of the velocity jump system wiglsting state given in (4.2) and boundary
conditions as in (3.4).

In Figure 4(b) we plot the mean exit time in dependence oftjprsalong thex-axis. The horizontal
solid (black) line again indicates the experimentally nueed exit time of 78/7sec. The dotted (red)
line shows a numerical solution of (4.8) with instant tuine. w = . The dashed (blue) line shows a
numerical solution of (4.8) witlw = 4.65rad sec?. For both of these solutions the boundary conditions
are given in (2.6). The bold horizontal lines again indigateaverage over the initial pepy.

In both plots in Figure 4, we see that the models includingdinirning delays (represented through
the dashed (blue) lines) give an improved match compareldetoniodels without this delay. The nu-
merically estimated exit time for the model with instantrig (w = ) is 6559 sec (error of 16%
compared to experimental data); with finite turning timds 176 sec (error of 8%). The remaining
difference between the models and the experimental datbeaxplained by noisy measurement of
the signalS(x) as well as the fact that we used linear approximation (4.¢8)eged over all robots to
obtain the numerical results. We can conclude from thisf stiedy of robot experiments including a
colour gradient signal that this signal indeed improvesdanget finding capacity of the robots and that
the models developed in Section 3 can be generalised topoe turning frequencies that change
according to external signals.
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5 Discussion

In this paper, we have studied an implementation of a runtamible searching strategy in a robotic
system. The algorithm implemented by the robots is motiVatea biological system — behaviour of
the flagellated bacteriur. coli. Bio-inspired algorithms are relatively common in swarrbatics.
Algorithms based on behaviour of social insects have begheimented previously in the literature,
see for example Garnier et al. (2005); Krieger et al. (200@bb (2000) and Fong et al. (2003). One
of the challenges of bio-inspired algorithms is that robdisnot have the same sensors as animals.
For exampleE. coli bias their movement according to extracellular chemicatesys. In biological
models, chemical signals often evolve according to thetisolwf reaction-diffusion partial differential
equations (Franz and Erban, 2012; Franz et al., 2013). fdreren implementation of the full run-and-
tumble chemotactic model in the robotic system requirdeeeispecial sensors for detecting chemical
signals, e.g. robots for odour detecting (Russell, 2001)eplacing chemical signals by suitable cari-
catures of them, e.g. using glowing floor #6fPuckrobots (Mayet et al., 2010).

The main goal of this paper is to study how the mathematiedrhdeveloped foE. coli applies
to the robotic system based &iPucls. Thus we do not focus on technological challenges condecte
with sensing changing chemical signals or their analogResgell, 2001; Mayet et al., 2010), we do,
however, incorporate a constant signal in order to showttieatleveloped theory works for unbiased
as well as biased velocity jump processes. If the collisioetsveen particles (robots or bacteria) and
reorientation times can be neglected, then this velocitypjprocess is described by the transport equa-
tion (1.1) or (4.1) (in the biased case) and the long time Wiehais given by a drift-diffusion equation
(Hillen and Othmer, 2000). In Section 2.2 we show that ciolfis between robots are negligible in our
experimental set up. However, we still observe quantigadifferences between the results based on the
transport equation (1.1) and robotic experiments.

In Section 3 we identify turning delays as the main mechamigniributing to differences between
the mathematical theory developed Ebrcoliand the results of experiments wEAPucls. We introduce
the resting state in equations (3.2)—(3.3) and then dehedransport equation with delay (3.9). Our
delay term is different from models of tumbling Bf coli, because the underlying physical process is
different. Tumbling times oE. coli are exponentially distributed, i.e. they can be explicitigluded
in mathematical models by using transport equations wtikh tnto account probabilistic changes to
and from the resting (tumbling) state (Erban and Othmer4200n the case of robots, the turning
time depends linearly on the turning angle. The selectiameof direction is effectively instant and the
main contributing factor to turning delays is the finite tmghspeed of robots. In Section 4 we apply
the developed theory to an experiment incorporating arreatsignal and show that similar transport
equations can be developed for this situation.

We have studied a relatively simple searching algorithmivatgd byE. Coli behaviour, but the
transport equations and velocity jump processes natuagibear in modelling of other biological sys-
tems, such as modelling chemotaxis of amoeboid cells (Eabdi®thmer, 2007) or swarming behaviour
as seen in various fish, birds and insects (Carrillo et ai928rban and Haskovec, 2012). We conclude
that the same delay terms as in (3.9) would be applicable ewegrnwe implement these models in
E-Pucls. From a mathematical point of view, it is also interestiagonsider coupling of (3.9) with
changing extracellular signals, because signal transgtuatso has its own delay which can be mod-
elled using velocity jump models with internal dynamicse(fz et al., 2013; Erban and Othmer, 2004;
Xue and Othmer, 2009). Considering higher densities oftltbe transport equation formalism needs
to be further adapted to incorporate the effects of robbttinteractions. We have recently investigated
this problem and reported our results in Franz et al. (2014).
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Appendix A Robot specifications

A photo of a collection oE-Puckrobots and the arena are given in Figure 5. Full details oEtfick
specifications are:
i. Diameter: 75 mm. Height: 50 mm. Weight: 200g.
ii. Speed throughout experiments8% 10 2msec?, (max speed: A3msec?).
iii. Turning speed throughout experiments68radsec?.
iv. Processor: dsPIC 30 CPU @ 30 MHz (15 MIPS), (PIC Microcalfer.)
v. RAM: 8 KB. Memory: 144 KB Flash.
vi. Autonomy: 2 hours moving. 2 step motors. 3D acceleronsete
vii. 8 infrared proximity and light, (TCRT1000)
viii. Colour camera, 640x480,
ix. 8 LEDs on outer ring, one body LED and one front LED,
X. 3 microphones, forming a triangle allowing the deterrtioraof the direction of audio cues.
xi. 1 loudspeaker.
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FiG. 5. (a)Collection of E-Puckrobots. (b) Photo showing the arena built for the experiments, remavakh and edges made
from cut down medium density fibre.

Appendix B Derivation of adjoint boundary condition (3.14)
Using (2.1) and (3.5), the last term in (3.12) can be rewritts follows

/_Z/v /aQ p(t, X, v)a(t,x,v)[v-n]dS.dvt
- /—0; /aQo Ui, /v+ {p(t,x,v)a(t,x,v) — p(t,x,v)a(t,x,v') }[v-n]dvdS.at,

whereV' is given by (2.3). Separating the above integral into thesa$d Q, anddQ -, and using the
boundary condition (3.10), we have

[ ptxvatxvlv-ndsdva
-0 JV J9Q
=[] [ {ptxvatx - pt—K(.v).xv)atxv) } v-nldvdScct
—00 agg V+
[ tx,V) g (tx,v) L v-n]dvdSydt.
oo f Apex¥)aexy) v njaves,
We shift the time variable in the first term on the right haraksio deduce
/ // p(t,x,v)q(t,x,v)[v-n]dS.dvdt
—o0 JV JOQ
= [ [ ptxv{atxv) ~a(t+KVv).xv) } v njovasc
—0 09@ v+
[ t,x,Vv)q(t,x,v')} [v-n]dvdSdt.
[ S, f AP v)atxy) v niaves,
The first term on the right hand side is zero becag@er K(V',v),x,V') = q(t,x,v) in (3.14). The

second term vanishes whg(ft, x,v') = 0. Thus we conclude that the last term in (3.12) is equal to zer
whenq satisfies the boundary conditions (3.14).



