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Abstract

In this paper, three multiscale methods for coupling of mesoscopic (compartment-based)
and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated.
Two of the three methods that will be discussed in detail have been previously reported
in the literature; the two-regime method (TRM) and the compartment-placement method
(CPM). The third method that is introduced and analysed in this paper is the ghost cell
method (GCM). Presented is a comparison of sources of error. The convergent properties
of this error are studied as the time step ∆t (for updating the molecular-based part of the
model) approaches zero. It is found that the error behaviour depends on another fundamental
computational parameter h, the compartment size in the mesoscopic part of the model. Two
important limiting cases, which appear in applications, are considered:

(i) ∆t → 0 and h is fixed;
(ii) ∆t → 0 and h → 0 such that

√
∆t/h is fixed.

The error for previously developed approaches (the TRM and CPM) converges to zero only
in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges
in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the
mesoscopic description is much coarser than the microscopic part of the model.

Keywords:
Multiscale simulation, reaction-diffusion, particle-based model.

1. Introduction

Multiscale stochastic reaction-diffusion methods which use models with different levels of
detail in different parts of the computational domain are applicable to a number of biological
systems, including modelling of intracellular calcium dynamics [12], MAPK pathway [20]
and actin dynamics [9]. In these applications, a detailed modelling approach (which requires
simulation of trajectories and reactive collisions of individual biomolecules) is only needed
in a small part of the computational domain. The main idea of multiscale methods is then
simple to formulate [10]: we use a detailed modelling approach in the small subdomain
of interest and a coarser model in the rest of the computational domain. In this paper,
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detailed molecular-based (microscopic) models will be given in terms of Brownian dynamics
[3, 25]. The remainder of the computational domain will be divided into compartments and a
mesoscopic (compartment-based) model will be used, i.e. we will simulate the time evolution
of the numbers of molecules in the corresponding compartments [5, 19].

There have been a number of approaches developed for coupling different reaction-
diffusion models. They include coupling of mesoscopic (compartment-based) models with
coarser (mean-field) PDE-based descriptions [13, 2, 26, 23], coupling of microcopic (molecular-
based) models with mean-field PDEs [15, 18, 14], and coupling of microscopic and mesoscopic
models [10, 11, 20, 21] A successful multiscale algorithm requires an accurate implementation
of inter-regime transfer of molecules. In this paper, we will study convergence properties of
two algorithms for coupling microscopic and mesoscopic descriptions which were previously
published in the literature: the two-regime method (TRM) [10, 11] and the compartment-
placement method (CPM) [20]. One of the conclusions of our analysis is that these algorithms
do not converge in the limit of small time steps and a fixed compartment size. Thus, we also
propose another approach, the ghost cell method (GCM) which is suitable for this parameter
regime.

We will consider a reaction-diffusion model in the computational domain Ω ⊂ R
N for

both N = 1 and N = 3. We will divide Ω into two parts, open sets ΩM and ΩC , which
satisfy

ΩM ∪ ΩC = Ω and ΩM ∩ ΩC = ∅, (1)

where an overbar denotes the closure of the corresponding set. The microscopic simulation
technique is used in ΩM . Each molecule, j, in ΩM is considered to be a point particle at
some location in space, Xj(t), at time t, which is updated according to discretized Brownian
motion, i.e.

Xj(t+∆t) = Xj(t) +
√

2Dj∆tζ, (2)

where Dj is the diffusion constant of the j-th molecule, ∆t is a small prescribed time step
and ζ is a vector containing zero mean, unit variance normally distributed random numbers.

In this paper, we will study the convergence of multiscale methods in the limit ∆t → 0.
Since the discretized Brownian motion (2) is only used in ΩM , we have to specify what will
be done in the remainder of the domain, ΩC , where the mesoscopic model is used. In this
paper, we distinguish the following two cases:

(i) the mesoscopic model is kept fixed in the limit ∆t → 0;
(ii) the mesoscopic model is refined as ∆t approaches zero.

The resolution of the mesoscopic model (compartment size) will be denoted by h. Of par-
ticular interest is the error that is caused as a direct result of the coupling and thus we will
use the parameter h as a measure of the compartment size at/on the interface between the
two modelling subdomains. In the case of regular cubic compartments of volume h3, the
parameter h is simply the length of an edge of each cube. We will also consider unstructured
meshes where the compartment size h will be suitably generalized. Using h, the cases (i)–(ii)
can be formulated as follows:

(i) ∆t → 0 and h is fixed;
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(ii) ∆t → 0 and h → 0 such that
√
∆t/h is fixed.

Both limits (i) and (ii) are important in applications. We will see that the error at the
interface ∂ΩM ∩ ∂ΩC of previously developed methods [10, 11, 20] converges to zero in the
limit (ii). This limit requires the refinement of the mesoscopic model. However, the standard
mesoscopic model converges in the limit h → 0 only if the molecules are subject to zero-
order or first-order chemical reactions [8]. It fails to converge when bimolecular reactions are
present [7]. This makes the limit (i) attractive in applications. In Section 4, we introduce
the GCM which converges in the limit (i).

The paper is organized as follows. In Section 2, we summarize the TRM for coupling of
structured mesoscopic meshes with microscopic simulations. The methodology for simulation
of stochastic reaction-diffusion processes on irregular meshes and the implementation of the
CPM is presented in Section 3. The GCM is introduced in Section 4. Using numerical
examples in Section 5, we compare the computational error associated with the TRM with
that of the GCM for structured meshes and the CPM with the GCM for unstructured meshes.
We will then discuss the sources of these errors and ways in which they may be reduced.

2. The two-regime method (TRM)

The two-regime method (TRM) [10, 11] couples microscopic and mesoscopic subdomains by
careful selection of the jump rate over the interface from the mesoscopic compartments and
careful placement of these molecules into the microscopic domain. To date, the TRM has
been used with mesoscopic subdomains with regular meshes [12, 9]. The advantage of using
this technique is that accuracy can be gained in ‘regions of interest’ ΩM without the need
to run computationally expensive microscopic simulations over the entire domain Ω. In this
section we will briefly cover the two different simulation paradigms and then discuss how
these paradigms are combined using the TRM.

2.1. Microscopic simulation

The defining characteristic of ‘microscopic’ simulation techniques for diffusion is that each
molecule in the system is simulated individually on a continuous domain. In particular, these
techniques follow the trajectory of each Brownian molecule to a resolution dependent on the
time steps that are used. For illustrative purposes we consider here a time-driven microscopic
algorithm. That is, an algorithm with a defined constant time step. Furthermore, we will
not be considering volume exclusion effects in this manuscript. Each molecule, j, is therefore
considered to be a point particle at some location in space, Xj(t), at time t. The Brownian
diffusion of these molecules is modelled by (2). Reactions may take place between these
diffusing molecules at a particular time step if the reactants are within a given reaction
radius of each other [24, 22].

Molecule interactions with boundaries depend on the type of boundary: boundaries can
be reflective, adsorbing or reactive (partially adsorbing) [6]. Considering that

√
D∆t is much

smaller than the local radius of curvature of the boundary, then the boundary is locally flat
on the scale of relative motion of the molecules in one time step. In the case of absorbing
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boundaries, molecules are removed from the system when they are updated to a position
outside of the boundary. Since we simulate Brownian motion using a finite time step, we
have to take into account that a molecule can interact with the boundary during the time
step [t, t+∆t] even if its computed position at time t+∆t is inside the simulation domain.
The probability, Pm that this molecule-boundary interaction occured within the time interval
(t, t +∆t] is dependent on the diffusion constant and the initial and final normal distances
from the boundary the molecule is found (∆xi and ∆xf respectively)

Pm(∆xi,∆xf , D,∆t) = exp

(−∆xi∆xf

D∆t

)

. (3)

This probability will also be important when it comes to coupling of microscopic simulations
with mesoscopic simulations via an interface in the two-regime method [10, 11].

2.2. Mesoscopic simulation

Mesoscopic approaches to reaction-diffusion processes are simulated on a lattice. For the
purposes of the TRM we will describe how this is done for a regular cubic lattice. The
distance between each node is h. In a mesoscopic model, molecules can be thought to exist
only at lattice nodes rather than existing in continuous space. The state of the simulation
at any moment of time is defined by a set of numbers describing the copy numbers Ni,j of
molecules of the i-th type at the j-th lattice point. Considering the diffusion of (non-reacting)
molecules, the expected state of the system E(Ni,j) is described by the equation:

dE(Ni,j)

dt
= Di

∑

k

(qk,jE(Ni,k)− qj,kE(Ni,j)) , (4)

where qk,j is the propensity per molecule to go from the k-th compartment to the j−th
compartment. It is possible to show that for a regular lattice with spacing h,

qk,j =

{

Di/h
2, if k and j are adjacent lattice points,

0, if k and j are not adjacent lattice points,
(5)

results in the recovery of the discretized form of the diffusion partial differential equation and
can therefore be used to approximate a diffusion process on the lattice correct to order h2.
The simulation of a mesoscopic reaction-diffusion process usually makes use of event-driven
algorithms, such as the Gillespie algorithm [17] or the Gibson-Bruck algorithm [16]. We
shall conceptualize the mesoscopic simulation by considering that when a molecule is at a
particular lattice point, rather than existing at the node, it is somewhere at random inside
the compartment belonging to the node defined by the lattice dual mesh [5]. That is, for a
regular cubic lattice with node spacing h, each molecule which is at a particular lattice point
is thought to exist inside the cubic compartment of side length h for which the lattice point
is at the center. It is important to note that the state of the molecule has no specific location
but rather is thought to exist in a probabilistic sense uniformly over its compartment.
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2.3. Interfacing microscopic and mesoscopic simulations

Interfacing microscopic and mesoscopic simulations of reaction-diffusion processes using the
TRM has previously been derived for mesoscopic regimes that use regular cubic lattices
[10, 11]. The TRM is proposed by partitioning the domain Ω into subdomains (1) separted by
the interface I = ∂ΩM ∩∂ΩC . In both subdomains, molecules behave as they would normally
according to the rules of that particular regime. We describe the TRM with an event-driven
mesoscopic simulation in ΩC and a time-driven microscopic simulation with constant time
step ∆t in ΩM . Reactions do not cause any issue within the domain because they occur
locally. We focus, therefore, on the correct manner in which molecules may migrate over the
interface I. It is assumed that the TRM is simulated such that

√
D∆t ∼ h ≪ 1. A diagram

of the numerical TRM scheme using a regular cubic lattice can be seen in two dimensions
in Figure 1. A detailed TRM algorithm may be found in the reference [10]. In order that a
molecular migration over the interface is smooth with optimally small error, the propensity
Γ per molecule to cross the interface I from each adjacent compartment is dependent on the
parameters h and ∆t. For a regular cubic mesoscopic lattice,

Γ(h,∆t) = 2

√

D

π∆th2
, (6)

where D is the diffusion constant of the migrating molecule. The TRM considers that
microscopic molecules in ΩM cease to be microscopic molecules, in principle, when they
migrate over the interface. Molecules are therefore absorbed by the interface I from ΩM

and placed in the closest compartment in ΩC . Equation (3) is used to absorb all molecules
which interacted with the interface. If this is not used then molecules effectively migrate into
ΩC and back out again without changing from a microscopic molecule to a mesoscopic one.
This is crucial for coupling of the two regimes as outlined in the derivation in the reference
[10]. Furthermore, molecules must be precisely placed in ΩM when migrating from ΩC . In
particular, the perpendicular distance x the molecule is placed from the interface into ΩM is
found by sampling from the distribution f(x)

f(x) =

√

π

4D∆t
erfc

(

x√
4D∆t

)

, (7)

where erfc (x) = 2/π
∫

∞

x
exp(−t2)dt is the complementary error function. In higher dimen-

sions, the initial position of molecules migrating into ΩM can be chosen to be uniformly
distributed tangentially to the interface in the region of the originating compartment [11].
Then the error associated with the TRM is O(h). We shall investigate the error associated
with the TRM in 1D in a later section of this manuscript and compare it with the GCM
method introduced in Section 4.

3. Compartment-placement method (CPM)

In this section, we will discuss how mesoscopic simulation is implemented on an irregular
lattice [5]. We will then present a brief description of the CPM [20].
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Figure 1: Graphical representation of the TRM on a regular square lattice.

3.1. Mesoscopic simulation on unstructured meshes

Mesoscopic simulations on Cartesian meshes are convenient in the sense that they are mem-
ory lenient. However, complex geometries and surfaces with high curvature, are easier to
resolve accurately with an unstructured mesh. Living cells can have different shapes and
eukaryotes have a complicated internal structure with two-dimensional membranes and a one-
dimensional cytoskeleton [1]. The geometrical flexibility of unstructured meshes is therefore
an advantage when considering simulations of realistic biological problems.

Consider a domain Ω. The domain is covered by a primal mesh, such that the bound-
ary ∂Ω is covered with non-overlapping triangles and the domain Ω is covered with non-
overlapping tetrahedra (resp. triangles in 2D). A dual mesh is constructed from the primal
mesh, see Figure 2, from the bisectors of the tetrahedra (resp. triangles) that use the nodes
as vertices. The diffusion of molecules is now modelled as discrete jumps between the nodes
of the dual mesh. The rate qi,j at which a molecules jump from voxel Vi to Vj is given by
the diffusion constant of the molecule and the finite element discretization of the Laplacian
on the primal mesh. For details on how the unstructured meshes and the diffusion matrix
are generated the reader is referred to [5].

3.2. Interfacing microscopic and mesoscopic simulations

The algorithm for the CPM is presented in a similar way to the TRM. The algorithm pro-
gresses asynchronously by updates in the mesoscopic simulation and microscopic simulation
separately [20]. The jump rates from compartments that are on the interface I between
regimes are calculated from the underlying mesh over the entire domain. That is, the jump
rates are calculated by computing the mesoscopic jump rates between interfacial compart-
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Compartments 

from dual mesh

Nodes

(a) (b)

Figure 2: Schematic of CPM computational domain. (a) The primal mesh is indicated with red dashed lines.
The nodes are connected to form triangles. The bisectors are then drawn in to create the dual mesh (blue
dotted lines). Compartments are drawn from the dual mesh with one node at the center of each compartment.
One example compartment is shown in blue.
(b) The domain is split into mesoscopic ΩC and microscopic ΩM domains. Jumps between compartments
and from the compartments into ΩM are calculated using a finite element discretization of the Laplacian.
The copy numbers of molecules in each compartment in ΩC are stored whilst in ΩM each molecule has its
own position in continuous space.

ments and “compartments” that are adjacent to the interface in the microscopic domain ΩM

(see Figure 2).
Molecules that start in a compartment in ΩC and, at the end of the time step, have

ended up in ΩM are initialized uniformly inside the “compartment” which they jump into,
and is the process from which the CPM has been named. Molecules in ΩM migrate back
to ΩC via microscopic domain diffusion (2). When a molecule appears inside one of the
mesoscopic compartments from Brownian motion, it is encorporated into that compartment
by increasing the copy number inside this compartment.

The CPM has been determined using heuristics. Molecules that are in compartments
obey mesoscopic rules for diffusive migration. This includes molecules that are on interfacial
compartments. They jump to compartments in ΩM as though they were still in ΩC . When
this occurs, initialization of the molecules must take place. The molecules are initiated
uniformly over the compartment in which they are placed. Molecules are not placed at
the node at the center of this compartment because this would unphysically concentrate
molecules at this point and reactions would occur between possible reactants apon migration
over the interface. Conversely, molecules that are in ΩM obey microscopic rules for diffusive
migration (Brownian trajectory). When this Brownian trajectory leads to a compartment, it
can no longer be described using the microscopic description and is added to the compartment

7



[G.1] Initialize lattice over whole domain Ω and construct dual mesh (compartments).
Generate interface I on the edges of compartments to separate ΩM from ΩC . Choose
∆t and set time t = 0. Determine qk,j using finite element method between all
compartments [5].

[G.2] Initialize the initial state of the system by placing molecules in compartments in
ΩC and placing molecules in continuous space in ΩM . Count and store numbers
of molecules in ghost cells, those compartments in ΩM which are adjacent to the
interface I.

[G.3] Determine the time τ for the next event (reaction or diffusive) in ΩC or diffusive
jumps to and from ghost cells and ΩC .

[G.4] If t + τ < ∆t + ∆t⌊t/∆t⌋ then change the state of the system to reflect the next
event corresponding to τ and update time t := t+τ . If this event is a diffusive jump
from ghost cell to ΩC choose a molecule at random within the relavant ghost cell
to migrate. If this event is a diffusive jump from ΩC to a ghost cell then initialize
this molecule with uniform probability over the ghost cell.

[G.5] If t + τ ≥ ∆t + ∆t⌊t/∆t⌋ then update the positions of all molecules in ΩM using
(2). Check for reactions in ΩM [11]. All molecules incident on the interface I are
reflected. Update time t := ∆t+∆t⌊t/∆t⌋

[G.6] Repeat steps [G.3]–[G.5] until the desired end of the simulation.

Table 1: The ghost cell method algorithm.

in which it lands. As we shall see, this heuristic approach can lead to inaccuracies. The
inaccuracies can be minimized if h2 ∼ D∆t (that is, if the size of the compartment is
approximately the size of a microscopic molecular jump).

4. The ghost cell method (GCM)

Here we will consider a new method for interfacing mesoscopic and microscopic simulations.
This method uses different assumptions to the TRM and CPM and is therefore implemented
differently. We call this method the ghost cell method (GCM) since microscopic molecules
in ΩM feel the presence of a pseudo-compartment allowing for instantaneous jumping from
ΩM to ΩC in the same way that molecules within compartments jump instantaneously. The
steps of the GCM are given in Table 1.

The key assumption that is used in the TRM and CPM is that molecules in ΩM mi-
grate via diffusion (2) over the interface I whereby they become parts of the corresponding
compartment. In the GCM, this assumption is relaxed. Instead, molecules migrate over the
interface using the compartment-based approach in both directions. Microscopic molecules
in ΩM near the interface feel the presence of a layer of “ghost” cells (compartments). In the
step [G.2] in Table 1, we calculate the numbers of molecules in these “ghost” cells. They are
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Figure 3: A diagram illustrating the fundamental differences between (a) the TRM/CPM paradigm and
(b) the GCM paradigm.

used in the step [G.4] to create a fully compartment-based simulation of transition across
the interface I.

To justify the GCM, let us consider a simulation of diffusion in a domain Ω for which a
mesoscopic method was implemented. Then consider the same domain where a microscopic
simulation is implemented. Let the molecules of the microscopic simulation be “binned”
according to compartments of the mesoscopic simulation. The expected number of molecules
binned into each compartment should match that of the mesoscopic simulation to within
the precision of the mesoscopic method. This is because both simulations are accurate
representations of the same phenomena, diffusion. This is the philosophy behind the GCM.
Molecules which are binned into ghost compartments near the interface may jump into
compartments in ΩC via the rates prescribed by the mesoscopic algorithm. If both regimes
are correct individually then the flux over the interface I is the same as though a mesoscopic
algorithm was used over the whole domain. To ensure that microscopic molecules do not
migrate to ΩC via diffusion (2), they are reflected at the interface I in the step [G.5]. Figure 3
demonstrates the principle differences between a TRM/CPM and a GCM description of the
interface. In Appendix A we provide a mathematical analysis of the GCM in one dimension
to demonstrate that the expected concentration and flux of molecules over the interface are
matched. The theoretical error associated with the GCM scales as

√
∆t which is on the

same order as that of the TRM. Unlike the TRM, this error, as we will see in the later part
of this manuscript, is reduced to zero by reducing

√
∆t/h.

The ghost cell method is implemented using the algorithm in Table 1. This algorithm is
given for an event-driven mesoscopic simulation and a time-driven microscopic simulation,
however it can also be extended to event-driven microscopic simulations.
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5. Numerical results and discussion

In this section, we present numerical examples comparing the TRM, CPM and GCM. First,
we demonstrate how the error associated with the interface I is dependent on choices of
mesh spacing h in the mesoscopic subdomain at the interface and the time step chosen
for the microscopic subdomain ∆t for both the TRM and the GCM using one dimensional
simulations.

5.1. One dimensional simulations: TRM versus GCM

We use a simple diffusion test problem to compare the diffusive flow over the interface with
an exact solution which can be analytically obtained. We use the domain Ω = (0, 1) and
subdomains ΩC = (0, 0.5), ΩM = (0.5, 1), which are separated by the interface I = {0.5}. We
initially position N0 = 5×105 molecules according to the distribution g(x) = 2x, x ∈ Ω. We
construct regular spaced compartments of width h0 = 0.1 within ΩC and “bin” the molecules
generated in ΩC into these compartments. We allow these molecules to diffuse throughout
the domain Ω with a diffusion constant D = 1 using the TRM or GCM until time t = 1. At
the boundary x = 0 molecules are absorbed and placed at x = 1. At the boundary x = 1
molecules are reflected. In this way, N0 g(x) is the steady state distribution of this system
and 0.25N0 is the steady state number of molecules in ΩC . We define a measure of the error
E to this test problem for each simulation scheme

E =

∑

j Nj(1)− 0.25N0

N0

, (8)

where Nj is the copy number of molecules in the j-th compartment evaluated at t = 1 and
the sum is taken over all compartments in ΩC .

In order to see the effect of the compartment spacing near the interface h on the error E
for both the TRM and GCM we start with the set of regular compartments

(0, h0), (h0, 2h0), . . . , (0.5− h0, 0.5),

which have nodes (centres of compartments) at h0/2, 3h0/2, . . . , 0.5 − h0/2. Then we use
the following lattice refinement technique designed specifically so that the position of the
interface does not change (see Figure 4):

[R.1] Delete the two nodes closest to the interface.

[R.2] Introduce into the space between the new node closest to the interface and the interface
(a distance of ∆x) three nodes placed consecutively a distance of 2∆x/7 from the node
to its left.

[R.3] Recompute the compartments by finding the bisectors of each node.

The specific distances in the step [R.2] are chosen such that the interface does not change
location and the last two compartments have the same size. This is also the size that is given
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ghost cell size 

matches interface 
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Figure 4: Diagram of one iteration of the lattice refinement [R.1]–[R.3].

to the ghost cell in the GCM. The refinement algorithm [R.1]–[R.3] is repeated m times such
that the size of the final compartment in ΩC (and ghost cell), hm, is

hm = h0

(

5

7

)m

. (9)

A diagram representing one iteration of the refinement technique [R.1]–[R.3] is shown in
Figure 4. The error is computed for various final compartment sizes hm (m = 0, 1, . . . , 10)
and various time steps ∆tk (k = 0, 1, . . . , 10) where

∆tk = 2k∆t0, (10)

and ∆t0 = 5× 10−6.
Figures 5 and 6 show how the absolute error ‖E‖ given by (8) depends on both parameters

hm (compartment size on the interface) and ∆t for the TRM and GCM algorithms respec-
tively. The error due to the interface in the TRM includes a shift of hm/2 in the expected
distribution of molecules at the interface into ΩC [10]. This is because of the “initialization”
of molecules from ΩM into ΩC . Unlike the initialization of molecules from ΩC into ΩM ,
molecules that are transported in the reverse direction cannot be placed carefully according
to a continuous distribution but must necessarily be placed in the nearest compartment.
This initialization has an expected position of hm/2 away from the boundary causing a shift
of hm/2 in the distribution of molecules. However, if molecules could be initialized into ΩC

with a continuous distribution, for symmetry reasons one would expect this to be done with
a distribution of f(x) given by (7). The average distance, therefore, that a molecule would
ideally be placed into ΩC is

∫

∞

0
xf(x)dx =

√
πD∆t/2. Therefore, the error that is due to
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Figure 5: Surface plot of the absolute error ‖E‖ defined by (8) as a function of compartment size at the
interface hm and time step ∆t for the one dimensional test problem using the TRM.

unphysical shifting of molecules is proportional to the expected shift of molecules as they
are transferred from ΩM to ΩC . That is E ∝ hm −

√
πD∆t.

In Figure 5 a dotted red line showing hm =
√
πD∆t approximately follows the path of

the minimum absolute error. The discrepancy between the actual minimum absolute error
and the dotted red line in Figure 5 can be attributed to higher order error that is inherent in
the mesoscopic approximation to the diffusion equation. To show that E ∝ hm −

√
πD∆t,

Figure 7 is a plot of error E versus hm −
√
πD∆t. The plot is generated by using various

values of hm (see legend) and then plotting a number of points while changing ∆t. Whilst it
is clear that the graph is approximately linear, the higher order mesoscopic error is clearly
seen in the form of a vertical displacement of this curve about the origin. The effect that
the higher order mesoscopic error has on the interface is difficult to quantify because it will
depend on the particular molecular system. Therefore, the best choice of parameters that
can be chosen for the TRM is hm ∼

√
πD∆t.

In Figure 6, we see that the error of the GCM depends on ∆t and specifically on its
relative size compared to h (the analysis of the GCM is provided in Appendix A). Rapidly
increasing error (quickly saturating the color bar in Figure 6) is observed when hm ∼

√
πD∆t.

The higher order mesoscopic error artefact can also be seen in Figure 6 since this artefact
is independent of the coupling mechanism (see the larger absolute error for large values of
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Figure 6: Surface plot of the absolute error ‖E‖ defined by (8) as a function of compartment size at the
interface hm and time step ∆t for the one dimensional test problem using the GCM.

h). The GCM is therefore most accurate for very small values of ∆t. Whilst in practice
making ∆t small may significantly increase the computing time, small ∆t is often required
for accurate microscopic simulation (for example, capturing reactions with high resolution)
and in such cases the GCM is more appropriate than the TRM.

5.2. Three dimensional simulations: CPM versus GCM

In this section we will demonstrate how, when using an unstructured mesh, the error asso-
ciated with the GCM coupling converges as ∆t → 0 whereas error associated with the CPM
is minimized when h ∼

√
D∆t where h is the average size of boundary compartments. Both

the error associated with the CPM and GCM are due to imbalances in the flux of molecules
over the interface. We implement the CPM and GCM in three spatial dimensions using a
tetrahedral primal mesh as described in Section 3. The implementation builds on the freely
available software URDME [4].

We consider a cube with side length L = 1. The cube is first discretized with an unstruc-
tured mesh and then divided into a mesoscopic region ΩC, and a microscopic region ΩM,
where ΩM is the set of all voxels with a vertex (x, y, z) such that x < 0.5 and ΩC = Ω \ ΩM.
Here Ω is the set of all voxels. The partitioning is illustrated in Figure 8 for two different
mesh sizes.We start each simulation with N0 = 2 · 104 molecules whose initial positions are
sampled from a uniform distribution. The diffusion constant of the molecules is D = 1, and
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Figure 7: Scatter plot of the error E versus hm −
√
πD∆t for the TRM. The different color points represent

different values of the compartment size at the interface h (see legend) and in each instance ∆t is varied
from 5× 10−6 to 5× 10−3.

we simulate the system for time t=0.1. Since we start with a uniform distribution and the
molecules only diffuse and do not react, we expect the distribution to be uniform at the
final time. As the interface is parallel with the y− z-plane, we expect that the distributions
of molecules in the y- and z-directions are uniform, but that we get a small error in the
distribution of molecules in the x-direction. We now divide the x-axis into 10 bins of equal
length, and then count the number of molecules in each bin at the final time. Mesoscopic
molecules are binned by first sampling a continuous position from a uniform distribution on
the voxel. We expect N0/10 molecules in each bin, and can therefore estimate the error E
by

E =

∑10

i=1
|Ni −N0/10|
N0

. (11)

In Figure 9 we have computed ‖E‖ for different mesh sizes and time steps. As expected, the
error decreases as we refine the mesh and decrease the time step.

In the CPM method, mesoscopic (resp. microscopic) molecules stay mesoscopic (resp.
microscopic) during a time step. This implies that the time step should be chosen sufficiently
small such that a molecule does not diffuse across several voxels. On the other hand, if the
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(a) (b)

Figure 8: The cube [0, 1]3 is partitioned into a mesoscopic region (grey) and a microscopic region (white).
(a) a coarse mesh; (b) a fine mesh.

10
−5

10
−4

10
−1

∆ t

E

 

 

25393 voxels
49101 voxels
72413 voxels

Figure 9: The error ‖E‖ of the GCM method for different mesh sizes and time steps. The error decreases
with decreasing time step, as expected.
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Figure 10: Comparison of the error ‖E‖ produced by the GCM and CPM for interfacing microscopic and
mesoscopic simulations as a function of the time step in the microscopic simulation domain ∆t. The length
scale h is defined to be the cubic root of the average volume of a voxel.

time step is too small the distribution of molecules in space will be biased towards the
microscopic region. This can be seen by considering a microscopic molecule diffusing into
the mesoscopic regime. If the time step is small, it is likely that it will be close to the
microscopic regime at the end of the time step, but if it ends up on the mesoscopic side it
will nevertheless be considered uniformly distributed in the voxel at the end of the time step.
Thus, the time step should not be chosen too small relative to the size of the voxels, or the
error due to the spatial splitting will become large.

Since the GCM converges with decreasing time step, but performs worse for larger time
steps, one could suspect that there is a regime where the CPM in [20] performs better than
the GCM. At some point, however, the error of the GCM will become small and outperform
the CPM in [20]. The errors of the different methods are compared in Figure 10 for a mesh
with 49101 voxels. Indeed, we see that the CPM method performs better for time steps
down to almost ∆t = 10−4, at which point the error of the GCM method becomes smaller.

6. Summary

In this paper we have compared two existing mesoscopic-microscopic coupling techniques for
stochastic simulations of reaction-diffusion processes with a new convergent method called
the ghost cell method (GCM). Here we will summarize the specific sources of error of the
TRM, CPM and GCM, when they converge, how they may be optimized for accuracy and
notes on their computational efficiency.
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6.1. Summary of the two-regime method

The TRM couples molecules by considering that mesoscopic compartments contain molecules
that are evenly distributed in a probabilistic sense. As these molecules diffuse over the in-
terface they are placed according to the distribution f(x) given by (7). Molecules migrating
in reverse from the microscopic regime to the mesoscopic regime must be absorbed by the
interfacial compartments and be indistinguishable from other molecules in these compart-
ments by virtue of this paradigm. As such, instead of migrating an average distance over the
interface proportional to

√
∆t it becomes evenly distributed over the compartment with an

expected location of h/2 over the interface. The molecules are therefore effectively shifted
(h−

√
πD∆t)/2 into the compartment regime. This shift in the molecules therefore creates

a discontinuity of in the distribution to find molecules on the interface and therefore an error
due to the presence of the coupling proportional to h−

√
πD∆t. The nature of this error is

that, if the expected net flux of molecules over the interface is 0, then no error due to the
presence of the interface will be experienced. This is important to note, since, this is not the
case for both the CPM and GCM methods. Furthermore, since the error is proportional to
h −

√
πD∆t it clearly converges in the limiting case (ii) described in the introduction but

not in the limiting case (i).
Whilst the TRM can give controllably accurate results, it can be computationally more

costly to implement. This is because perfect absorption of molecules is required on the
boundary and this means that each molecule in the molecular-based domain needs to be
checked for interaction with the boundary in a given time step using (3).

6.2. Summary of the compartment-placement method

The CPM is a coupling mechanism that, whilst heuristically derived, can produce accurate
results under some circumstances and do so with minimum computational cost. Molecules
are placed within a pseudo-compartment in the molecular-based domain via diffusion from
the compartment-based domain. In reverse molecules are placed in compartments from
the molecular-based domain via diffusion of these molecules in the continuous domain over
the interface. The antisymmetry that is seen in the methods of migration, mesoscopic
to microscopic and microscopic to mesoscopic, result in a boundary layer in the expected
distribution of molecules at the interface. This boundary layer is caused by the fact that
molecules diffusing from the molecular region to the compartmental region are considered
uniformly distributed on the compartment at the end of the time step. If ∆t is small
compared to h, this will be a poor approximation. It should thus be noted that the error of
the CPM does not converge in the limiting case (i) described in the introduction, however
the error appears to converge according to limiting case (ii).

The CPM is computationally efficient. Its only inefficiency is that, unlike the TRM, it
requires the knowledge of a pseudo-compartment in the microscopic domain. The TRM is
therefore more appropriate than the CPM for coupling completely independent simulation
algorithms, since the CPM requires its own custom algorithm to be implemented fully.
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6.3. Summary of the ghost cell method

The GCM couples molecules according to a discrete domain on each side of the interface.
Molecules that are in the microscopic domain are binned according to a ghost compart-
ment/cell and jump into the mesoscopic domain using jump rates derived using the meso-
scopic approach. In such a way, symmetry is conserved in the method of migration from
mesoscopic to microscopic and from microscopic to mesoscopic, unlike the CPM. It is im-
portant that the molecules are binned correctly for this coupling to work accurately. The
error, therefore, can be attributed to molecules that are in the ghost cell when they should
not be, or not in the ghost cell when they should be. Therefore, if the compartment size
h at the interface (and of the ghost cell) is much larger than the resolution of the particle
tracking in the microscopic domain, the correct number of molecules will be in the ghost
cell. The error therefore converges in the limit of small ∆t so long as h is sufficiently coarse.
Furthermore, it is possible to show that, unlike the TRM, this source of error is not due to a
displacement of molecules but an unballanced flux of molecules (see Appendix A) and will
therefore appear even if the expected net flux over the interface is 0. The GCM, however,
is convergent in the limiting case (i) but not (ii) from the introduction giving the GCM a
unique advantage over both the CPM and TRM.

The GCM is computationally efficient for small ∆t since the jump rates from the micro-
scopic domain to the mesoscopic domain are determined by the ghost cell size and not the
time step (like the TRM for example).
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Appendix A. Mathematical justification for the ghost cell method

Here we present an analysis of the GCM in one-dimension. We show that error of the
GCM that is produced on the interface between mesoscopic and microscopic subdomains
converges in the case (i). Specifically, we see convergence of the interface-derived error as
Λ =

√
D∆t/h → 0. This property of convergence is unique to the GCM when compared with

other reported coupling mechanisms. In showing that the interface-derived error vanishes in
the small time step limit, we will show that rapid variation within the boundary layer of the
interface vanishes as Λ → 0, leaving behind a linear approximation of the true distribution
of molecules. Since the error at the interface will be of order h2 it is accurate to the same
order as the mesoscopic algorithm itself.
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Without loss of generality, consider an interface at x = 0 on an infinite one-dimensional
domain. To the left of this interface (x < 0) a compartment-based model is used with fixed
compartment size h. To the right of the interface (x > 0) a molecular-based algorithm is
used and is updated at fixed time increments of ∆t, i.e. ΩC = (−∞, 0) and ΩM = (0,∞).
We denote the compartments in ΩC by Ck = (−kh,−kh+ h), where k = 1, 2, . . . . Then the
interface compartment is C1 = (−h, 0). The ghost cell will be denoted by CM = (0, h).

Molecules in ΩC are described only by their compartment. Their compartment changes
with an exponentially distributed random time with a rate that is given by D/h2. This rate
is conditional on initial and final states being compartments. The rate given by D/h2 is
chosen in such a way that the expected number of molecules in each compartment matches
that of a discretized diffusion equation (see (4) and (5)). These rates, however, breakdown
in the case of the TRM because the initial and final states of jump across the interface
are not compartments but rather the final state is a molecule in ΩM . The jump across the
boundary for the TRM is given by (6). Molecules in ΩM have one thing in common with
those in compartments. A domain that is modeled microscopically and then binned into
compartments shows the same expected behaviour as a domain modeled with compartments
to leading and first order accuracy in h in the limit as ∆t → 0. Therefore, in an attempt to
interface the two regimes together it may be appropriate to bin molecules in ΩM into a ghost
cell/compartment CM near the interface. The molecules that are in CM will then have the
same properties as a compartment from the perspective of the interface compartment C1. To
this end, any molecule in CM may spontaneously change state from the molecular domain
to C1. We expect that since the interface compartment-bound molecules see a compartment
state for molecules in CM , the change of state from C1 to a random position within CM will
occur with a normal inter-compartmental rate. In the following analysis we show that this
is the case.

We shall test the hypothesis by matching the master equations for C1 and the probability
distribution in ΩM in such a way that no rapid variation in probability to find molecules,
p̄(x, t), is apparent at the interface. We shall assume that the rate for molecules to jump
into ΩM from C1 is Γ+ and are placed in an initial position from the interface given by
the probability distribution f(x). Molecules in ΩM spontaneously jump into C1 with a rate
Γ−g(x). Functions f(x) and g(x) are normalized such that they have a unit integral over
ΩM . We shall show that

Γ+ = Γ− =
D

h2
and g(x) = f(x) =







1

h
, for x ∈ CM ;

0, otherwise.
(A.1)

We will find it convenient for the sake of notation to introduce the parameters

α± =
h2Γ±

D
, and Λ =

√
D∆t

h
.

To show (A.1) we focus on the purely diffusive problem, since bulk reactions have no effect on
boundary conditions. In order to limit the flux of molecules jumping into C1, all molecules
in ΩM that hit the interface by Brownian motion are reflected back to ΩM .
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We denote the probability of finding a molecule in compartment Ck, k = 1, 2, . . . , by
pk(t)h (so that pk(t) approximates the probability density function at the node within this
compartment). If we denote by p(x, t) the probability density function of the discrete-
time molecular-based algorithm, then the transmission/reflection rules give us the following
master equation

p1(t+∆t) =
(

1− (1 + α+)Λ2
)

p1(t) + Λ2 p2(t) + α−Λ2

∫

∞

0

g(x)p(x, t) dx, (A.2)

p(x, t +∆t) =

∫

∞

0

p(y, t)√
4πD∆t

[

exp

(−(x− y)2

4D∆t

)

+ exp

(−(x+ y)2

4D∆t

)]

dy

+
α+D∆tp1(t)f(x)

h
− α−D∆tp(x, t)g(x)

h
. (A.3)

In the vicinity of x = 0 there is a boundary layer of width O(h) so long as f(x) and
g(x) vanish for x ≫ h [6]. We rescale (A.2) and (A.3) using the (dimensionless) boundary
layer coordinate ξ = x/h. We also denote pinner(ξ, t) = p(hξ, t), finner(ξ) = h f(hξ) and
ginner(ξ) = h g(hξ). The rescalings of f and g by h are done to keep the integrals of these
functions equal to 1. Thus, in the boundary layer coordinates, (A.2) and (A.3) become

p1(t+∆t) =
(

1− (1 + α+)Λ2
)

p1(t) + Λ2p2(t)

+ α−Λ2

∫

∞

0

ginner(ξ) pinner(ξ, t) dξ, (A.4)

pinner(ξ, t+∆t) = Λ−1

∫

∞

0

pinner(η, t)
[

K
(

Λ−1(η − ξ)
)

+K
(

Λ−1(η + ξ)
)]

dη

+ α+Λ2p1(t) finner(ξ)− α−Λ2pinner(ξ, t) ginner(ξ), (A.5)

where K(x) = (4π)−1/2 exp(−x2/4). The parameter Λ gives us the relative size of D∆t to
h2 and we wish to show that as Λ → 0 the distribution of molecules across the boundary is
smooth and the error that remains is of the order of h2, which is the same size of the error
associated with the mesoscopic discretization in ΩC . In order to join these models smoothly
we require in ΩC that

p1(t) = p(−h/2, t) = p(0, t)− h

2
p̄x(0, t) +O(h2) +O(Λ), (A.6)

p2(t) = p(−3h/2, t) = p(0, t)− 3h

2
p̄x(0, t) +O(h2) +O(Λ), (A.7)

p1(t +∆t) = p1(t) +O(∆t), (A.8)

while, for the molecular-based side, we want variation from the linear approximation in the
boundary layer to be limited to O(Λ) up to order h2 accuracy, so that

pinner(ξ, t) = p(0, t) + h ξ px(0, t) +O(h2) +O(Λ), (A.9)

pinner(ξ, t+∆t) = pinner(ξ, t) +O(∆t). (A.10)
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The prescription of a consistent probability density p(0, t) and derivative px(0, t) for both
sides of the interface, along with linear approximations sufficiently close to the interface
equates to continuity and differentiability over the interface which is the matching condition
that we are attempting to achieve.

Substituting (A.6)–(A.10) into (A.4) and (A.5) and equating terms of the same order in
h and leading order in Λ gives the following conditions that must be placed on g(x), f(x),
α+ and α−:

(i) O(h0Λ0) terms from equation (A.4) give condition:

α+ = α−

∫

∞

0

ginner(ξ), dξ. (A.11)

Condition (A.11) states how the relative rates for molecules to transition to and from
ΩM and ΩC must be dependent on the relative sizes of C1 and CM .

(ii) O(h1Λ0) terms from equation (A.4) give condition:

2 = α+ + α−

∫

∞

0

ξginner(ξ), dξ. (A.12)

Condition (A.12) states how the rates for molecules to transition to and from ΩM and
ΩC depend on the average distance molecules are placed from the interface when placed
within CM . This is the same condition given in ΩC for jumps between the compartments.

(iii) O(h0Λ0) terms from equation (A.5) give condition:

α+finner(ξ) = α−ginner(ξ). (A.13)

Condition (A.13) states that molecules must be placed into ΩM with the same probability
weighting that they are taken out and placed back into ΩC .

(iv) O(h1Λ0) terms from equation (A.5) are automatically satisfied.

The GCM that is presented in this manuscript uses parameters (A.1) which satisfy the three
conditions (A.11)–(A.13) listed above. Such a scheme, therefore, has an error that is no
greater than the error of the mesoscopic scheme in the limit Λ → 0, in other words, in the
limit ∆t → 0 whilst h remains constant.
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