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Abstract

Two multiscale (hybrid) stochastic reaction-diffusion models of actin dynamics in a filopodium
are investigated. Both hybrid algorithms combine compartment-based and molecular-based sto-
chastic reaction-diffusion models. The first hybrid model is based on the models previously
developed in the literature. The second hybrid model is based on the application of a recently
developed two-regime method (TRM) to a fully molecular-based model which is also developed
in this paper. The results of hybrid models are compared with the results of the molecular-based
model. It is shown that both approaches give comparable results, although the TRM model
better agrees quantitatively with the molecular-based model.

1 Introduction

In recent years, several stochastic reaction-diffusion algorithms have been introduced for modelling
in cellular and molecular biology, including Smoldyn [2], SpatioCyte [3], URDME [5], MesoRD [16],
STEPS [17], First-passage kinetic Monte Carlo method [24], MCell [26] and Green’s Function Reac-
tion Dynamics [27]. Some of these methods simulate trajectories and reactive collisions of individual
biomolecules [2, 27]. Other approaches divide the computational domain into compartments and
simulate the time evolution of the numbers of molecules in these compartments [5,16]. Some mod-
els explicitly model intracellular crowding and excluded volume effects [3], while other algorithms
describe biomolecules as point-like particles [2]. High-resolution (detailed, molecular-based) mod-
els are often more computationally intensive than compartment-based (coarser) models. However,
a higher level of detail is sometimes only needed in a relatively small part of the computational
domain. Then there is a potential to speed up simulations by developing hybrid approaches which
can efficiently and accurately use models with a different level of detail in different parts of the
computational domain [10,13].

The development of successful hybrid models requires understanding of connections between
detailed and coarser models of stochastic reaction-diffusion processes [6, 7]. The optimal choice of
a stochastic reaction-diffusion algorithm also depends on the particular biological problem which
is modelled. In this paper, our main application area is modelling of actin dynamics in filopodia
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[20], although very similar issues also arise in modelling of three-dimensional actin networks in
lamellipodia [19]. In this area, previously developed models have been formulated as a combination
of molecular-based and compartment-based (coarser) approaches [19,20,31,32]. These and related
developments in filopodia modeling were recently reviewed in [33]. In the current work, we will
compare the corresponding (less-detailed) hybrid modelling approaches with a fully molecular-based
(detailed) model developed here. On the face of it, a more accurate description of biology can be
obtained by introducing additional details into the model, but this could also include significant
challenges, for example, (i) an increase in the computational intensity of the algorithm; and (ii)
an increase in the number of unknown parameters. In this paper, we will study which molecular-
based details can be replaced by coarser compartment-based methods (without a significant loss
in accuracy), and which molecular-based components of the model are essential and require a
description with higher resolution.

The paper is organized as follows. In Section 2, we summarize the modelling of actin dynamics
in filopodia. We discuss stochastic reaction-diffusion models in the literature and a simplified hybrid
model which is used in the paper as an illustrative example. In Section 3, we introduce a fully
molecular-based model and the connections between the presented models are analysed. We show
that the simplified hybrid model underestimates the average filament length by 5% when compared
with the fully molecular-based model. In Section 4, we present a different approach to hybrid
simulations of actin dynamics based on the recently developed two-regime method (TRM) [10]. We
show that the results computed by the TRM compare well with the fully molecular-based model.
Moreover, the TRM can save the computational time by using a less-detailed (compartment-based)
model in a part of the computational domain. The TRM in Section 4 makes use of a time-
dependent interface between compartment-based and molecular-based parts of the simulation. This
is a generalization of the previously published TRM [10] which has been developed for a fixed
interface between different regimes. We conclude this paper with the discussion in Section 5.

2 Actin dynamics in filopodia: a paradigm for multiscale stochas-

tic reaction-diffusion modelling

Filopodium is an elongated organelle which grows out of the cell to probe the environment for me-
chanical obstacles or chemical cues [33]. It is used by a number of motile cells including metastatic
cancer cell [29] or the wound healing cells [23]. Filopodium is composed from a set of parallel
actin filaments bundled together and rooted in the lamellipodium [25, 33]. In Figure 1(a), we
present a schematic model of actin dynamics in a filopodium which is used in [32]. This model uses
both compartment-based and molecular-based approaches to reaction-diffusion modelling. The key
components of this model are the following three processes:

[P1] compartment-based description of diffusion of G-actin molecules;

[P2] off-lattice modelling of growth of F-actin filaments; and

[P3] retrograde flow which pulls back F-actin filaments.

In addition to [P1]–[P3], Figure 1(a) includes capping proteins which are explicitly modelled in [32],
but we will not consider their effects in this paper. In this section, we will study a minimal model
which includes [P1]–[P3]. This model is schematically shown in Figure 1(b). We will show that it
can capture essential features of filopodial dynamics. We will compare it with the fully molecular-
based model in Section 3.
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Figure 1: (a) Schematic representation of the actin dynamics model used in [32]. Reprinted with
permission from [32]. (b) Schematic of the simplified hybrid model for N(t) = 4.

2.1 Minimal hybrid model of actin dynamics in filopodia

Our minimal hybrid model of actin dynamics is a simplified version of the hybrid model presented
in [32]. Considering processes [P1]-[P3], the minimal model describes the dynamics of G-actin (the
monomer form of actin) and F-actin (the polymer form of actin) in a filopodium.

Following [32], we will divide the growing filopodium into N ≡ N(t) compartments (cylinders)
of height h (see Figure 1(b)). Here, h is a constant during simulations and N(t) is a positive
integer. Therefore, we implicitly assume that the filopodium has the height equal to the integer
multiple of h. The filopodium grows in a discrete way, by adding and removing a full compartment
whenever necessary. The number of G-actin molecules in the j-th comparment will be denoted
as Aj ≡ Aj(t), j = 1, 2, . . . , N(t). Here, the first compartment is next to the cell interior, a bulk
source of G-actin. Another variable of the model is the averaged position of “the barbed ends” of
actin filaments (F-actin). It is denoted as X ≡ X(t) (red dot in Figure 1(b)). It is postulated that
the barbed ends are always in the last compartment, i.e. X(t) ∈ [(N(t)− 1)h, N(t)h].

“Treadmilling” of actin filaments (F-actin) has been previously modelled by an off-lattice model
[30, 32]. In our minimal model, we consider a bundle of F-actin filaments in the centre of the
filopodium (red line in Figure 1(b)), without differentiating individual filaments within the bundle,
i.e. treating the bundle growth in an average way. Polymerization (resp. depolymerization) with
the rate k+ (resp. k−) is considered at the barbed end of the bundle. G-actin molecules diffuse
with the diffusion constant D. Thus the compartment-based part of the model is subject to the
following reactions [7, 8]:

AN

k+

−→←−
k−
∅, (2.1)
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where

d =
D

h2
.

Chemical reactions (2.1) describe polymerization and depolymerazation where ∅ denotes a source
or a sink of the molecules (in the compartment-based part of the model) which correspond to these
events. The chain of reactions (2.2) describes the diffusion of G-actin. Molecules are introduced
into the domain with a fixed rate d A which corresponds to the constant concentration of G-actin
molecules in the cytosol.

The compartment-based part (2.1)–(2.2) of the model can be simulated by the Gillespie stochas-
tic simulation algorithm (SSA) [15], or its variants [4,14]. These are event-based algorithms which
means that they calculate the time of the next event (reaction or diffusive jump) stochastically,
rather than evolving the simulation using a predefined fixed time step. The Gillespie SSA makes
use of propensity functions [8,15]. The total propensity function at time t for the system (2.1)–(2.2)
can be computed by

α0(t) = k+AN (t) + k− + d A + dAN (t) + 2d
N−1
∑

i=1

Ai(t)

and the time to the next reaction or diffusion event is

τ =
1

α0
log

(

1

r

)

, (2.3)

where r is uniformly distributed random number in (0, 1). Once the time to the next event τ is
computed using (2.3), the Gillespie SSA decides which reaction occurs using another uniformly
distributed random number in (0, 1). For example, the polymerization event happens with the
probability k+AN (t)/α0 and the depolymerization with the probability k−/α0.

One step of the minimal hybrid algorithm is presented in Table 1 as the algorithm [A1]–[A8]. The
compartment-based part (2.1)–(2.2) is coupled with the off-lattice part of the model which describes
the time evolution of the F-actin filament length X(t). It is evolved using the Gillespie time steps
(2.3). At each time step, three events can happen which change X(t). If the polymerization reaction
occurs in the step [A4], then X(t + τ) = X(t) + δ where δ is the constant monomer lentgh. If the
depolymerization reaction occurs in the step [A5], then X(t + τ) = X(t) − δ. Finally, retrograde
flow pulls back the F-actin filament with velocity v which is implemented in the step [A6].

In the step [A7], we evolve the length of filopodium. We have to make sure that the barbed
filament end is in the last compartment, i.e. X(t) ∈ [(N(t) − 1)h, N(t)h]. Thus the number of
compartments N(t) is evolved as follows

N(t + τ) =

⌈

X(t + τ)

h

⌉

, (2.4)

where X(t+ τ) is computed by the steps [A4]–[A6] and ⌈·⌉ is the ceiling function, i.e. ⌈X(t + τ)/h⌉
is the smallest integer not less than X(t + τ)/h. If the number of compartments N(t + τ) differs
from N(t), then we have to also update the number of G-actin molecules AN(t+τ) which are in the
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[A1] Compute the time when the next compartment-based event happens as t + τ , where t
is the current time and the time step τ is computed by (2.3) with the help of a random
number r uniformly distributed in (0, 1).

[A2] Use another uniformly distributed random number to compute which compartment-
based event (2.1)–(2.2) happens at time t + τ .

[A3] If a diffusion jump (2.2) occurs at time t + τ , then update the numbers of G-actin
molecules in the corresponding compartment(s). Put X(t + τ) = X(t).

[A4] If the polymerization reaction AN
k+

−→ ∅ in (2.1) occurs at time t + τ , then
AN (t + τ) = AN (t)− 1;
X(t + τ) = X(t) + δ where δ is the constant monomer lentgh.

[A5] If the depolymerization reaction ∅ k−

−→ AN in (2.1) occurs at time t + τ , then
AN (t + τ) = AN (t) + 1;
X(t + τ) = X(t)− δ.

[A6] Retrograde flow pulls back the F-actin filament with velocity v, i.e.
X(t + τ) := X(t + τ)− vτ

where X(t + τ) on the right hand side was computed in one of the steps [A3]–[A5].

[A7] If X(t + τ) is no longer in the last compartment, then update N(t + τ) using (2.4) and
update numbers of molecules in the last compartment using (2.5)–(2.6).

[A8] Continue with the step [A1] where the current time t is updated to t + τ .

Table 1: Pseudocode of one time step of the minimal hybrid model of actin dynamics in a filopodium.

last compartment. The most natural way is to conserve the number of G-actin molecules in the
step [A7]. This leads to the following rules:

if N(t + τ) = N(t)− 1, then AN(t+τ)(t + τ) := AN(t)(t + τ) + AN(t)−1(t + τ), (2.5)

if N(t + τ) = N(t) + 1, then AN(t+τ)(t + τ) := 0, (2.6)

where AN(t)(t + τ) and AN(t)−1(t + τ) on the right hand side of (2.5) are numbers computed in the
previous steps [A1]–[A6]. If N(t+τ) = N(t), then the number of molecules in the last compartment
does not change and it is not updated in the step [A7].

2.2 Illustrative computational results

The minimal hybrid model [A1]–[A8] has seven parameters D, k+, k−, h, A, δ and v. Their
values are based on the previous models [30, 32] and are summarized in Table 2. To calculate A,
we consider that the bulk concentration of G-actin is 10 µM and that the filopodium diameter
is a = 150 nm. Then each compartment is a cylinder with volume V = πa2h/4 and the bulk
concentration of G-actin corresponds to 5.3 molecules per compartment. The polymerization rate
k+ is the rate per one molecule (in the last compartment of volume V ) per unit of time.

In the steps [A5]–[A6], we add or subtract the monomer length δ. The constant δ can be
considered as an effective monomer lentgh, rather than the diameter of G-actin, because F-actin
consists of two protofilaments in a right-handed helix [30]. Therefore, models in the literature
choose δ equal to the half actin monomer size 2.7 nm [30, 32]. Since there are typically 10-30
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compartment height h = 50 nm

diffusion of G-actin D = 5/16 µm2 sec−1

polymerization rate (in the last compartment) AN(t) k+ where k+ = 21.8 sec−1

depolymerization rate k− = 1.4 sec−1

effective monomer size δ = 2.7 nm

retrograde flow speed v = 70 nm/sec

bulk concentration of G-actin multiplied by V A = 5.3

Table 2: Parameters of the minimal hybrid model of actin dynamics.
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Figure 2: Results computed by the minimal hybrid model [A1]–[A8] for parameters given in Table 2.
(a) Time evolution of filament length X(t). (b) Snapshots of numbers of molecules in compartments
Aj(t), j = 1, 2, . . . , N(t), at four different times.

filaments per filopodium, the half actin monomer size can be further divided by the estimated
number of filaments in the filopodium to calculate the effective monomer length δ. In our case,
we will use δ = 2.7 nm and we will rescale the diffusion constant by the factor of 16. Then our
minimal hybrid model (with one filament) will lead to similar filopodium stationary lengths as the
models in the literature which consider several filaments [30,32].

In Figure 2(a), we present the time evolution of the filament length X(t). In Figure 2(b), we plot
numbers of molecules in each compartment A1, A2, . . . , AN(t) at four different times. Comparing
panels (a) and (b) of Figure 2, we observe that the snapshot of A1, A2, . . . , AN(t) at time 10
seconds only includes compartments up to position 0.6 µm, because the filament length have not
yet reached its equilibrium values. The filopodium reaches a steady state length (approximately 1
µm) because the transport flux of G-actin monomers continuously diminishes as the tube becomes
longer. Hence, at a certain steady state length, Ls, the polymerization flux of actin monomers at
the tip equals the removal of actin from the tube via the retrograde flow process. A simple mean-
field expression for the steady-state length of filopodia was derived in [20] and further elaborated
in [33]. Using our notation, the mean-field approximation of the stationary filopodium length can
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Figure 3: (a) Schematic representation of the simplified molecular-based (off-lattice) model.
(b) Time evolution of the filament length X(t) computed by the minimal hybrid model [A1]–[A8]
(blue line) and the molecular-based model [B1]–[B9] (red line). Parameters are given in Table 2.

be written as follows [33]

Ls =
Dδ

vh

(

A− k−

k+

)

− D

hk+
. (2.7)

Using the parameter values given in Table 2, we obtain Ls = 0.98 µm. We can also see that
k−/k+ .

= 6.4 × 10−2 is much smaller than A = 5.3. In particular, the mean-field estimate (2.7) is
not significantly influenced by depolymerization.

3 Molecular-based modelling of actin dynamics

In this section, we introduce a molecular-based model which does not include any compartments. It
is schematically shown in Figure 3(a). The position of every G-actin molecule is modelled explicitly.
At time t, we have n(t) G-actin molecules in the filopodium at positions yi(t), i = 1, 2, . . . , n(t).
We choose a fixed time step ∆t and evolve yi(t) according to the discretized Brownian motion [8]:

yi(t + ∆t) = yi(t) +
√

2D∆t ξi, (3.1)

where ξi are normally distributed random numbers with zero mean and unit variance. The evolution
equation (3.1) replaces (2.2). In our simulations, we will use the time step ∆t = 10−6 sec. In
particular, the average step size during one time step

√
2D∆t (i.e. the square root of the mean

squared displacement) is equal to 0.79 nm for parameter values given in Table 2. This is much
smaller than the compartment size h = 50 nm of the minimal hybrid model which was introduced
in Section 2.1.

In order to have a fair comparison with the minimal hybrid model, we will postulate that the
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[B1] Put n(t + ∆t) = n(t). Compute the positions of all molecules
yi(t + ∆t), i = 1, 2, . . . , n(t + ∆t), at time t + ∆t using (3.1).

[B2] If yi(t+∆t), i = 1, 2, . . . , n(t+∆t), computed by (3.1) is greater than X(t)+h/2, then
yi(t + ∆t) = 2X(t) + h− yi(t)−

√
2D∆t ξi (mirror reflection).

[B3] If yi(t + ∆t), i = 1, 2, . . . , n(t + ∆t), computed by (3.1) is negative, then remove the
i-th molecule from the system.

[B4] If yi(t+∆t), i = 1, 2, . . . , n(t+∆t), computed by (3.1) is positive, then remove the i-th
molecule from the system with probability exp[−yi(t)yi(t + ∆t)/(D∆t)].

[B5] Introduce a new G-actin molecule to the system with probability given by (3.3). Its
initial position yj(t + ∆t) is a random number sampled from the distribution (3.4).
Here, the value of n(t + ∆t) is increased by one and j = n(t + ∆t).

[B6] Put X(t+∆t) = X(t). G-actin molecules satisfying yi(t+∆t) ∈ [X(t)−h/2, X(t)+h/2]
bind to the barbed end with probability k+∆t. If this happens, then the corresponding
molecule is removed from the solution and X(t + ∆t) is updated by adding δ.

[B7] Depolymerization occurs with probability k−∆t. It this happens, then n(t + ∆t) is
increased by one, a new G-actin molecule is introduced at yj(t+∆t) = X(t+∆t) where
j = n(t + ∆t), and X(t + ∆t) is updated by subtracting the monomer length δ.

[B8] Update X(t + ∆t) by subtracting v∆t (retrograde flow).

[B9] Continue with the step [B1] where the current time t is updated to t + ∆t.

Table 3: Pseudocode of one time step of the molecular-based model of actin dynamics in a filopodium.

filopodium end is at a fixed distance h/2 above the barbed end of the F-actin filament. Therefore,

yi(t) ∈
[

0, X(t) +
h

2

]

, for i = 1, 2, . . . , n(t). (3.2)

One time step of the molecular-based algorithm is presented in Table 3 as the algorithm [B1]–[B9].
The boundary conditions for the off-lattice model (3.1) are implemented in steps [B2]–[B5]. We
use the same boundary conditions as for the compartment-based model (2.2). We implement a
reflective boundary condition at X(t) + h/2 in the step [B2]. Conditions [B3]–[B4] implement the
adsorbing boundary condition at the bulk end {y = 0} which corresponds to the diffusive jump
A1 → ∅ in (2.2). Obviously, if yi(t + ∆t) computed by (3.1) is negative, then the molecule has
to be removed from the system (step [B3]). However, there is a chance that a molecule hit the
boundary during the finite time step even if yi(t+∆t) computed by (3.1) is positive; that is, during
the time interval [t, t + ∆t] the molecule might have crossed to yi negative and then crossed back
to yi positive again [2,6]. This case is implemented in the step [B4]. The introduction of molecules
from the bulk (which corresponds to the diffusive jump ∅ → A1 in (2.2)) is simulated in the step
[B5]. We introduce a new G-actin molecule to the system with the probability

2 A

h

√

D∆t

π
(3.3)

during each time step. If the molecule is introduced to the domain, then it is initialized at a
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randomly chosen position x distributed according to the probability distribution

√

π

4D∆t
erfc

(

x√
4D∆t

)

(3.4)

where erfc(z) = 2/
√

π
∫ ∞

z
exp(−s2)ds is the complementary error function. We will see in Section

4 that equations (3.3)–(3.4) correctly implement the diffusive jump ∅ → A1 in (2.2). They can be
considered as a special case of the two-regime method [10]. We assume that ∆t is chosen small
enough, so that (3.3) is significantly smaller than 1 and can be interpreted as a probability.

The movement of the barbed end of the F-actin filament is governed by polymerization/depoly-
merization of G-actin and retrograde flow in an identical way to that in Section 2.1. It is given in
the steps [B6]–[B8] in Table 3. To simulate the polymerization reaction in the step [B6], all G-actin
molecules in the interval [X(t)−h/2, X(t)+h/2] are considered. Each of these molecules can bind to
the barbed end with probability k+∆t (provided that ∆t is chosen small enough). Depolymerization
occurs with probability k−∆t in the step [B7]. In this case a new G-actin molecule is introduced
at X(t + ∆t) and X(t + ∆t) is updated by subtracting the monomer length. This method of
polymerization and depolymerization is specifically chosen to imitate the reaction kinetics that
are implemented in the hybrid method in Section 2.1. If a new G-actin molecule is added (resp.
removed) from the system, we have to update the total number of simulated molecules n(t + ∆t)
accordingly.

3.1 Illustrative computational results

We use the parameters from Table 2 and the time step ∆t = 10−6 sec. In particular, the probabilities
k+∆t

.
= 2.18×10−5 and k−∆t

.
= 1.4×10−6 are much smaller than 1 and the steps [B6]–[B7] correctly

implement the polymerization and depolymerization events. The value of (3.3) is 6.69× 10−2 and
can also be interpreted as a probability.

The time evolution of the filament length X(t) is presented in Figure 3(b). We compare it with
the result of the minimal hybrid model [A1]–[A8] (introduced in Section 2.1). Snapshots of spatial
distribution of G-actin molecules are presented in Figure 4(a). We visualize numbers of molecules
in cylinders of the height h. Therefore Figure 4(a) can be directly compared with Figure 2(b). The
stationary distribution of filament lengths obtained from a long time simulation of the molecular
based model [B1]–[B9] is presented in Figure 4(b). It was obtained by binning the time series of
the length 104 seconds. We compare the resulting distribution (green squares) with the stationary
distribution computed by the minimal hybrid model [A1]–[A8]. Since the minimal hybrid model
[A1]–[A8] is less computationally intensive, we can easily compute longer time series. In Figure
4(b), we present the stationary distribution estimated from the time series of the length 105 seconds
(gray histogram). We see that the distribution computed by the molecular-based model [B1]–[B9]
is shifted to the right of the distribution computed by the minimal hybrid model [A1]–[A8] by
approximately 5%.

3.2 Connections between models [A1]–[A8] and [B1]–[B9]

In Figures 2, 3 and 4, we observe that both models [A1]–[A8] and [B1]–[B9] give comparable results.
However, we also see that there is a quantitative difference between the results computed by these
two models in Figure 4(b). In this section, we will discuss what is the reason for this quantititative
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Figure 4: (a) Snapshots of spatial distribution of G-actin at four different times computed by the
molecular-based model [B1]–[B9] for the parameters given in Table 2 and ∆t = 10−6 sec. (b) The
stationary distribution of the filament length X for the parameters given in Table 2 computed by
algorithms [A1]–[A8] (gray histogram) and [B1]–[B9] (green squares).

difference. In Section 4, we will design a different hybrid model which better agrees with the
molecular-based algorithm [B1]–[B9].

It is relatively straightforward to estimate the expected steady state filament length Ls at the
mean-field level [33]. Let c(x) be the steady-state concentration of G-actin measured in the number
of molecules per unit of volume. Considering the domain definition (3.2) of the algorithm [B1]–
[B9], the steady-state concentration c(x) is defined for x ∈ [0, Ls + h/2]. The bulk concentration is
constant and equal to c(0) = A/V where A is given in Table 2, V = πa2h/4 and a is the filopodium
diameter (we use a = 150 nm in our simulations). The steady-state concentration c(x) is linear in
the region between the bulk x = 0 and the filament tip x = Ls, i.e.

c(x) =
A

V
− βx, for x ∈ [0, Ls] (3.5)

where β is a positive constant. At the steady state, the speed of the filament extension (due to
polymerization) is balanced by the depolymerization and the retrograde flow, i.e.

k+V c(Ls) δ = k− δ + v. (3.6)

The diffusive flux of G-actin at the filament tip also balances with the difference in polymerization
and depolymerization rates. That is

−D
∂c

∂x
(Ls) =

k+V c(Ls)− k−

V/h
.

Using (3.5) on the left hand side and (3.6) on the right hand side, we obtain

β =
vh

DV δ
.
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Substituting for β in (3.5) and evaluating the resulting function at x = Ls, we get

c(Ls) =
A

V
− vh

DV δ
Ls.

Substituting for c(Ls) into (3.6) and solving for Ls, we obtain the mean field approximation (2.7).
It is worth noting that we have Ls = 0.976 µm for our parameter values. In Figure 4(b), we see
that this estimate is closer to the results of the molecular-based model [B1]–[B9] than to the results
of the minimal hybrid model [A1]–[A8]. The main reason for the model difference is the additional
bias which the minimal hybrid model [A1]–[A8] introduces to modelling. It can be explained as
follows.

The motion of the filament tip according to the algorithm [A1]–[A8] depends on the concen-
tration in the last compartment. The mean-field approximation of the expected velocity of the
filament tip is given by

d〈X〉
dt

(t) = −v − k− δ + 〈AN(t)〉 k+ δ,

where 〈AN(t)〉 is the average number of G-actin molecules in the last compartment. This distribution
can be considered to be a step function approximation of continuous concentration of molecules
c(x, t). Assuming that there is minimal error in the expected value of G-actin at the center of
compartments, the expected velocity d〈X〉/dt will be overestimated if X(t) ∈ (N(t)h−h/2, N(t)h]
and underestimated if X(t) ∈ [(N(t)− 1)h, N(t)h−h/2). This is because the expected distribution
c(x, t) of G-actin monotonically decreases from the bulk to the filopodia tip. The most prominent
result of this compartment internal bias of the filament tip is the appearance of local maxima in the
likelihood to find the tip at steady state at the compartment edges. The filament tip experiences
a bias towards the compartment edges. This can be seen clearly in Figure 4(b) at 0.9µm, 0.95µm
and 1µm.

The secondary effect that the compartments have on the distribution of the filament tip at
steady state is to create a net bias of the tip in the direction of the filopodia base. A filament tip at
X(t) ∈ (N(t)h−ε, N(t)h] (for small ε > 0) may cross the boundary and create a new compartment
according to the step [A7]. Since the new compartment represents the expansion of the filopodia,
the G-actin copy number initialized in this new compartment is zero in (2.6). This sudden void of
G-actin molecules which the filament tip senses is filled at a rate describing the net flux of molecules
from one compartment to another compartment. Then the filament tip is more likely to migrate
back into its previous compartment due to retrograde flow. This bias results in the likelihood of
the filament tip to linger, overall, in compartments closer to the bulk for longer periods than would
be expected. In the simulations in this paper, this effect results in the expected filament tip being
5% shorter in the hybrid model [A1]–[A8] than in the molecular-based model [B1]–[B9]. The effect
of this bias would be reduced if the time taken for the new compartment to aquire the correct
copy number of G-actin molecules is reduced. This, in principle, could be achieved by reducing the
compartment length h. However, this would increase the computational intensity of the algorithm.
Moreover, there is also a limit to how small the compartments may be made before the correct
polymerization rates could not be simulated [7]. This means that there is a fundamental limit to
how accurately this compartment hybrid approach may describe the process that is being modelled.

Algorithm [B1]–[B9] does not have any of the aforementioned artefacts that are implicit with
the minimal hybrid model [A1]–[A8]. This is because the distribution of G-actin is described with a
continuous distribution and the rate of polymerization is always given as though it were at the center
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of a compartment (and therefore not experiencing compartment edge effects). The disadvantage
of the molecular-based model [B1]-[B9] is the computational effort involved in tracking G-actin
molecules through the entire domain for the sole purpose of knowing where the G-actin molecule
is when it is close to the filament tip. In the next section, we present a different hybrid model
which is based on the recently developed two-regime method [10]. It uses a compartment-based
regime (similar to the algorithm [A1]–[A8]) away from the filament tip to save time tracking G-actin
molecules. This compartment-based region is coupled to a molecular-based regime close to the tip
(as it is used in the algorithm [B1]–[B9]).

4 Two-regime method simulations

The modelling approaches [A1]–[A8] and [B1]–[B9] have advantages and disadvantages. On the one
hand, the minimal hybrid model [A1]–[A8] is simple and quick to implement. On the other hand,
it does not capture in the most accurate way the phenomena that are being modelled. The off-
lattice, microscopic model [B1]–[B9] described in Section 3 allows for a more precise measurement
at the cost of computing trajectories of all G-actin molecules. In this section, we will introduce
a different hybrid model which has the accuracy of the molecular-based model [B1]–[B9]. It will
be based on the two-regime method (TRM) which uses a compartment-based approach in regions
requiring less detail and a molecular-based approach in regions where accuracy is crucial to the
model [10]. The modeller chooses a region of interest ΩM within computational domain Ω to be
modelled with an off-lattice microscopic model and separates this part of the domain from the
rest of the domain with an interface I. The remaining parts ΩC of the computational domain are
then discretized into compartments (like that observed in Section 2.1). Each region is modelled
individually as described by the corresponding model. That is, molecules in ΩC jump according to
(2.2) between compartments and molecules inside ΩM change position each time step ∆t according
to (3.1). Correct coupling of the molecules migrating over the interface I is crucial to ensure that
the correct flux of molecules is modelled between ΩM and ΩC . In particular, molecules migrate
from a compartment that lies on the interface with the propensity

Φ =
2ANC

h

√

D

π∆t
, (4.1)

where ANC
is the number of molecules in the last compartment. They are placed into the micro-

scopic region ΩM a distance of x (from the interface) generated from a distribution (3.4). If ∆t is
sufficently small, then Φ∆t ≪ 1 can be interpreted as a probability of moving one molecule from
ΩC to ΩM during one time step ∆t (in particular, the TRM can also be used to justify equation
(3.3) in Section 3). All molecules that are incident on the interface from ΩM necessary loose their
position and become part of the compartment in ΩC on the other side of the interface.

Filament growth occurs, in our model, at the filament tip. It is apparent that a compartment-
based representation of free G-actin at the filament tip is inappropriate to model the reaction at
high precision. Modelling the filament growth with a molecular-based model which more accurately
simulates the local concentration of molecules was shown to produce quantitatively different results
in Figure 4(b). This, however, comes at the cost of simulating trajectories for each molecule
regardless of how close it is to the tip. In this section, we shall use the TRM to simulate the
diffusion of molecules away from the tip using a compartment-based approach but a microscopic,
off-lattice approach in a region around the tip. The geometry of our TRM model is schematically
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2
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Figure 5: (a) Schematic of the geometry of the TRM simulation which is used in this manuscript.
(b) Schematic of an alternative TRM geometry which would be useful for modelling of coupling of
the filopodium with the cytosol.

shown in Figure 5(a). Following (3.2), we choose

Ω =

[

0, X(t) +
h

2

]

, ΩM (t) =

[

I(t), X(t) +
h

2

]

, ΩC(t) =
[

0, I(t)
]

, (4.2)

where I(t) is the position of the TRM interface at time t, I = ∂ΩM ∩ ∂ΩC and Ω = ΩM ∪ ΩC . In
particular, the presented hybrid model is the extension of the TRM approach presented in [10] to
a scenario which includes a time dependent interface I(t). We will consider that I(t) can only have
discrete values

I(t) = NC(t)h, (4.3)

where NC(t) is the number of compartments in ΩC and h is the compartment length. One iteration
of the TRM algorithm is presented in Table 4 as the algorithm [C1]–[C8]. Since the compartment-
based part of the model is simulated by an event-based algorithm, the current time in ΩC is no
longer a multiple of ∆t. We will denote it as tC . It is updated using (2.3) in the step [C1].
Molecular-based events in ΩM are still updated at multiples of ∆t. We will keep track of them
using the time variable

tM ∈ {0, ∆t, 2∆t, 3∆t, . . . }, (4.4)

which is the time when the last update of variables corresponding to the molecular-based regime
ΩM took place.

Initially, the model is identical to the molecular-based model in Section 3, i.e. I(t) = 0, NC(t) =
0, ΩM = Ω and τ = ∞. As the filament grows, precise knowledge of the trajectories of molecules
close to the bulk become obsolete. We replace the space behind the filament with compartments,
i.e. we will describe G-actin in ΩC in terms of NC(t) numbers Ai(t), i = 1, 2, . . . , NC(t), where Ai(t)
describes the number of G-actin molecules in the i-th compartment at time t. When the distance
from the filament tip X(t) to the TRM interface I(t) (or initially the bulk) reaches a critical value,
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[C1] Compute the time when the next diffusive jump (4.6) occurs as tC + τ , where tC is the
current time in ΩC and the time step τ is computed by (4.7).

[C2] If tC + τ ≤ tM + ∆t,
then use a uniformly distributed random number to compute which diffusive jump (4.6)
occurs at time tC + τ . Update the numbers of G-actin molecules in the corresponding
compartments. If the selected jump is a “jump into ΩM”, then reduce ANC

by 1, but wait
to initialize this molecule in the molecular regime ΩM until the next molecular-based
time step. Go to step [C1] where the current time in ΩC is updated to tC + τ .

[C3] If tC + τ > tM + ∆t,
then perform steps [B1]–[B4] and [B6]–[B8] on all molecules in ΩM . It should be noted
that yi(t) and yi(t + ∆t) in steps [B3] and [B4] are replaced by yi(tM ) − I(tM ) and
yi(tM + ∆t) − I(tM ), where I(tM ) is the current position of the inter-regime interface.
If NC ≥ 1, then the molecules which leave ΩM in steps [B3] and [B4] are not removed
from the system but rather placed in the compartment that is at this interface, i.e. they
increase ANC

.

[C4] If NC ≥ 1, then the molecules that require initiation into the molecular-based regime
are initiated a distance x from the interface I(tM ) according to the distribution (3.4).

[C5] If NC = 0, then the step [B5] is performed.

[C6] If the distance between the filament tip and the interface X(tM + ∆t) − I(tM ) reaches
a critical value (we take this critical value to be 8h), then I(tM + ∆t) = I(tM ) + h,
NC(tM + ∆t) = NC(tM ) + 1 and ANC(tM+∆t) is given by (4.5).

[C7] If the step [C6] resulted in a shift of the interface, or the step [C3] resulted in a change
in ANC

, then update τ by (4.9).

[C8] Continue with the step [C2] where tM is updated to tM + ∆t.

Table 4: Pseudocode of one iteration of the TRM model of actin dynamics in a filopodium.

a new compartment is created at the interface by counting the copy number of G-actin inside the
region of distance h from the interface and considering this to be the new compartment. In the
step [C6], the movement of the interface is implemented using the molecular-based time steps (4.4),
i.e. the TRM interface is shifted by I(tM + ∆t) = I(tM ) + h, NC is increased by 1 and the copy
number of G-actin molecules in the new final compartment that is created is equal to a count of
G-actin in the molecular-based region which has just been engulfed by the interface

ANC(tM+∆t) =
∣

∣

∣

{

i
∣

∣ yi(t) ∈ [I(tM ), I(tM + ∆t)]
}

∣

∣

∣
. (4.5)

We take the critical distance between I(t) and X(t) in the step [C6] to be 8h since we found this to
be an appropriate length such that the filament tip does not retract back over this interface over
the course of the simulation.

We simulate the compartment-based region ΩC identically to that in Section 2.1. However,
there is just diffusive jumping in this region since it does not cover the filament tip, i.e. the model
of G-actin in ΩC reads as follows

∅
d A−→←−
d

A1

d−→←−
d

A2

d−→←−
d

A3

d−→←−
d

. . .
d−→←−
d

ANC

Φ−→ “jump to ΩM”, (4.6)
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where d = D/h2, Φ = ΦANC
and Φ is given by (4.1). This is implemented in the steps [C1] and

[C2]. Using a uniformly distributed random number r ∈ (0, 1), we can compute time to the next
diffusive event by (2.3). Since the current time in ΩC is tC , formula (2.3) can be rewritten as

τ =
1

α0(tC)
log

(

1

r

)

, (4.7)

where the total propensity function corresponding to (4.6) is given by

α0(tC) = d A + dANC
(tC) + Φ(tC) + 2d

NC−1
∑

i=1

Ai(tC), (4.8)

where Φ ≡ Φ(tC) is given by (4.1). If a diffusion jump occurs before tM + ∆t, then the step [C2]
is performed. Simulation of the off-lattice region and polymerization-depolymerization kinetics is
done in a similar way to Section 3 in the step [C3]. This step will be performed if a molecular-based
time step occurs before the next compartment-based event. Here, time t is replaced by tM . For
example, the formula (3.1) is modified to

yi(tM + ∆t) = yi(tM ) +
√

2D∆t ξi,

i.e. the positions of molecules in ΩM are updated at multiples of ∆t given by (4.4) in the step
[C3]. The interface between ΩM and ΩC is modelled using the TRM [10] in the steps [C2]–[C4]
except for the initial growth stage (step [C5]) of the model where there are no compartments in
the filopodia, in which case, the boundary condition with the bulk that is described in Section 3 is
used for consistency.

If the step [C6] results in a shift of the interface, or the step [C3] results in a change in ANC
,

then the propensity function (4.8) will change and the time step τ in the compartment-based part
ΩC will have to be updated in the step [C7] by

τ :=
τ αold

0

αnew
0

+ (tM + ∆t− tC)

(

1− αold
0

αnew
0

)

, (4.9)

where αold
0 and αnew

0 are the total propensity functions computed using (4.8) before the most recent
[C3] step and after the most recent [C6] step, respectively [10,14].

4.1 Illustrative computational results

Using the same parameters that were used in the previous sections, we present the results computed
by the TRM algorithm [C1]–[C8] in Figure 6. We compare them with the results computed by the
minimal hybrid model [A1]–[A8] and the molecular-based algorithm [B1]–[B9]. Since molecules
inside the compartments need to be updated rarely (only when they jump from compartment to
compartment) significant savings in computational effort can be made whilst still achieving the
same accuracy as the molecular-based model [B1]–[B9].

Our illustrative simulations were implemented in Matlab R2012a using an AMD Athlon 64
X2 dual core processor 5200+. To run the molecular-based algorithm [B1]–[B9] until a maximum
time of 103 sec, just over 12 hours of simulation time was required. On the same computer, the
TRM simulation (algorithm [C1]–[C8]) took just under 9 hours for a saving of around 25%. This
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Figure 6: Distribution of the filament length X computed by the algorithms [A1]–[A8] (red circles),
[B1]–[B9] (green squares) and [C1]–[C8] (gray histogram). Parameters are given in Table 2.

number will be larger or smaller depending on the simulation parameters. To explain where the
computational savings come from, we present a more detailed breakdown of the computational
effort in Table 5. We present times spent in different subroutines of the computer implementations
of algorithms [C1]–[C8] and [B1]–[B9].

It is not surprising that a large portion of observed computational saving was from diffusion of
G-actin outside of the region of interest. G-actin jumps from compartment to compartment are rare
in the TRM each timestep ∆t, whereas G-actin that is modelled using a molecular-based approach
[B1]–[B9] requires constant updating. The time spent simulating the diffusion of molecules in the
region of interest ΩM , however, did not change because the same numerical technique was used
for these molecules in both algorithms. There was no saving in time required to polymerize and
depolymerize at the filament tip since this is done using the same molecular-based technique in
both simulations, and as already discussed, this is unavoidable if high accuracy is demanded of
the simulation. A small saving was made at the interface of the filopodia with the bulk since
this interface in the TRM model is a compartment boundary which is simpler to implement. For
reaction-diffusion processes which involve heavy computational effort in large regions that are of less
significant biological interest, the TRM potentially could reduce the simulation of such processes
by large amounts whilst still retaining the accuracy of the simulation where it is needed [10]. For
example, in longer filopodia, which can grow to 3-4 µm [32] the time savings of the TRM method
could be significantly larger than 25% (because a larger portion of filopodia would be treated via
a compartment based model).
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Computational process TRM algorithm Molecular-based Model Saving
[C1]–[C8] (hrs) [B1]–[B9] (hrs) (%)

Flux to/from bulk 1.79 2.68 33

Diffusion in ΩM 2.77 2.76 0

Diffusion in ΩC 0.06 2.36 97

Filament tip kinetics/polymerization 4.21 4.27 1

Other 0.12 0.12 0

Table 5: Breakdown of the computational time required for 103sec of simulation using the TRM
algorithm [C1]–[C8] from Section 4 and the molecular-based model [B1]–[B9] from Section 3. The
parameters that were used in these simulations can be found in Table 2.

5 Discussion

In this paper we have presented three different approaches to stochastic reaction-diffusion simula-
tions for a simple model of actin filament dynamics in filopodia. In the first approach we consider
a hybrid modelling technique which was used in the literature [30, 32]. We developed the minimal
hybrid model [A1]–[A8] which contains main features of the actin dynamics. The polymerization
at the barbed end grows the filament while depolymerization and retrograde flow act to reduce the
length of the filament until a steady state is reached. G-actin is allowed to diffuse in a discretize
domain by means of a random walk from compartment to compartment. Polymerization may occur
when the tip of the filament is inside the same compartment as the reacting G-actin. This model
is less computationally intensive than other presented approaches.

The second model [B1]–[B9] is a more detailed off-lattice molecular-based model whereby each
G-actin monomer diffuses in continuous space by means of Gaussian distributed displacements at
each time step. The advantage of this approach is that one can use a more complex description
of polymerization and depolymerization events. Since we wanted a “fair comparison” between
algorithms [A1]–[A8] and [B1]–[B9], we used relatively straightforward implementation of the bio-
chemistry at the barbed end of the actin filament. However, the model [B1]–[B9] could be further
enhanced by considering a suitable reaction radius [21] or binding and unbinding radia [1, 2] cor-
responding to actin polymerization and depolymerization events. This is the main strength of the
molecular-based approaches of the form [B1]–[B9]. Their disadvantage is that they are often more
computationally intensive. This is because, the accuracy of the simulation is derived from the
precision of the distribution of monomers and therefore their potential to polymerize. The cost of
this knowledge is that these molecules are tracked throughout the whole domain regardless of their
likelihood to polymerize (that is, regardless of their proximity to the filament tip). This tracking
of every single molecule in continuous space can lead to larger computational times.

The third approach that is presented in this paper utilises a molecular-based model in the region
around the filament tip but models monomers that are not in the proximity of the tip as random
walkers on a lattice so that significant computational time may be spared. The coupling of the on-
and off-lattice regions is done using the TRM [10]. It was shown that the model results were similar
to a fully molecular-based model but computational time could be improved by not tracking all
particles in continuous space at each time step.

For stochastic reaction-diffusion models whereby a particular region of interest exists that drives
the system, each of the presented methods may be used. Compartment-based models are quick
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and simple but this is at the cost of loosing some accuracy in the simulated results, which may
become problematic especially in the presense of steep spatial gradients of the cytosolic chemicals.
Confidence can be given to molecular-based models if the time step is small enough. The TRM may
offer a compromise between performance and accuracy by carefully choosing regions in which higher
precision in the model is necessary. However, if one needs to simulate very large actin networks,
such as micron-size three-dimensional patches of a lamellipodium [19], the computational efficiency
of the less accurate compartment based algorithms may remain indispensable at least in the near
future.

In Section 4, we presented only one possible way to make use of the TRM [10]. Another
application would be to improve the modelling of coupling of filopodia with the bulk as it is
schematically shown in Figure 5(b). In Section 3, the boundary condition at the bulk assumes
that there is a compartment outside the off-lattice domain in the bulk that has the expected
number of molecules Ā. Of course, in reality the number of molecules in this compartment would
necessarily fluctuate, therefore it would be possible to model the bulk using the TRM over a region
that penetrates into the bulk [11]. We did not introduce this complication because we wanted to
model the bulk boundary in the same way as in the minimal hybrid model [A1]–[A8] to enable easier
comparison of different modelling approaches. We focused on the case of moving interface I(t) which
is itself a generalization of the TRM and can be non-trivial in more complicated situations [18].
Another possible way to accelerate simulation would be to couple molecular-based or compartment-
based models with macroscopic partial differential equations in the bulk or near the bulk end of a
filopodium [9,12,13,22,28].
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