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Abstract

Properties of divisor functions σk (n), defined as sums of k-th powers of all divisors of n,
are studied through the analysis of Ramanujan’s differential equations. This system of
three differential equations is singular at x = 0. Solution techniques suitable to tackle
this singularity are developed and the problem is transformed into an analysis of a
dynamical system. Number theoretical consequences of the presented dynamical
system analysis are then discussed, including recursive formulas for divisor functions.
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1 Introduction
In 1916, Ramanujan [8] showed that certain arithmetic functions satisfy a system of three
singular differential equations. Denoting the scaled Eisenstein series by

U�(x) = c�
∞∑

n=1
σ2�−1(n)xn, (1.1)

where � ∈ N, |x| < 1, σk (n) = ∑
d|n dk and c� is a scaling constant, Ramanujan formulated

his differential equations in terms of three dependent variables

P = 1 − U1, Q = 1 + U2, R = 1 − U3 (1.2)

with the choice of scaling constants

c1 = 24, c2 = 240, c3 = 504 (1.3)

as the following system

x
dP
dx

= P2 − Q
12

, (1.4a)

x
dQ
dx

= PQ − R
3

, (1.4b)

x
dR
dx

= PR − Q2

2
. (1.4c)

System (1.4)may be derived alternatively through a triple product identity and a quintuple
product identity [3], and that approach was later extended to derive similar differential
equations for Eisenstein series of level 2 [10]. Ramanujan’s differential equations were
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previously mapped into a first order Riccati differential equation by [5,6], with the solu-
tions expressed in terms of hypergeometric functions after a sequence of transformations.
Along these lines, Zudilin [12] provides further connections between Eisenstein series
and hypergeometric functions. A similar method for cubic theta functions was given by
Huber [7]. In the present paperwe take a different approach, utilising a series development
about the singular point x = 0. One benefit of the presented approach is that we are able
to extract information about the Eisenstein series and divisor functions through recursive
calculation of the series coefficients.
The paper is organized as follows. In Sect. 2, we rewrite Ramanujan’s system (1.4) in

terms of variables U1, U2, and U3 defined by (1.1) and derive recursive relation for their
solutions. It is natural to wonder if there are other solution branches, and in Sect. 3, we
transform this singular systemof differential equations to a regular systemby changing the
independent variable from x to t = − log x. The large-t behaviour of the resulting system is
then investigated, with different steady sates corresponding to different initial conditions
at x = 0 for the original system. We present the number theoretical consequences of our
analysis in Sect. 4, and conclude with a discussion of the obtained results in Sect. 5.

2 Recursive formula to solve Ramanujan’s differential equations
We outline the series development which will prove useful in solving Ramanujan’s differ-
ential equations. It will be helpful to work in terms of the functionsU� rather than P,Q, R,
and substituting (1.2) into (1.4), we obtain

x
dU1
dx

= 2U1 + U2 − U2
1

12
, (2.1a)

x
dU2
dx

= −U1 + U2 + U3 − U1U2
3

, (2.1b)

x
dU3
dx

= U1 + 2U2 + U3 − U1U3 + U2
2

2
. (2.1c)

Denoting the vector U = [U1, U2, U3]T, this system of equations can be equivalently
described in a matrix form as

x
dU
dx

= AU + b(U), (2.2)

where matrix A ∈ R
3×3 and vector-valued function b : R3 → R

3 are defined by

A = 1
12

⎛

⎜⎝
2 1 0

−4 4 4
6 12 6

⎞

⎟⎠ (2.3)

and

b(u) = 1
12

⎛

⎜⎝
−u21

−4u1u2
6u22 − 6u1u3

⎞

⎟⎠ for u =
⎛

⎜⎝
u1
u2
u3

⎞

⎟⎠ . (2.4)

We observe that the matrix A has eigenvalues 1 (with multiplicity 1) and 0 (with multi-
plicity 2). The eigenvector corresponding to eigenvalue 1 is proportional to

c = [c1, c2, c3]T = [24, 240, 504]T, (2.5)

i.e., it contains information about scaling constants (1.3) used by Ramanujan.
Considering the differential equation system (2.2) on its own in the context of the theory

of differential equations, the first two fundamental questions would concern the existence
and uniqueness of its solutions, i.e.:
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(i) Does system (2.2) have a solution?
(ii) If a solution exists, is it unique?

The answer to the first question is trivial, because the system (2.2) is derived for U1, U2,
and U3 defined by (1.1), i.e. there is at least one solution given by series (1.1). The second
question is more important here, because if we can prove the uniqueness of solutions
to the differential equation system (2.2), then any properties of solutions which can be
obtained by analyzing differential equations (2.2) will also immediately give us properties
of arithmetic functions (1.1).
To obtain uniqueness of solutions, the standard Picard theorem [4] for first-order ordi-

nary differential equations can be applied, because the right hand side of (2.2) is Lipschitz
continuous for any interval not containing x = 0. That is, if we specify the value of U(x0)
at a given point x0 �= 0 as the initial condition of the system (2.2), then the application
of the Picard theorem would apply the existence and uniqueness of solutions of (2.2) on
an interval containing x0. Unfortunately, the knowledge of U(x0) at x0 �= 0 requires one
to know some non-trivial information about functions U1, U2, and U3 defined by (1.1).
Thus, we consider the singular case, x = 0, as our initial condition, for which the standard
Picard theorem is not applicable, but the value ofU(0) can be easily obtained. Substituting
x = 0 in definition (1.1), we get

U1(0) = U2(0) = U3(0) = 0. (2.6)

Considering our differential equation system (2.2) with initial condition (2.6), we observe
that it has at least two solutions, one of them is a function of U1, U2, and U3 defined
by (1.1) and the other solution is the trivial solution where all functions U1, U2, and
U3 are identically equal to zero. This non-uniqueness is caused by the singularity which
the differential equation system (2.2) has on the left hand side when x = 0, making the
Picard theorem inapplicable. To look for all possible analytic solutions, we assume that
the solution of (2.2) is written as the series expansion

U(x) =
∞∑

n=1
a(n) xn, (2.7)

where a(n) ≡ [a1(n), a2(n), a3(n)]T are coefficients to be determined. Substituting (2.7)
into (2.2), we obtain

∞∑

n=1
(nI − A) a(n) xn = b

( ∞∑

n=1
a(n) xn

)
, (2.8)

where I is the identity matrix. Since matrix A, given by (2.3), has eigenvalues 0 (with
multiplicity 2) and 1 (with multiplicity 1), matrix nI − A on the left hand side of (2.8)
has eigenvalues n (with multiplicity 2) and n − 1 (with multiplicity 1) for n = 1, 2, 3, . . . .
Moreover, the eigenvector corresponding to the eigenvalue n−1 is proportional to c given
by (2.5).
Next, we compare coefficients in front of the corresponding terms xn on the left and

right hand sides of Eq. (2.8). Using (2.4), we observe that b is quadratic. Therefore the
right hand side of Eq. (2.8) has no terms of the lowest order, x1, while the corresponding
coefficient on the left hand side yields

(I − A) a(1) = 0. (2.9)
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Since matrix I − A has eigenvalue 0 (with multiplicity 1), we can express the solutions of
this system as

a(1) = α c, (2.10)

where c is given by (2.5) and α ∈ R is a constant. Formula (2.10) includes both solutions
which we are already aware of: the trivial zero solution corresponds to α = 0 and the
solution given by (1.1) corresponds to α = 1. We also observe that there is a possibility
that the system could have solutions for other values ofα. To show that this is indeed the
case, we consider the coefficients in front of the corresponding terms x2 on the left and
right hand sides of Eq. (2.8). We have

(2I − A) a(2) = 1
12

⎛

⎜⎝
−a1(1)2

−4a1(1)a2(1)
6a2(1)2 − 6a1(1)a3(1)

⎞

⎟⎠ = b(a(1)).

Since matrix 2I − A has eigenvalues 2 and 1, it is invertible. Thus, we have

a(2) = (2I − A)−1 b(a(1)) = (2I − A)−1 b(α c), (2.11)

which gives us α-dependent solutions for coefficient a(2). Repeating this for all orders xn,
we arrive at the following lemma.

Lemma 1 The system of differential equations (2.2) with the initial condition (2.6) has the
one-parameter family of series solutions parametrized by α ∈ R, where the first coeffi-
cient a(1) is given by (2.10), the second coefficient a(2) by (2.11) and other coefficients can
be obtained iteratively by

a(n) = 1
12

(nI − A)−1
n−1∑

j=1

⎛

⎜⎝
− a1(j) a1(n − j)

− 4 a1(j) a2(n − j)
6 a2(j) a2(n − j) − 6 a1(j) a3(n − j)

⎞

⎟⎠ . (2.12)

We note that Formula (2.12) reduces to (2.11) for n = 2. In Fig. 1, we plot functionsU1(x)
andU2(x) for representative values of parameterα. A qualitatively similar plot can also be
obtained forU3(x) (graph not shown).We observe that functionsU�(x), for � = 1, 2, 3, are
increasing functions of x with U�(x) → ∞ as x → 1−. For a fixed value of x, the value of
U�(x) is also an increasing function of parameterα.We use the first one hundred terms in
the series expansion (2.7) to approximateU(x) numerically. Considering additional terms
would not change the computed result (to themachine precision) in the visualized interval
x ∈ [0, 0.5].
Although Lemma1 states that there is a one-parameter family of solutions, all these

solutions are self-similar and can be collapsed into one by rescaling the independent
variable x accordingly. This is formalized in the next lemma.

Lemma 2 All analytic solutions of the system of differential equations (2.2) with initial
condition (2.6) are given as

U1(αx), U2(αx), U3(αx), (2.13)

where U1, U2, and, U3 are functions defined by (1.1) and α ∈ R.

The trivial zero solution is recovered from the solution Formula (2.13) for α = 0. Increas-
ing α from 0 to 1, the solution Formula (2.13) connects the zero solution with Ramanu-
jan’s solution given by (1.1). Lemma2 is a statement of uniqueness of solutions which will
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Fig. 1 a Function U1(x) obtained by calculating its series expansion (2.7) using iterative Formula (2.12) given
in Lemma 1 for several different values of parameter α. b Results for function U2(x), with units on the y-axis
expressed as multiples of 103

help us to translate some properties of the differential equation system into properties
of series (1.1) and divisor functions. The iterative Formula (2.12) in Lemma1 will give
us an iterative formula for divisor functions. We will discuss such number theoretical
consequences in Sect. 4.
We note that the statement of uniqueness of solutions in Lemma2 would not hold if we

replaced our condition that solutions are analytic with a weaker condition that solutions
were only differentiable. Indeed, a solution given by (2.13) with α = 1 for x ≥ 0 could be
continued for x < 0 by (2.13) for any other value of parameter α ∈ R.

3 Dynamical system analysis of Ramanujan’s differential equations
Through the series development of Sect. 2 we have been able to use series in a neigh-
bourhood of x = 0 in order to extract salient features of the solutions to Ramanujan’s
differential equations, identifying a one-parameter family of solutions (2.13) to Eq. (2.2).
Due to the singular nature of these equations, it is not clear that the only solutions will
originate with U�(0) = 0 for � = 1, 2, 3, or if there are other solution branches which
are fundamentally singular. In this section, we change the independent variable and treat
Ramanujan’s differential equations as a dynamical system which evolves toward a condi-
tion as x → 0+.
Consider the system of differential equations (2.2) and transform the independent vari-

able x to t by using t = − log x. Then the limit x → 0+ corresponds to t → ∞. We
have

dV
dt

= −AV − b(V), (3.1)

where V ≡ V(t) = U(exp(−t)), matrix A ∈ R
3×3 is given by (2.3), and vector-valued

function b : R3 → R
3 is given by (2.4). Initial conditions (2.6) transform to limiting values

of function V = [V1, V2, V3] at t = ∞, namely

lim
t→∞V�(t) = 0, for � = 1, 2, 3. (3.2)

To get some insights into this limiting behaviour, we investigate the steady states of our
differential equation system (3.1). To do this, we denote the Jacobianmatrix of the vector-
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valued function b in definition (2.4) by

J (u) = 1
12

⎛

⎜⎝
−2u1 0 0
−4u2 −4u1 0
−6u3 12u2 −6u1

⎞

⎟⎠ . (3.3)

Solving the steady state equations

AV + b(V) = 0

corresponding to the system (3.1) and analyzing the stability of the steady states found,
we obtain the following lemma.

Lemma 3 All steady state solutions of the differential equation system (3.1) are given as a
curve, parametrized by β ∈ R, in the form

s(β) =
⎛

⎜⎝
s1(β)
s2(β)
s3(β)

⎞

⎟⎠ =
⎛

⎜⎝
1 − β

−(1 − β2)
1 − β3

⎞

⎟⎠ = (1 − β)

⎛

⎜⎝
1

−(1 + β)
1 + β + β2

⎞

⎟⎠ . (3.4)

Denoting V = s(β) + v and linearizing the system (3.1) around the steady state (3.4)
corresponding to β ∈ R, we obtain a linear system of differential equations,

dv
dt

= −(
A + J (s(β))) v,

where the matrix −(
A + J (s(β))) has eigenvalues 0 (with multiplicity 2) and −β with

(multiplicity 1). The eigenvector corresponding to the eigenvalue −β is given as
⎛

⎜⎝
1

10β
21β2

⎞

⎟⎠ = 1
24

⎛

⎜⎝
c1

β c2
β2c3

⎞

⎟⎠ . (3.5)

In Fig. 2, we plot the steady state curve for a range of positive values of parameterβ .
We visualize it as a black dotted-dashed line in Fig. 2a which shows its projection to the
(V1, V2)-plane. We also plot solutions converging to a representative selection of steady
states (highlighted as black dots). Considering β = 1 in (3.4), we obtain the zero steady
state s(1) = (0, 0, 0)T corresponding to limiting values (3.2). It has one linearly stable
direction (with eigenvalue -1) and the corresponding eigenvector (3.5) is proportional to
vector c given by (2.5), which is also the first coefficient of the series solution (2.7), see
Eq. (2.10). This series solution is visualized as the red trajectory in Fig. 2—two different
branches correspond to positive and negative values of parameter α. We note that all
solutions converging to s(1) = (0, 0, 0)T are given by Lemma2, which means that they are
all represented by the red line in Fig. 2—they only correspond to different re-scalings of the
independent variable x. In fact, if we included α in the transformation of the independent
variable x to t by t = − log(αx), we would obtain the same differential equation (3.1).
In Fig. 2, we also plot solutions converging to the steady states s(β) for β �= 1. They are

visualized as blue lines. Their long time behaviour satisfies

lim
t→∞V(t) = s(β), (3.6)

where s(β) is given by (3.4). Transforming back to the original variable x = exp(−t), the
limiting condition (3.6) is equivalent to the initial condition

U(0) = s(β). (3.7)
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Fig. 2 a Projection of steady states (3.4) to the (V1 , V2)-plane for values of β ∈ [0.2, 1.8] (black dotted-dashed
line). Solutions (2.13) given by Lemma 2 converging to s(1) = (0, 0, 0)T (red line). Representative solutions for
values β �= 1 obtained by Lemma 4 (blue lines) converging to s(β) (black circles). b Results visualized in the
(V1 , V2 , V3)-phase space

In particular, we generalize (2.7) to the series solution

U(x;β) = s(β) +
∞∑

n=1
a(n;β) xnβ , (3.8)

where a(n;β) ≡ [a1(n;β), a2(n;β), a3(n;β)]T are coefficients to be determined. Substitut-
ing (3.8) into (2.2) and using A s(β) + b(s(β)) = 0, we obtain

∞∑

n=1

(
nβI − A − J

(s(β))
)
a(n;β) xnβ = b

( ∞∑

n=1
a(n;β) xnβ

)
, (3.9)

which is the generalization of (2.8) to the case β �= 1. Using Lemma3, matrix−A− J (s(β))
has eigenvalues−β (withmultiplicity 1) and 0 (withmultiplicity 2). Thus thematrix nβI−
A−J (s(β)) on the left hand side of (3.9) has eigenvaluesnβ (withmultiplicity 2) and (n−1)β
(with multiplicity 1) for n = 1, 2, 3, . . . . Comparing coefficients of the lowest order xβ on
the left and right hand sides of Eq. (3.9), we generalize (2.9) to(

βI − A − J
(s(β))

)
a(1;β) = 0.

Sincematrix βI−A−J (s(β)) has eigenvalue 0 (withmultiplicity 1) with the corresponding
eigenvector proportional to (3.5), we can express the solutions of this system as

a(1;β) = α

⎛

⎜⎝
c1

β c2
β2c3

⎞

⎟⎠ . (3.10)

Moreover, we can generalize Lemma1 to the following result giving us a recursive formula
for finding series solutions (3.8) for general values of parameterβ .

Lemma 4 The system of differential equations (2.2) with the initial condition (3.7) has
the one-parameter family of series solutions (3.8) parametrized by α ∈ R, where the first
coefficient a(1;β) is given by (3.10) and other coefficients can be obtained iteratively by

a(n;β) = 1
12

(
nβI − A − J

(s(β))
)−1

×
n−1∑

j=1

⎛

⎜⎝
− a1(j;β) a1(n − j;β)

− 4 a1(j;β) a2(n − j;β)
6 a2(j;β) a2(n − j;β) − 6 a1(j;β) a3(n − j;β)

⎞

⎟⎠ .
(3.11)
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Considering β = 1, Lemma4 reduces to Lemma1, i.e. a(n) in (2.12) is equal to a(n; 1)
given by (3.11). Considering general values of β , we use the recursive Formula (3.11) in
Lemma4 for α = 1 and α = −1 to obtain solutions converging to s(β) which are
visualized in Fig. 2 as blue trajectories. The solution for any other positive (resp. negative)
value of α corresponds to the case α = 1 (resp. α = −1), because the parameter α rescales
the independent variable in a similar way to what we have already observed in Lemma2
for the case β = 1. In Fig. 2b, we use a higher number of representative blue trajectories
(than in Fig. 2a) and observe that we have generalized the scaled Eisenstein series (1.1)
(red line in Fig. 2b) to the blue surface in the (V1, V2, V3)-phase space (the surface swept
by blue trajectories).

4 Number theoretical consequences
The evaluation of sums of the form

∑
σ (m)σ (n) has attracted interest in the literature

[1,2], and we use our results to calculate certain sums of this type in terms of the coef-
ficients of solutions to Ramanujan’s differential equations. Considering α = 1 in For-
mula (2.12) and comparing with (1.1), we obtain the following iterative relation between
divisor functions⎛

⎜⎝
σ1(n)
σ3(n)
σ5(n)

⎞

⎟⎠ =
⎛

⎜⎝
1/c1 0 0
0 1/c2 0
0 0 1/c3

⎞

⎟⎠ (A − nI)−1

×
n−1∑

j=1

⎛

⎜⎝
48 σ1(j) σ1(n − j)

1920 σ1(j) σ3(n − j)
6048 σ1(j) σ5(n − j) − 28800 σ3(j) σ3(n − j)

⎞

⎟⎠ , (4.1)

where c� is given by (2.5). This formula can be iteratively used to compute the values
of σ1(n), σ3(n), and σ5(n). It can also be rewritten in the form of convolution identities.
Following Ramanujan’s notation [8], we denote

Σk,s(n) =
n∑

j=0
σk (j) σs(n − j), (4.2)

where the definition of σk (n) is extended to n = 0 by σk (0) = ζ (−k)/2, namely

σ2�−1(0) = (−1)�

c�
, for � = 1, 2, 3,

where c� is given by (2.5). Multiplying the iterative Formula (4.1) by the diagonal matrix
with vector [c1, c2, c3] on the diagonal, then by matrix A − nI and using (2.4), we obtain

⎛

⎜⎝
−6 n 5 0
0 −10 n 7
0 0 −7 n

⎞

⎟⎠

⎛

⎜⎝
σ1(n)
σ3(n)
σ5(n)

⎞

⎟⎠ =
⎛

⎜⎝
12Σ1,1(n)
80Σ1,3(n)

84Σ1,5(n) − 400Σ3,3(n)

⎞

⎟⎠ . (4.3)

Thefirst two lines of this vector systemyield formulas forΣ1,1(n) andΣ1,3(n) which appear
in Table IV of Ramanujan’s paper [8]. The last line is also consistent with his results. In
the same table, he writes

Σ1,5(n) = 10 σ7(n) − 21 n σ5(n)
252

, Σ3,3(n) = σ7(n)
120

.

Using this result to calculate 84Σ1,5(n)− 400Σ3,3(n), we obtain the last line of our vector
system (4.3).
Considering general values of the parameter β > 0, we can also connect the coefficients

calculated by the general recursive Formula (3.11) with divisor functions.



R. Erban, R. A. Van Gorder Res. Number Theory            (2021) 7:25 Page 9 of 10    25 

Lemma 5 Let β > 0. Consider the system of differential equations (2.2) with the initial
condition (3.7). Assume α = β and consider the solutionU(x;β) given by series (3.8) which
is calculated using Formula (3.11) in Lemma4. Then the coefficients a(n;β) are related to
divisor functions by

σ2�−1(n) = a�(n;β)
c� β�

, for � = 1, 2, 3. (4.4)

Relation (4.4) implies

U(x) = U(x; 1) =
⎛

⎜⎝
1/β 0 0
0 1/β2 0
0 0 1/β3

⎞

⎟⎠

⎛

⎜⎝
U1(x1/β ;β) − s1(β)
U2(x1/β ;β) − s2(β)
U3(x1/β ;β) − s3(β)

⎞

⎟⎠ ,

which connects the general solution U(x;β) for α = β with the scaled Eisenstein series
U(x) given by (1.1). Consequently, the recursive Formula (3.11) in Lemma4 can also be
rewritten as a recursive formula for calculating σ1(n), σ3(n), and σ5(n), in a similar way as
we did when deriving (4.1) in the special case β = 1.

5 Discussion
Wehave employed both a series development and a dynamical systems approach to better
understand solutions of Ramanujan’s equations (1.4). Our results imply the existence of a
one-parameter family of solutions to these equations which comprise a similarity scaling
of the scaled Eisenstein series (1.1), in addition to another class of solutions which is not
zero at x = 0. This latter class of solutions can, however, be brought into the form of
the scaled Eisenstein series through a shift of the dependent variable and a scaling of
the independent variable. This suggests that the vital information encoded in these series
through their coefficients is invariant under Ramanujan’s differential equations, modulo
shifting and scaling, and that the value of specific divisor functions remains encapsulated
in these series solutions. In addition to their intrinsic interest, Ramanujan’s differential
equations (1.4) give information about certain Eisenstein series, and we demonstrate that
our results give an alternate approach to obtain formulae involving sums of products of
divisor functions.
The results we obtain can be used to better understand solutions of related differen-

tial equations of relevance to the Eisenstein series. In addition to the Eisenstein series
which satisfy Ramanujan’s differential equations (1.4), we remark that solutions of various
second-order differential equations with coefficients involving the Eisenstein series have
also attracted some attention [9]. Treating the Eisenstein series in themanner of (2.7), one
can then solve such second-order differential equations with a series, making use of the
Cauchy product of the series for the unknown function with our series representation for
the Eisenstein series.
The algebraic independence of the functions P, Q, R in (1.2) and hence of U1, U2, U3

in (1.1) was discussed in [11]. It is worth noting that additional relations exist betweenU�

for � ≥ 4, with the first several of these shown inTable I of [8]. One can then expressU� for
� ≥ 4 in terms of algebraic combinations of the U1, U2, and U3 variables. As an example,
from entry 4 in Table I of [8] we have that 1+480U4 = Q2 = (1 + U2)2. Defining S = Q2,
we see that

x
dS
dx

= 2x Q
dQ
dx

= 2
3

(
PQ2 − QR

) = 2
3
(PS − QR) .
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Rewriting this as an equation involvingU4 by taking c4 = 480, one obtains a fourth-order
analogue of the third-order system (2.1). Continuing in this manner, one may obtain
higher-order analogues of system (2.1) involvingU1, U2, . . . , UN for N ≥ 4, and using the
approachwe outline for (2.1), onemay obtain the series coefficients recursively in a similar
manner, providing alternate derivations for formulae analogous to (4.3).

Acknowledgements
Radek Erban would like to thank the Royal Society for a University Research Fellowship.

Author details
1Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK,
2Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9054, New Zealand.

Received: 30 September 2020 Accepted: 2 February 2021

References
1. Alaca, S., Williams, K.: Evaluation of the convolution sums l + 6m = nσ (l)σ (m) and �2l+3m=nσ (l)σ (m). J. Number

Theory 124(2), 491–510 (2007)
2. Aygin, Z., Hong, N.: Ramanujan’s convolution sum twisted byDirichlet characters. Int. J. Number Theory 15(1), 137–152

(2019)
3. Chan, H.: Triple product identity, quintuple product identity and Ramanujan’s differential equations for the classical

Eisenstein series. Proc. Am. Math. Soc. 135(7), 1987–1992 (2007)
4. Coddington, E., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Book Company, Inc., New York

(1955)
5. Hill, J., Berndt, B., Huber, T.: Solving Ramanujan’s differential equations for Eisenstein series via a first order Riccati

equation. Acta Arith. 128(3), 281–294 (2007)
6. Huber, T.: Basic representations for Eisenstein series from their differential equations. J. Math. Anal. Appl. 350(1),

135–146 (2009)
7. Huber, T.: Differential equations for cubic theta functions. Int. J. Number Theory 7(7), 1945–1957 (2011)
8. Ramanujan, S.: On certain arithmetical functions. Trans. Camb. Philos. Soc. 22, 159–184 (1916)
9. Sebbar, A., Sebbar, A.: Eisenstein series and modular differential equations. Can. Math. Bull. 55(2), 400–409 (2012)
10. Toh, P.: Differential equations satisfied by Eisenstein series of level 2. Ramanujan J. 25, 179–194 (2011)
11. Zudilin, W.: Thetanulls and differential equations. Mat. Sb. 191(12), 77–122 (2000)
12. Zudilin, W.: The hypergeometric equation and Ramanujan functions. Ramanujan J. 7(4), 435–447 (2003)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	On the sum of positive divisors functions
	Abstract
	1 Introduction
	2 Recursive formula to solve Ramanujan's differential equations
	3 Dynamical system analysis of Ramanujan's differential equations
	4 Number theoretical consequences
	5 Discussion
	References




