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Abstract

Periodic boundary conditions are commonly applied in molecular dynamics simula-

tions in the microcanonical (NVE), canonical (NVT) and isothermal-isobaric (NpT)

ensembles. In their simplest application, a biological system of interest is placed in the

middle of a solvation box, which is chosen ‘sufficiently large’ to minimize any numerical

artefacts associated with the periodic boundary conditions. This practical approach

brings limitations to the size of biological systems that can be simulated. Here, we

study simulations of effectively infinitely-long nucleic acids, which are solvated in the

directions perpendicular to the polymer chain, while periodic boundary conditions are

also applied along the polymer chain. We study the effects of these asymmetric peri-

odic boundary conditions (APBC) on the simulated results, including the mechanical

properties of biopolymers and the properties of the surrounding solvent. To get some

further insights into the advantages of using the APBC, a coarse-grained worm-like

chain model is first studied, illustrating how the persistence length can be extracted

from local properties of the polymer chain, which are less affected by the APBC than

some global averages. This is followed by all-atom molecular dynamics simulations of

DNA in ionic solutions, where we use the APBC to investigate sequence-dependent

properties of DNA molecules and properties of the surrounding solvent.

1 Introduction

The structure and function of DNA depends on its nucleotide sequence and on the properties

of the surrounding solvent.1 Since DNA is negatively charged, concentrations of ions are

perturbed from their bulk values in the region close to DNA. The resulting ‘ion atmosphere’

has been studied using ion counting experiments.2 From the theoretical point of view, all-

atom molecular dynamics (MD) simulations can be applied to provide detailed insights into

DNA, ions and water interactions.3 For example, the effect of mobile counterions, Na+ and

K+ on a DNA oligomer was studied by Várnai and Zakrzewska,4 who used periodic boundary
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conditions for MD simulations of the solvated DNA oligomer at constant temperature and

pressure and studied the counterion distribution around the DNA structure.

However, the applicability of all-atom MD studies is limited to relatively small systems.

To simulate larger systems, several coarse-grained approaches have been developed in the

literature. In adaptive resolution studies,5,6 DNA and its immediate neighbourhood are

simulated using the full atomistic resolution, while a coarse-grained description is used to

describe the solvent molecules which are far away from DNA. Solvent can also be treated

implicitly in far away regions.6 To model even larger systems, the DNA molecule itself can

be described by coarse-grained models.7–10 Examples vary from models using several coarse-

grained sites per nucleotide11 to Brownian dynamics simulations.12,13 Using a systematic

‘bottom-up approach’, the interaction potential between coarse-grained sites can be derived

from the underlying atomistic force field, with results dependent on the microscopic force-

field used.14

The properties of ions in bulk water can be studied using all-atom MD simulations,15,16

which provide ‘bottom-up’ estimates of the values of diffusion constants of ions. Some

biological processes include transport of ions across relatively large distances which are out

of reach to all-atom MD simulations. Brownian dynamics descriptions of ions are instead

used for modelling such systems.17,18 While the transport of ions in bulk water can be

described on a sufficiently long time scale as a standard Brownian motion, more detailed

coarse-grained stochastic models of ions in bulk water have to be used at time scales studied

by MD simulations.16 Coarse-grained stochastic models of ions can be written as systems of

stochastic differential equations or by the generalized Langevin equation.16,19 To parametrize

such models, detailed all-atom MD simulations of ‘long’ chains of nucleic acids can be used,

but this can be computationally intensive. In this paper, we investigate simulations of

effectively infinitely-long DNA by applying asymmetric periodic boundary conditions (APBC)
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Figure 1: (a) Schematic of the simulation domain (1) for the case with 10 base pairs of DNA,
i.e. for n = 1. (b) Discrete worm-like chain segment in an APBC simulation is denoted by
the black line. Its periodic image copies by the green line.

in the cuboid computational domain

Ω = [0, Lx]× [0, Ly]× [0, Lz]. (1)

The main idea behind the APBC is that DNA is periodic with the period of 10 base pairs,

i.e. the APBC will allow us to use 10n base pairs of DNA in domain Ω, where n ∈ N is

an integer denoting the number of helical pitches. A schematic of our simulation domain is

presented in Figure 1(a) for the case of the simulation with 10 base pairs, i.e. for n = 1. The

DNA molecule is positioned parallel to the z-axis and we use periodic boundary conditions

in the z-direction. Such a periodic boundary condition in z-direction is less common in all-

atom MD simulation studies, where the biomolecule of interest is often placed in the middle

of the computational domain and it is solvated on all its sides by a layer of water molecules

separating the biomolecule from the domain boundary.4,20

Considering the projection into the xy-plane, the DNA molecule is positioned in the

middle of the simulated domain. In particular, the DNA molecule is separated by the layer

of water molecules from the boundaries of the simulated domain in both x-direction and
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y-direction. While we use periodic boundary conditions in all three directions, there is

an asymmetry (highlighted in our terminology APBC): a modeller has a relative freedom

to choose the values of Lx and Ly in the computational domain defined by (1), while the

value of Lz is dictated by the properties of the simulated biomolecule. The imposed DNA

periodicity fixes the helical twist of the DNA molecule with the simulation box size Lz chosen

such that it exactly corresponds to n helical pitches. However, considering simulations at

isothermal-isobaric (NpT) ensemble, standard isotropic barostats introduce fluctuations in

the domain size leading to changes in Lz as well. To fix Lz, an asymmetric barostat is used

in Section 3 of this paper.

The APBC has been used in previous studies5,21,22 to mimic an infinitely long DNA

molecule. Except of the asymmetry between the z-direction and x-direction (resp. y-

direction), the APBC can lead to a relatively standard all-atom MD set up, with the domain

periodic in all three directions, which was previously used to explore the ion atmosphere

around the DNA.21,22 However, it is more challenging to use the APBC to study mechanical

properties of biopolymers, as we will first illustrate in Section 2 by considering a discrete

worm-like chain model. This is followed by all-atom MD simulations of DNA in Section 3,

where we present the use of APBC to investigate mechanical properties of the DNA and the

properties of the surrounding solvent.

2 Worm-like chain model

Let us consider the discrete worm-like chain (WLC) model where DNA consists of N seg-

ments li, i = 1, 2, . . . , N , each having the same length, ℓ. Denoting the angle between the

adjacent i-th and (i+1)-th segments by θi, for i = 1, 2, . . . , (N−1), the chain bending energy

is
E

kBT
= α

N−1
∑

i=1

θ2i , (2)
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where α is a dimensionless constant. We define the persistence length of the first j-th

segments, for j ≤ N , by

aj =

〈

l1

ℓ
·

j
∑

i=1

li

〉

. (3)

That is, aj is the average value of the projection of the vector connecting the end points of

the first and the j-th segment on the direction of the first segment. Then the persistence

length of the WLC model can be defined as the limit

aorig = lim
N→∞

aN , (4)

which effectively is the average value of the projection of the end-to-end vector of a long

chain on the direction of the first segment. The average in (3) can be evaluated as

aj =

j
∑

i=1

〈l1 · li〉

ℓ
= ℓ

j
∑

i=1

〈cos(θ)〉i−1 = ℓ
1− 〈cos(θ)〉j

1− 〈cos(θ)〉
, (5)

where the average 〈cos(θ)〉 is given by

〈cos(θ)〉 =

∫ π

0

cos(θ) sin(θ) exp
[

−α θ2
]

dθ

/

∫ π

0

sin(θ) exp
[

−α θ2
]

dθ. (6)

To get formula (6), we note that the distribution of angles between adjacent segments is

proportional to sin(θ) exp [−α θ2]. Using (4), (5) and (6), we deduce

aorig =
ℓ

1− 〈cos(θ)〉
= ℓ

(

2α +
2

3
+

1

15α
+O

(

1

α2

))

, as α → ∞, (7)

= ℓ

(

1 +
π2

8
α +O(α2)

)

, as α → 0. (8)

In Figure 2(a), we present how the persistence length aorig depends on the stiffness parame-

ter α in interval [0, 3/2], illustrating the accuracy of both expansions (7) and (8). While (7)

is derived in the limit α → ∞, it approximates the exact result well for persistence lengths
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Figure 2: (a) Plot of persistence length aorig, given by (4), as a function of the stiffness
parameter α, together with asymptotic results (7) and (8). The dimensionless parameter α
can be viewed to express energy in units kBT , while all persistence lengths are plotted in units
of the segment lentgh, ℓ. (b) Plot of persistence length aorig, given by (4), and persistence
lengths aj, given by (5), for j = 10, 20, 50, 100, as a function of parameter α.

satisfying aorig > 2ℓ or equivalently for α > 0.62. In Figure 2(b), we plot the dependence of

the persistence length aorig on the stiffness parameter α in a larger interval [0, 20] together

with the values of aj given by (5). Using the exact result for aorig given on the left hand side

of equation (7), we can rewrite (5) as follows

aj = aorig

(

1− 〈cos(θ)〉j
)

. (9)

Considering the limit α → ∞ in (6), we have

〈cos(θ)〉 = 1−
1

2α
+

1

6α2
+O

(

1

α3

)

, as α → ∞,

where the first three terms of the expansion on the right hand side provide an approximation

of 〈cos(θ)〉 with about 5% relative error for α > 1, and the relative error decreases as we

increase α, for example, the relative error is smaller than 1% for α > 2. Substituting this
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expansion for 〈cos(θ)〉 into equation (9), we obtain that for sufficiently large values of α,

say for α > 1, we can calculate the persistence length aorig from aj by using the following

formula

aorig =
aj

1−

(

1−
1

2α
+

1

6α2

)j . (10)

2.1 The dependence of persistence length on APBC

Considering that the polymer chain is simulated in the domain (1) with APBC, we have an

extra constraint
N
∑

i=1

li = [0, 0, Lz] , (11)

where N denotes the number of simulated segments along the z-direction. As it is illustrated

in Figure 1(b), such a model can be viewed as a model of an (infinitely) long polymer chain

by using the periodicity

li = li MOD N , for i ∈ N. (12)

However, substituting (11)–(12) into the definition of persistence length (4), we would obtain

that aorig = ∞ because the periodic boundary means that the infinitely long filament is

effectively straight. Since equation (11) postulates that the vector connecting ends of N

segments is fixed, we obtain the most variability in this model by looking at the behaviour of

the ⌊N/2⌋ consecutive segments. Due to the symmetry of the problem and condition (4), the

average of the vector
∑⌊N/2⌋

i=1 li is equal to [0, 0, Lz/2] for any value of α, but the deviations

from this average will depend on α. To illustrate this, we define the average distance of the

polymer middle point from the axis of the polymer by

〈

∥

∥

∥

∥

[1, 1, 0] ·

⌊N/2⌋
∑

i=1

li

∥

∥

∥

∥

〉

, (13)

that is, we calculate the (Euclidean) norm of the projection of the vector
∑⌊N/2⌋

i=1 li on the

x–y–plane. The average (13) is plotted in Figure 3(a) for different values of parameter α and
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Figure 3: (a) The average distance of the polymer middle point from the axis of the polymer,
defined by (13), estimated from Monte Carlo simulations of the WLC model with N = 100
segments for Lz ∈ {10, 20, . . . , 90} and α ∈ {0, 1, 5, 10}. The red line shows a⌊N/2⌋ = a50 as
a function of the domain length Lz (theoretical result (14) confirmed by simulations for all
considered values of α).
(b) The estimate of aorig given by equation (15), where 〈cos(θ)〉 is estimated from Monte
Carlo simulations of the WLC model with N = 100 segments for Lz ∈ {10, 20, . . . , 90}
and α ∈ {0, 1, 5, 10}. The theoretical result (without APBC, independent of Lz), given by
equation (6), is plotted by dashed lines for each value of α.

domain length Lz. We observe that, for fixed value of Lz, the average (13) increases with

the value of the stiffness parameter α. Moreover, Figure 3(a) also shows that the value of

the average (13) approaches zero as Lz approaches its maximum possible value, Nℓ. Indeed,

if Lz = Nℓ, the polymer is straight and the value of (13) is exactly equal to zero. On the

other hand, if Lz is smaller then we obtain a larger value of (13), especially for polymers

with larger persistence length (i.e. for large values of α).

On the face of it, one possible way to estimate aorig could be to estimate a⌊N/2⌋ from our

Monte Carlo simulations and then use formula (10) for j = ⌊N/2⌋. However, formula (10)

has been derived for the case of the WLC model in the 3-dimensional physical space R
3.

Considering the APBC, we obtain that a⌊N/2⌋ is independent of α (see Appendix A). We

have

a⌊N/2⌋ = ℓ

(

N − ⌊N/2⌋

N − 1
+

L2
z(⌊N/2⌋ − 1)

N(N − 1) ℓ2

)

, (14)
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which simplifies to a⌊N/2⌋ ≈ (ℓ/2) + L2
z/(2ℓN) for large values of N. This result is also

visualized in Figure 3(a). In particular, a better strategy to obtain the real persistence

length aorig from the APBC simulations is to estimate

〈li · li+1〉 = 〈cos(θ)〉

and then use the exact result for aorig given on the left hand side of equation (7), namely

aorig =
ℓ

1− 〈cos(θ)〉
. (15)

The results are presented in Figure 3(b).

3 APBC in all-atom MD simulations

In this section, we investigate the use of APBC in all-atom MD models of DNA. Our simu-

lations are performed with 10–100 base pairs (bp) of double-stranded DNA (dsDNA). Since

we use the APBC, all simulations are effectively simulating (infinitely) long DNA chains. In

particular, MD results with the longest simulated chain (100 bp) can be used as the ‘ground

truth’ for the presented APBC simulations with shorter 10–50 bp long DNA chains. We note

that the MD simulations of relatively short 50 bp DNA segments without APBC have been

previously used in the literature to estimate the DNA persistence length by using a middle

section of the simulated DNA segment.20

We consider 6 types of (infinitely) long DNA sequences, with repeated nucleotides, namely

poly(A), poly(C), poly(AT), poly(CG), poly(AC) and poly(AG), where poly(X) means that

the correspoding nucleotide sequence is periodically repeated. We note that these 6 cases

correspond to all possible cases of pairs of nucleotides which are repeated infinitely many

times. For example, repetitions of dinucleotides AC, CA, TG and GT all correspond to the

poly(AC) case, because AC and CA are equivalent due to the periodic boundary conditions
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along the chain length, and TG is on the complementary strand, with GT being equivalent

to TG because of the periodic boundary conditions.

Each infinitely long sequence is modelled in our computational domain (1) with APBC

using N = 10n base pairs of DNA, where n ranges from 1 to 10. The APBC is implemented

along the z-direction as detailed in Appendix B.1. First, an (N + 1) bp long dsDNA con-

figuration is constructed in such a way that the (N + 1)-th base pair is equivalent to the

first base pair translated to the z-direction. Then, a nucleotide at the 3’-end of each strand

is removed and the bond to the 3’-end (removed) nucleotide is substituted with that to the

first base at the 5’-end. The corresponding angles and dihedrals are added to MD structural

files as detailed in Table 1 in Appendix B.1. In all MD simulations, we consider domain (1)

with Lx = Ly = 200 Å and we vary Lz. In Figures 4, 5 and 7, we choose Lz as a multiple of

n (resp. N) with

Lz = 3.375N Å = 33.75nÅ, (16)

while we study the effect of stretching and shrinking of DNA in Figure 6 by using Lz obtained

as the 95%, 100% and 105% of the value given by equation (16). All MD simulations are

done in KCl solutions, with K+ ions neutralizing the negatively charged DNA segments. We

use the concentration 150 mM KCl in Figures 4, 5 and 6, while we vary the concentration

of KCl in Figure 7.

When using APBC with polymer models, there are (locally) two important directions:

parallel to the polymer chain and perpendicular to the polymer chain. We consider both of

them, in Sections 3.1 and 3.2, respectively. In Section 3.1, we study the effects of APBC

on the properties of the DNA chain, where we can make direct analogues to the results

obtained for the persistence length of the WLC model in Section 2. This is followed by

studying the characteristics of the surrounding solvent in Section 3.2, where we investigate

the ion athmosphere around DNA for different concentrations of KCl.
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3.1 Mechanical properties along the chain

The persistence length for our (infinitely) long sequences of dinucleotides can be determined

by various experimental and theoretical studies23 as summarized in Appendix B. In Figure 4,

we present the results of all-atom MD simulations with APBC of N = 10 bp segments using

the six cases of repeated dinucleotides. Technical details of these MD simulations are given

in Appendix B.

To analyze our MD results, we associate a unit orientation vector hi with each base pair,

i.e. i = 1, 2, . . . , N , where N = 10n is the total number of simulated base pairs. Denoting

the angle between the i-th and (i+ j)-th base pair as φj, we have cos(φj) = hi · hi+j, which

we calculate for all i = 1, 2, . . . , N . Averaging the calculated results over all possible values

of i, we have

〈cos(φj)〉 = 〈hi · hi+j〉 , (17)

where the accuracy of this average is further improved by calculating it as a time average

over long MD time series. More precisely, we calculate three independent time series of

length 10 ns and sample our results every 10 ps, disregarding the beginning of each simulation

as the time required to equilibrate the system, see Appendix B for more details. Considering

N = 10 (i.e. n = 1), we plot the averages (17) in Figure 4(a) for values j = 1, 2, 3, 4, 5. We

note that

〈cos(φj)〉 = 〈cos(φN−j〉 = 〈cos(φ10n−j〉 ,

because we use APBC. In particular, the values of the averages (17) for j = 6, 7, . . . are

already represented in Figure 4(a) by the corresponding values for j = 1, 2, 3, 4, 5. In Figure 4,

we observe that the results are clearly sequence dependent for j = 1, with the j = 4 case

providing the best match to the j = 1 case. On the other hand, the results are less sequence

dependent for j = 2 or j = 5. Given the APBC, there is no variation for j = N = 10 as we

have already observed for the WLC model, because of the constraint (11). In Figure 4(b),

we present the average separation between the subsequent base pairs for each of the studied
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Figure 4: The results of all-atom MD simulations of DNA chains with APBC.
(a) The average (17) for each of the 6 considered sequences of repeated nucleotides is calcu-
lated using three independent MD simulations.
(b) The average separation between the base pairs calculated using three independent MD
simulations (blue bars). The results for each individual realization is plotted as a black dot.

case.

Our MD simulations in Figure 4 use the smallest possible value of N (corresponding to

n = 1), while one can expect that the results of all-atom MD simulations should be less

influenced by the APBC for larger values of n (in theory, the APBC-induced errors should

decrease to zero in the limit n → ∞). To investigate this further, we study the dependence

of our results on n for the poly(A) case in Figure 5(a). We use three independent MD

simulations for n = 1, 2, 3, 4, 5, 10 corresponding to simulations with N ranging from 10bp to

100bp. In each case, we plot the averages (17) for j = 1, 2, . . . , 10. We note that this average

is trivially equal to 1 in the case j = 10 for N = 10 bp (because the first and the eleventh

base pairs are identical for N = 10 bp), so we omit this artificial value from our plot for 10

bp in Figure 5(a). We observe that the results for n = 1, 2, 3, 4, 5 are matching some trends

of the results for 100 bp. In particular, we can make similar conclusions as in Section 2

that the local properties (smaller values of j) are less influenced by using APBC than the

averages estimated over the whole simulated polymer length (for j comparable to N).

In Figure 3, we have considered the WLC model with N = 100 segments while varying the
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Figure 5: The results of all-atom MD simulations with APBC using the poly(A) DNA chain
with N in the range 10–100 bp.
(a) The average (17) for each of the 6 values of N considered is calculated using three indepen-
dent MD simulations. The results are presented for j = 1, 2, . . . , 10 and n = 1, 2, 3, 4, 5, 10.
(b) The average separation between the base pairs calculated using three independent MD
simulations (blue bars). The results for each individual realization is plotted as a black dot.

domain length Lz. In Figure 6, we present the results of a similar study using all-atom MD

simulations with N = 100 bp. The middle bars in Figure 6(a) and Figure 6(b) correspond to

the results of the poly(A) case with 100 bp which has already been included in Figure 5(a).

Using equation (16), this corresponds to Lz = 337.5 Å. The other simulations correspond

to the same set up where we either extend or shrink the value of Lz by 5%, i.e. we use the

values of Lz given as

Lz = 320.625Å, Lz = 337.5Å, and Lz = 354.375Å. (18)

In Figure 6(b), we observe that the average separation between base pairs increases as we

increase Lz. On the other hand, the behaviour of averages (17) is less monotonic as we

stretch or shrink the DNA chain, see Figure 6(a). Another way to visualize the results of all

atom MD simulations is to consider the average (17) as a function of the distance between

the base pairs,20 which is visualized as function 〈H〉 in Figure 6(c). To calculate 〈H〉, we
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Figure 6: The results of MD simulations of 100 bp poly(A) dsDNA with APBC that use the
values of Lz given by equation (18). We average over three independent MD time series for
each of the presented case.
(a) The average (17) for j = 1, 2, . . . , 10.
(b) The average separation of base pairs (blue bars). Dots include the results for individual
MD realizations (i.e. we have averaged over the dots to calculate blue bars).
(c) The average 〈H〉 as a function of distance d. We present results for the 95% (blue),
100% (red) and 105% (green) cases using different colours. Different symbols (circle, square,
triangle of the same colour) denote data points calculated by different MD realizations.

average 〈hi · hj〉 over all pairs i and j such that the corresponding base pairs are the distance

d apart. We present this average, 〈H〉, as a function of the distance d in Figure 6(c). The

rate of decay of function 〈H〉 with distance d can be used as an alternative way to define

and estimate the persistence length from MD simulations.20

3.2 Ion atmosphere

The APBC are useful for investigating solvent properties in the direction perpendicular to

the polymer chain. In Figure 7, we present the results of such a study, calculating the radial

distribution of K+ and Cl− ions. We use three different concentrations of KCl, namely 0.25M,

0.5M and 1M. In each case, we use n = 1, i.e. we use the APBC with 10 bp of poly(A)

dsDNA. The results are calculated by averaging over four independent MD time series, each

calculated for 10 ns. After the initial transient (of 1 ns) and at equidistant time intervals of
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10 ps, we calculate the distance of each ion from the nearest atom of DNA, so our raw data

are given in terms of the histograms

NK+(r,∆r) =
[

number of ions with the distance from DNA in interval (r, r +∆r)
]

,

NCl−(r,∆r) =
[

number of ions with the distance from DNA in interval (r, r +∆r)
]

.

To get the radial distribution function, these numbers have to be divided by the volume,

V (r,∆r), giving the volume of all points which have their distance from the DNA in the

interval (r, r +∆r). Then the radial distribution of K+ ions and Cl− ions is defined by

̺K+(r) = lim
∆r→∞

NK+(r,∆r)

V (r,∆r)
, and ̺Cl−(r) = lim

∆r→∞

NCl−(r,∆r)

V (r,∆r)
, (19)

where r is the distance from the DNA. To calculate Figure 7, we approximate the limit in

equation (19) by choosing (relatively small) value ∆r = 1 Å and we approximate the DNA

as a straight line (or equivalently as a straight cylinder) in the z-direction, i.e. V (r,∆r) =

2π r∆r Lz, giving

̺K+(r) ≈
NK+(r,∆r)

2π r∆r Lz

, ̺Cl−(r) ≈
NK+(r,∆r)

2π r∆r Lz

. (20)

Formulas (20) are visualized in Figure 7 as histograms.

4 Discussion

Using MD simulations at constant pressure and temperature, we can solvate the DNA with

water and ions, fixing the concentration of ions in the bulk. In Section 3.2, we have presented

illustrative results of such all-atom MD investigations with APBC. Such simulations can also

be used to estimate other solvent properties, for example, the moments of force distributions

on ions, which can be used for parametrizing coarse-grained stochastic models of ions used in
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Figure 7: The results of all-atom MD simulations with APBC using the poly(A) DNA chain
with N = 10 bp and three different concentrations of KCl in the bulk.
(a) The concentration of K+ ions given by (20) as a function of the distance from DNA.
(b) The concentration of Cl− ions given by (20) as a function of the distance from DNA.

multiscale and multi-resolution simulations.16,19 The APBC simulations can also be coupled

with coarse-grained models of water to design adaptive resolution simulation techniques.5,24,25

In Section 3.2, we have presented the results calculated with APBC using n = 1 helical pitch.

In particular, the simulated domain length is around 3.4 nm long and considerably smaller

than the DNA’s persistence length, which is about 50 nm. To study mechanical properties of

DNA, we need to increase the number of helical pitches as we have shown in Section 3.1 with

our MD simulation results considering up to n = 10 helical pitches along the z-direction of

APBC simulation domain (1).

To get further insight into the correct use of the APBC, we have started our investigation

using a discrete worm-like chain (WLC) model in Section 2, where we have observed in

Figure 3 that the APBC affect less some local properties of the polymer chains than some

global averages. In particular, the persistence length of the polymer chain can be estimated

from local properties of relatively short polymer chains, simulated with the help of APBC.

The APBC are also applicable to simulations of biopolymers with larger persistence length

(for example, actin filaments26,27), when a modeller is interested to understand the properties
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of the surrounding solvent.

In Appendix B, we provide the technical details of all-atom MD simulations, including the

treatment of constant pressure simulations. The barostat used is again asymmetric with no

fluctuations of Lz. In the APBC simulations, we have different treatment of the z-direction

and all perpendicular directions in the x − y plane. Simulations with 2D periodicity have

also been used to study behaviour of a slab of water between two metallic walls,28 which can

be treated using three-dimensional Ewald techniques by including the image charges. One

advantage of the APBC simulations is that they can be implemented with relatively minor

modifications of standard all-atom MD tools29–32 as detailed in Appendix B. Note that, the

number of helical turns in the DNA model with APBC is fixed, and thus the model does not

allow for over-winding or under-winding of DNA.33
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A Derivation of equation (14) for the WLC model

Since a⌊N/2⌋ = a1 = ℓ for N = 2 and N = 3, equation (14) is valid for N = 2 and N = 3.

Considering a general value of N , the constraint (11) can be rewritten as

N
∑

i=2

li = [0, 0, Lz]− l1 .

Taking the scalar product of this equation with l1, we get

N
∑

i=2

〈l1 · li〉 = [0, 0, Lz] 〈l1〉 − ℓ2 =
L2
z

N
− ℓ2 , (21)

where we used 〈l1〉 = [0, 0, Lz/N ]. Assuming that 〈l1 · li〉 are equal to each other on the left

hand side of (21), we get 〈l1 · li〉 = (L2
z/N − ℓ2)/(N − 1) for i = 2, 3, . . . , N . Substituting
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into (3), we obtain

a⌊N/2⌋ = ℓ+
1

ℓ

⌊N/2⌋
∑

i=2

〈l1 · li〉 =
ℓ2N(N − ⌊N/2⌋) + (⌊N/2⌋ − 1)L2

z

ℓN(N − 1)
,

which is the equation (14). Considering large values of N , equation (14) simplifies to

a⌊N/2⌋ ≈
ℓ

2
+

L2
z

2ℓN
,

which can also be deduced from equation (21) by considering that the left hand side of

equation (21) is twice the sum needed for the calculation of a⌊N/2⌋.

B All-atom MD simulation details

Throughout the all-atom modeling and simulation, we used CHARMM36 force field, VMD

1.9.3 (for modeling),29 and NAMD 2.14 (for simulation).30

B.1 APBC implementation

The periodic DNA models (N bp) used for the APBC are generated as follows. First, a

(N + 1) bp long dsDNA configuration (in PDB format) is constructed with 3DNA (Web

3DNA 2.0,31 in such a way that the (N + 1)-th base pair is equivalent to the first base pair

translated to the z-direction. Here, we use the base pair step parameter set for B-DNA

(calf thymus; generic sequence) with Twist 36.0 degrees and Rise 3.375 Å for all nucleotide

sequences. Note that the resulting structure shows slight (sub-ångström) shift between the

first and the (N+1)-th (i.e. deleted) bases depending on the length and nucleotide sequence,

which is then relaxed in the initial equilibration simulation run. Then, a nucleotide at the 3’-

end of each strand is removed, and the corresponding structure (in CHARMM PSF format)

is generated by AutoPSF. Finally, by editing the PSF file, the bond to the 3’-end (removed)

nucleotide is substituted with that to the first base (i.e. 5’-end); and the angles and dihedrals
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Table 1: List of additional terms connecting the ends of each DNA strand.

Bonds
Nth O3’ 1st P
Angles
Nth C3’ Nth O3’ 1st P
1st O1P 1st P Nth O3’
1st O2P 1st P Nth O3’
1st O5’ 1st P Nth O3’
Dihedrals
Nth C4’ Nth C3’ Nth O3’ 1st P
Nth C2’ Nth C3’ Nth O3’ 1st P
Nth C3’ Nth O3’ 1st P 1st O1P
Nth C3’ Nth O3’ 1st P 1st O2P
Nth C3’ Nth O3’ 1st P 1st O5’
Nth H3’ Nth C3’ Nth O3’ 1st P
Nth O3’ 1st P 1st O5’ 1st C5’

(4 and 7 terms for each strand, respectively) are reconnected accordingly. These additional

terms are listed in Table 1. Note that, for the CHARMM36 force-field, the type of the 5’-end

phosphate (usually the first atom of each strand) should be changed from P to P2, as it is

no longer at the terminal with the APBC.

For simulation with explicit solvent, each model has been solvated in a Lx × Ly × Lz

TIP3P water box where Lx = Ly = 200 Å and Lz = 3.375N Å, then neutralized by K+ and

150 mM KCl has been added in the bulk.

B.2 Molecular dynamics simulation

After 104 steps of energy minimization, each model was simulated for 10 ns at 2 fs time step

(with SETTLE method for hydrogen). Non-bonded interactions were cutoff at 12 Å (with

switching from 10 Å), and particle mesh Ewald method was used for electrostatics. Langevin

thermostat at 300 K (damping: 1 per ps) and Nosé-Hoover Langevin piston barostat at 1 atm

(period: 2 ps, decay: 1 ps) were applied. For the barostat, constant area setting was used,

keeping Lz (and Lx) constant and adjusting only Ly to control the pressure. The atomic

positions were recorded at 10 ps intervals and used for analysis.
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For simulations with periodic box length different values of Lz in Figure 6, the z-

coordinate of each atom in the DNA model was rescaled, and then solvated into the water

box with the adjusted value of Lz.

B.3 Analysis

The DNA structure in each snapshot was processed by 3DNA.32 To consider also the base-

pair step crossing the periodic boundary (i.e. the N -th to the first base pair), a periodic image

of the first residue (shifted by Lz) was added at the end of each strand, and the resulting

(N + 1) bp long segment was processed by 3DNA. The subsequent analysis then used the

helical-axis positions and helical-axis vectors providing hi in the average (17). The distance

between adjacent base-pair steps was obtained as the distance between the corresponding

helical-axis positions, and other distances along the chain are calculated as the sum of those

adjacent distances within the section. These values were averaged over three simulation

trials except the initial 1 ns (Figures 4, 5 and 7) or 5 ns (Figure 6) for each case.

Finally, the experimentally determined persistence length for our sequences of dinu-

cleotides used in Figure 4 have been obtained in the literature23 as 50.4 nm (poly(A)),

41.7 nm (poly(C)), 42.7 nm (poly(AT)), 49.6 nm (poly(CG)), 50.7 nm (poly(AC)) and

52.6 nm (poly(AG)).
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