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Abstract
Synthetic biology is a growing interdisciplinary field, with far-reaching applications, which aims to design
biochemical systems that behave in a desired manner. With the advancement in nucleic-acid-based technology
in general, and strand-displacement DNA computing in particular, a large class of abstract biochemical networks
may be physically realized using nucleic acids. Methods for systematic design of the abstract systems with
prescribed behaviors have been predominantly developed at the (less-detailed) deterministic level. However,
stochastic effects, neglected at the deterministic level, are increasingly found to play an important role in
biochemistry. In such circumstances, methods for controlling the intrinsic noise in the system are necessary
for a successful network design at the (more-detailed) stochastic level. To bridge the gap, the noise-control
algorithm for designing biochemical networks is developed in this paper. The algorithm structurally modifies any
given reaction network under mass-action kinetics, in such a way that (i) controllable state-dependent noise is
introduced into the stochastic dynamics, while (ii) the deterministic dynamics are preserved. The capabilities
of the algorithm are demonstrated on a production-decay reaction system, and on an exotic system displaying
bistability. For the production-decay system, it is shown that the algorithm may be used to redesign the network
to achieve noise-induced multistability. For the exotic system, the algorithm is used to redesign the network to
control the stochastic switching, and achieve noise-induced oscillations.
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1. Introduction

Synthetic biology is an interdisciplinary field of science and
engineering that aims to construct biochemical systems with
prescribed behaviors [1, 2]. At the theoretical level, the syn-
thetic systems may significantly enhance our understanding
of biology. At the practical level, they may have broad ap-
plications, e.g. in medicine [3, 4, 5, 6, 7], industry [8, 9],
and nanotechnology [10, 11]. The systems may also be of
interest to space agencies for optimizing extraterrestrial ex-
plorations [12]. A proof-of-concept for synthetic biology is
a synthetic oscillator called the repressilator, which was im-
plemented in vivo [13]. The experimental advances since
the repressilator range from isolated synthetic biochemical
networks, to microorganisms containing partially, or even
fully, synthetic DNA molecules (synthetic life) [14, 15, 16,
17]. Examples include microorganisms containing a syn-
thetic bistable switch [18], and a cell-density controlling
quorum sensor [19], microorganisms producing antimalar-
ial drugs [6, 7], and synthetic systems designed for tumor
detection, diagnosis and adaptive drug-response [4, 5].

The construction of biochemical networks in synthetic bi-
ology may be broken down into two steps: firstly, an abstract
system is constructed, displaying prescribed properties, and

taking the form of a chemical reaction network [20, 21, 22].
Secondly, the abstract network is mapped to a suitable phys-
ical network, which may then be integrated into a desired
environment (e.g. a test-tube, a vesicle, or a living cell) [23,
24, 25, 26]. Let us note that the first step generally consists
of a number of sub-steps, involving mathematical analyses
and computational verifications, depending on the nature of
the target physical network [23, 51] (see also Section 2.3 and
supplementary material).

In the first step of network construction, the goal is to
obtain an abstract network with desired dynamics. In this
paper, we consider reaction networks under mass-action ki-
netics: it is assumed that each reaction fires at the rate propor-
tional to the product of the concentrations of the underlying
reacting species. In this setting, we consider two dynami-
cal models of reaction networks [27, 22]: the deterministic
model, and the stochastic model (see supplementary material
for more details). The deterministic model takes the form of
the reaction-rate equations, which are ordinary-differential
equations governing the time-evolution of the species concen-
trations [22, 27]. The stochastic model takes the form of a
Markov chain, which may be simulated using the Gillespie
stochastic simulation algorithm [28]. The Gillespie algorithm
generates random copy-number time-series, with the copy-
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number distribution matching that obtained from the underly-
ing chemical master equation [22, 27, 28, 29]. The stochastic
model is more-detailed, taking into an account the discrete-
ness of the species counts, and the stochastic nature of the
dynamics, which may be particularly important in biochem-
istry, where reaction networks may contain low-abundance
species [33, 34, 13, 18, 21, 30, 31, 32]. On the other hand,
the deterministic model is less-detailed, and more appropriate
when the species are in high-abundance, and the discreteness
and stochasticity are negligible [35].

In the second step of network construction, the goal is to
engineer a physical network whose dynamics match well the
dynamics of a given abstract network, over a suitable time-
interval. Engineering an appropriate physical network may
proceed indirectly, by altering a preexisting physical network,
or directly, by engineering a network, which involves a given
set of physical species, from scratch. The advantage of the
former approach is that a preexisting network may display
(partially) desirable dynamical properties. However, such a
network may involve DNA and RNA molecules, proteins, and
metabolites [2], some of which may have complex biophysical
properties. Consequently, the disadvantage is that the structure
(and, thus, the dynamics) of such a network cannot generally
be modified in an arbitrary manner. In the latter approach,
one may choose the physical species, at the expense of having
to build a network from scratch. This approach is followed
in the subfield of nucleic-acid-based molecular computing.
For example, in DNA computing, physical networks are engi-
neered with chemical species consisting exclusively of DNA
molecules, interacting via the toehold-mediated DNA strand-
displacement mechanism [23]. DNA production is systematic
and cost-effective, and due to the fact that DNA biophysics is
relatively well-understood, one has more freedom in control-
ling the structure of corresponding physical networks. More
precisely, an abstract network under mass-action kinetics may
be mapped to a DNA-based physical network provided it con-
sists of up to second-order reactions, with rate coefficients
varying over up to six orders of magnitude. The resulting
physical network has identical deterministic dynamics as the
abstract network (in the asymptotic limit of some of the kinetic
parameters [23]), up to a scaling of the dependent variables. A
proof-of-concept for DNA computing is a synthetic oscillator
called the displacillator, which was implemented in vitro [36].
Let us note that DNA-based networks may also be augmented
with enzymes [26, 37]. Another emerging approach within
nucleic-acid-based molecular computing is based on RNA
strand-displacement [38] - a mechanism which is hypothe-
sized to occur naturally within living cells [39].

The DNA-based reaction networks may involve only high-
abundance species, mixed in a test-tube [23]. In such cir-
cumstances, it may be sufficient to construct the networks
via the (less-detailed) deterministic model. However, recent
experimental advancements, involving compartmentalized cir-
cuits [24, 25, 26], localized circuits [40, 41] and molecu-
lar robots [42, 43], may require reaction network construc-

tion via the (more-detailed) stochastic model. For example,
in [24, 25, 26], the chemical mixture from a test-tube is split
into a large number of cell-size vesicles (allowing for an ex-
perimental investigation of biochemistry in cell-like reactors).
This corresponds to replacing a given reaction network, in-
volving only high-abundance species, with a large number
of topologically equivalent networks which, however, may
involve species in a low-abundance, making the (intrinsic)
noise an important part of the dynamics. The intrinsic noise
may be controlled in two ways: it may be decreased (e.g.
as in [34]), in order to reduce the differences between the
stochastic and deterministic dynamics. On the other hand, it
may be increased, in a state-dependent manner, in order to
favorably change the stochastic dynamics. In the language
of molecular computing, the latter approach corresponds to
exploiting the proven computational power of the stochastic
reaction networks [44], by reprogramming the underlying in-
trinsic noise. Let us note that exploitations of the noise for
enhancing biological functions have been reported in applica-
tions [33, 32]. In this paper, we follow the latter approach, and
present the noise-control algorithm (given as Algorithm 1)
which maps an input reaction network to output networks
whose stochastic dynamics have an additional controllable
state-dependent noise. Importantly, the input and output net-
works have an identical deterministic model in appropriate
limits of some of the parameters introduced by the algorithm.
The algorithm may play a significant role in the biochemical
network synthesis, allowing for a deterministic-stochastic hy-
brid approach. More precisely, when constructing abstract
and physical networks, one may use the deterministic model
to guide the construction [20, 21], and then apply the algo-
rithm to favorably modify the intrinsic noise in the stochastic
model, while preserving the desired deterministic dynamics.
The algorithm may also be used to adjust the intrinsic noise
to favorably interact with environment-induced effects (e.g.
extrinsic noise).

The rest of the paper is organized as follows. In Section 2,
we introduce Algorithm 1 by applying it to the test network (1),
which at the deterministic level displays a globally attracting
equilibrium point. We show that the algorithm can favorably
modify the stationary probability distribution underlying (1)
at arbitrary points of the state-space, without influencing the
deterministic dynamics. For example, it is shown that the al-
gorithm may be used to redesign (1) to achieve noise-induced
multimodality (multistability). In Section 3, we apply Algo-
rithm 1 to the exotic network (11), which at the deterministic
level displays a bistability involving an equilibrium point and
a limit cycle. The algorithm is used to redesign (11) to in-
crease the stochastic switching between the two attractors, and
to achieve noise-induced oscillations. Finally, in Section 4 we
conclude with a summary and discussion. The notation used
in the paper is introduced as needed, and is summarized at the
beginning of supplementary material.
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2. A One-species Regular System
Consider the one-species production-decay reaction network
R̂(s), given by (1).

R̂(s) : ∅ k1−→ s,

s
k2−→∅, (1)

dx̂
dt

= k1− k2x̂,

x̂(0) = x̂0. (2)
Species s from network (1) reacts according to the two re-
actions with rate coefficients k1,k2 ∈ R≥, where R≥ is the
set of nonnegative real numbers, and ∅ is the zero-species
(denoting species which are not of interest). In this paper,
we assume reaction networks are under mass-action kinetics,
with the reactions taking place in unit-volume reactors. Let us
denote the concentration of species s from (1) at time t ∈ R≥
by x̂ = x̂(t) ∈ R≥. The initial value problem for the deter-
ministic model (also called the drift) for network (1) is given
by system (2), with x̂0 ≥ 0 (see also supplementary material).
Since the deterministic model (2) has a globally attracting
equilibrium point, given by k1/k2, network (1) is said to be
regular [22].

Let us denote the copy-number of species s from (1) at
time t ≥ 0 by X̂(t) ∈ Z≥, where Z≥ is the set of nonnega-
tive integers. Under the stochastic model, X̂(t) is modelled
as a continuous-time discrete-space Markov chain (see also
supplementary material), whose realizations can be generated
by using the Gillespie stochastic simulation algorithm [28].
Given X̂(t), there will be a mean interevent time until one of
the reactions from (1) fires. The mean interevent time is given
by 1/α̂(X̂(t)), and when the event takes place, the probabil-
ity that the i-th reaction from (1) fires is α̂i(X̂(t))/α̂(X̂(t)),
for i ∈ {1,2}. Here, α̂1(x) = k1, and α̂2(x) = k2x, are the
so-called propensity functions of the first, and second, reac-
tions from (1), respectively. The function α̂(x) = k1 + k2x is
the total propensity function of network (1), i.e. the sum of
propensity functions of all the underlying reactions.

We now wish to structurally modify network (1) in such
a way that (i) the deterministic model from (2) is preserved,
while (ii) a control is gained over the interevent time from the
stochastic model. We accomplish this by, firstly, imposing
a conservation law on the target species s from network (1),
thereby truncating its state-space, X̂(t) ≤C, where C ∈ Z>

is a conservation constant. The conservation law is imposed
in such a way that the total propensity function of the result-
ing network, denoted by α̂C : [0,C]∩Z≥→ R≥, is given by
α̂C(x) = k1+k2x, i.e. it has the same form as the total propen-
sity function of the original network (1), but is restricted to
the bounded discrete domain [0,C]∩Z≥. With the restric-
tion imposed, we furthermore embed appropriate reactions
to the conservative network, so that an arbitrary nonnega-
tive function, denoted by g : [0,C]∩Z≥ → R≥, is added to
α̂C, i.e. the resulting total propensity function is given by
α(x) = α̂C(x)+g(x). This implies that the interevent time is
controllably decreased for any desired state x, i.e. in a state-
dependent manner. Equivalently, the two requirements imply
that a controllable state-dependent noise is introduced into the

stochastic dynamics. We have designed a three-step algorithm,
given as Algorithm 1, which achieves such goals for arbitrary
reaction networks under mass-action kinetics. Let us describe
properties of the algorithm by applying it on network (1).

Firstly, in order to bound the domain of species s, an
additional species s̄ is introduced into network (1), in such a
way that s and s̄ satisfy a pairwise stoichiometric conservation
law, formally written s+ s̄ = constant. Secondly, to ensure
the obtained enlarged network has the same deterministic
model as the initial network (1), despite the added species s̄,
an auxiliary species I1 is introduced. More precisely, applying
the first two steps of the algorithm leads to network R̂1(s, s̄)∪
R2

1(s̄) given by:

R̂1(s, s̄) : s̄+ I1 k1−→ s+ I1,

s
k2−→ s̄,

R2
1(s̄) : ∅ 1/µ−−→ I1,

s̄+ I1 1/µ−−→ s̄. (3)

Species s, s̄, I1 from (3) react according to the four reactions
with rate coefficients k1,k2,1/µ ∈ R≥. Reaction network
R̂1 = R̂1(s, s̄), given in (3), is obtained from network R̂ =
R̂(s), given by (1), in the following way: since the first re-
action in R̂ increases the copy-number of s by one, s̄ and
I1 are added to the reactants of the reaction, and I1 is added
to the products, leading to the first reaction in R̂1. Since
the second reaction in R̂ decreases the copy-number of s by
one, s̄ is added to the products, leading to the second reac-
tion in R̂1. This ensures that the desired conservation law,
s+ s̄ = constant, holds. The superscript in I1 indicates that
species I1 is involved as a catalyst in a reaction of R̂1 in which
s is increased by one. The subscript in R2

1 = R2
1(s̄) indicates

that the network describes production and decay of I1.
The initial value problem for the deterministic model of (3)

is given by

dx
dt

= k1(c− x)y− k2x,

dy
dt

=
1
µ
(1− (c− x)y) ,

x(0) = x0,

y(0) = y0, (4)

where x = x(t) ∈ [0,c]∩R≥, and y = y(t) ∈ R≥, are the con-
centrations of species s, and I1, from (3), respectively, with
x0,y0 ∈ R≥ and c ∈ R>. We have used the kinetic conserva-
tion law x̄(t) = c− x(t), where x̄(t) is the concentration of
species s̄, and c is a finite time-independent conservation con-
stant. Note that the conservation law truncates the state-space
of x. Let us now describe relationships between systems (2)
and (4), starting with the weak statement: for c > k1/k2, and
for any µ > 0, solutions of (2) and (4) are the same in the
long-time limit t → ∞. More precisely, the x-component of
the equilibrium point of (4) is identical to the equilibrium
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point of (2), and both are stable. In supplementary material,
we justify the strong statement: for sufficiently large c, and
for 0 < µ � 1, solutions of (2) and (4), with the same initial
conditions, are approximately the same at each time t ≥ 0.
For these reasons, we call R2

1 a drift-corrector network. Let
us note that we have assumed the rate coefficients appearing
in subnetwork R2

1(s̄) from (3) are identical for simplicity, and
that this assumption may be relaxed. More precisely, if the
rate coefficients of the first and second reactions in R2

1(s̄) are
1/µ1 and 1/µ2, respectively, then the same conclusion from
this paragraph holds, provided the rate coefficient k1 from
subnetwork R̂1(s, s̄) is replaced by (µ1/µ2)k1.

2.1 Zero-drift Network R3
1,1

Having completed the first two steps, let us focus on the third
(and final) step, in which we introduce arbitrary noise into the
stochastic model of (3), without influencing the deterministic
model (4). Let us start our consideration by embedding into (3)
network R3

1,1 = R3
1,1(s, s̄), which is given by

R3
1,1(s, s̄) : s+ s̄

k1,1−−→ 2s,

s+ s̄
k1,1−−→ 2s̄. (5)

The subscript in R3
1,1 indicates that the underlying reactions

have one molecule of s, and one of s̄, as reactants. The two
reactions in (5) preserve the conservation law from (3). Fur-
thermore, the first and second reactions produce, and degrade,
exactly one molecule of s, respectively, and they fire at the
same rate. Consequently, embedding R3

1,1 into (3) does not
affect the underlying deterministic model (4), and we call
R3

1,1 a zero-drift network. Note that the deterministic dy-
namics are not preserved if the rate coefficients in (5) are
different. However, R3

1,1 does affect the underlying stochas-
tic model [45, 46, 47, 22]. To illustrate this, let us consider
network R3

1,1 in isolation: the reactions from (5) fire when
X(t) ∈ (0,C), but not when X(t) ∈ {0,C}, so that R3

1,1 in iso-
lation fires until X(t) takes one of the extreme values {0,C}.
Here, X(t)∈Z≥, and C ∈Z>, are the copy-number of species
s appearing in (3) and (5) at time t ≥ 0, and the finite conserva-
tion constant, respectively. Note that a possible biologically-
relevant realization of network (5), aside from e.g. DNA
strand-displacement mechanism, is a dimer version of the
bifunctional histidine kinase/phosphatase reported in [48].

In supplementary material, we derive equation (S11) which
describes the effective behavior of the Markov chain X(t)
from network R̂1∪R2

1 ∪R3
1,1 in the limit µ → 0, and it fol-

lows that the effective total propensity function of the network,
denoted α(x), satisfies

α(x)≈ α̂C(x)+2K1,1β1,1(x), as µ → 0, (6)

α̂C(x) = k1 + k2x. (7)

Function α̂C : [0,C]∩Z≥ → R≥ has the form of the total
propensity of network (1), and K1,1β1,1(x) is the propensity

function of reactions in (5), with the scaled factors given by

K1,1 =

(
C
2

)2

k1,1, β1,1(x) =
(

C
2

)−2

x(C− x). (8)

Function β1,1(x) is displayed in Figure 1(a), where one can
notice its parabolic shape, arising from the underlying conser-
vation law X(t)+ X̄(t) =C, which holds for all t ≥ 0, where
X̄(t) ∈ Z≥ is the copy-number of s̄ at time t ≥ 0. Compar-
ing (6) and (7), it follows that, as µ → 0, the mean interevent
time for network R̂1∪R2

1 ∪R3
1,1 is lower than for network (1),

in the regions of the common state-space where β1,1(x) 6= 0,
i.e. for x ∈ (0,C). Coefficient K1,1 controls by how much
the interevent time is reduced. Equivalently, β1,1(x), and K1,1,
determine the support, and magnitude, respectively, of the
state-dependent intrinsic noise which network (5) introduces
into the dynamics of network (3).

In supplementary material, we rigorously formulate the
following two approximate results (given as equations (S13),
and (S17), respectively)

lim
K1,1→0

p(x)≈
{

1
x!

(
k1
k2

)x
exp
(
− k1

k2

)
, if x ∈ [0,C],

0, otherwise,

(9)

lim
K1,1→∞

p(x)≈





1− 1
C

k1
k2
, if x = 0,

1
C

k1
k2
, if x =C,

0, otherwise,

(10)

where p(x) is the stationary probability mass function (PMF)
corresponding to network R̂1∪R2

1 ∪R3
1,1 in the limit µ → 0,

i.e. the probability that there are x molecules of species s as
µ→ 0 in the long-time limit t→∞. Let us interpret analytical
results (9) and (10), and compare them with the numerically
obtained counterparts. In Figure 1(b), we display numerically
obtained stationary x-marginal PMFs for different values of
K1,1, with the rest of the (dimensionless) parameters fixed to
k1 = 2.5, k2 = 0.5, µ = 10−3, and C = 15. It can be seen that,
for K1,1 = 0, i.e. when the zero-drift network R3

1,1 does not
fire, the PMF matches that of network (1), i.e. it is a Poisso-
nian, as predicted by (9). Let us note that the matching of the
PMFs of networks (1) and R̂1∪R2

1 ∪R3
1,1 relies on choosing

sufficiently large rate coefficients 1/µ in the drift-corrector
network R2

1 . When K1,1 = 5, the PMF appears closer to a uni-
form distribution, than does the PMF when K1,1 = 0. Finally,
for the larger value K1,1 = 105, i.e. when zero-drift network
R3

1,1 fires much faster than network R̂1, the PMF redistributes
across the domain, accumulating at the boundary, and becom-
ing bimodal. This is in qualitative agreement with (6), and in
quantitative agreement with (10), which predicts p(0)≈ 0.7
and p(15)≈ 0.3. In Figure 1(c), a representative sample path
is shown, obtained by applying the Gillespie algorithm on
network R̂1 ∪R2

1 ∪R3
1,1, when K1,1 = 105. Also shown is

a trajectory obtained by numerically solving the determinis-
tic model (4). Consistent with Figure 1(b), the sample path
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switches between the boundary of the state-space, with a bias
towards the left boundary point x = 0. This is in contrast to
the deterministic trajectories, which are globally attracted to
the equilibrium point x = 5.

2.2 General Zero-drift Networks R3
n,n̄

The zero-drift network R3
1,1(s, s̄), given by (5), involves a

single molecule of s and s̄ as reactants, and adds the noise at
x ∈ [1,C− 1], i.e. in the interior of the state-space. Similar
networks may be used to add the noise at any point in the
state-space, without influencing the deterministic dynamics.
In particular, in (15) and (16), we present general zero-drift
networks R3

n,n̄(s, s̄), which involve n molecules of s, and n̄ of
s̄, as reactants, and add the noise at x ∈ [n,C− n̄], where
n, n̄ ∈ N0, and (n + n̄) ≤ C. Embedding a union of such
networks, ∪(n,n̄)R3

n,n̄(s, s̄), into (3), we arrive at the result
similar to (6), with K1,1β1,1(x) replaced by the linear com-
bination ∑(n,n̄) Kn,n̄βn,n̄(x). The scaled rate coefficient Kn,n̄,
and function βn,n̄(x), are given in supplementary material
as equations (S18), and (S19), respectively, where we also
justify that an arbitrary nonnegative function, defined on a
bounded discrete domain, may be represented by a suitable
sum ∑(n,n̄) Kn,n̄βn,n̄(x).

To illustrate general zero-drift networks, let us start with
embedding into network (3), with the conservation constant
C = 15, the zero-drift network R3

5,10(s, s̄), satisfying (15) with
n = 5 and n̄ = 10. In Figure 1(d), we show propensity func-
tion β5,10(x), which is nonzero only at x = 5. In (e), we
show the numerically approximated stationary x-marginal
PMFs underlying network R̂1∪R2

1 ∪R3
5,10 for different val-

ues of K5,10, with the rest of the parameters as in Figure 1(b).
One can notice that, under the action of network R3

5,10, the
PMF is gradually decreased to nearly zero at x = 5 (the de-
terministic equilibrium), and becomes bimodal, with the two
noise-induced maxima at x = 4 and x = 6. In (f), we show a
corresponding representative sample path.

In general, noise-induced multimodality may be achieved
by a suitable combination of zero-drift networks. For exam-
ple, let us synthetize noise such that the stationary PMF is
trimodal, and nearly zero everywhere, except at x ∈ {1,7,11}.
Such a task may always be achieved by a suitable combina-
tion of the basis zero-drift networks, i.e. those zero-networks
that induce noise only at a single point in the state-space
(e.g. subnetwork R3

5,10 with propensity function shown in
Figure 1(d), see also supplementary material). In the present
case, one could construct the thirteen basis zero-drift net-
works which add large enough noise at x ∈ [0,15]\{1,7,11}.
Here, for simplicity, we achieve the task with only four zero-
drift networks. In Figures 1(g)–(i), we consider network
R̂1∪R2

1 ∪ (R3
0,15∪R3

2,9∪R3
8,5∪R3

12,0). We denote β (x)≡
β0,15(x)+β2,9(x)+β8,5(x)+β12,0(x), and, for simplicity, take
K ≡ K0,15 = K2,9 = K8,5 = K12,0. The resultant propensity
function β (x) is shown in (g), while in (h) it can be seen that
the PMF becomes trimodal for sufficiently large K, with the
maxima at x = {1,7,11}. This is consistent with the corre-

sponding representative sample path shown in blue in panel
(i), which display tristability. Let us note that, while the
stochastic dynamics display multistability in (c), (f) and (i),
the corresponding deterministic dynamics, also shown in the
plots, remain monostable.

2.3 Compilation Into DNA-based Networks
Chemical reaction networks, whose stochastic dynamics are
controlled by Algorithm 1, may be mapped to the nucleic-
acid-based ones. The mapping takes a different form de-
pending on which molecular compiler is utilized and, in this
section, we briefly outline two approaches. Firstly, the molec-
ular compiler put forward in [23], based on 4-domain signal
strands, requires that the input reaction network consists of
up-to second-order reactions. On the other hand, let us note
that it allows reactions with identical reactants (as is the case
in zero-drift networks). Thus, one is generally required to
apply a single pre-compiling step, where the higher-order re-
actions (i.e. reactions involving three or more reactants) are
approximated by systems of up-to second-order ones [49, 50],
before using the 4-domain DNA compiled. However, the
4-domain compiler has only been shown to preserve the de-
terministic dynamics when mapping an abstract network into
a DNA-based one [23]. In supplementary material, we show
that the stochastic dynamics are also preserved, making the
compiler compatible with the noise-control algorithm. Fur-
thermore, we apply the compiler to a network of the form (3)
and (5), and briefly discuss the pre-compilation step, leaving
the details for a future publication [50]. On the other hand,
the 2-domain molecular compiler put forward in [51], and
experimentally implemented in [52], can be used directly,
without any pre-compilation, since it automatically handles
higher-order reactions.

3. A Two-species Exotic System

Consider the two-species network R̃(s1,s2), given by

R̃(s1,s2) : ∅ k1−→ s1, ∅ k7−→ s2,

s1
k2−→ 2s1, s2

k8−→∅,

2s1
k3−→ 3s1, s1 + s2

k9−→ s1 +2s2,

s1 + s2
k4−→ s2, 2s2

k10−−→ 3s2,

2s1 + s2
k5−→ s1 + s2, 3s2

k11−−→ 2s2,

s1 +2s2
k6−→ 2s1 +2s2, (11)

where species s1 and s2 react according to the eleven reactions
with rate coefficients k1,k2, . . . ,k11 ≥ 0. We denote the copy-
numbers of species s1, and s2, at time t by X1(t), and X2(t),
respectively. It was established in [20] that, for particular
choices of the rate coefficients, the deterministic model of
reaction network (11), given in as equation (S34) in supple-
mentary material, exhibits exotic dynamics: it undergoes a
homoclinic bifurcation, and displays a bistability involving



Noise control for molecular computing — 6/13

a limit cycle and an equilibrium point. On the other hand,
it is demonstrated in [21] that the stochastic model of (11)
is not necessarily sensitive to the deterministic bifurcation,
and may effectively behave in a monostable manner. The
latter point is demonstrated in Figure 2(c), where we show in
red numerically approximated x1-solutions of equation (S34)
from supplementary material, one initiated in the region of
attraction of the equilibrium point, while the other of the limit
cycle. For a comparison, we also show in blue a representative
sample path generated by applying the Gillespie algorithm
on (11). It can be seen that the stochastic solution spends sig-
nificantly more time near the deterministic equilibrium point.
To gain a clearer picture, we display in Figures 2(a), and (b),
the joint, and the x1-marginal, stationary PMFs, respectively,
underlying network (11), which have been obtained numeri-
cally for the same parameter values as in Figure 2(c). In (b),
one can notice that the PMF is bimodal, but the left peak,
corresponding to the limit cycle, is significantly smaller than
the right peak, which corresponds to the stable equilibrium
point.

We now apply Algorithm 1 on network (11) to achieve
two goals. Firstly, we balance the sizes of the two peaks
of the stationary PMF from Figure 2(b), thereby forcing the
stochastic system to spend comparable amounts of time at
the two deterministic attractors. Secondly, we reverse the
situation shown in Figure 2(b), by making the left PMF
peak significantly larger than the right one, thereby forc-
ing the stochastic system to spend most of the time near
the limit cycle. We could achieve the goals by introducing
species s̄1, s̄2 into (11), and using suitable basis zero-drift
networks. We take a simpler approach, by mapping (11)
to R̃1(s1,s2, s̄2)∪R2

1(s̄2)∪ (R3
0,C2−10(s2, s̄2)∪R3

30,0(s2, s̄2)),
which is given as equation (S35) in supplementary material.
For our purposes, only one of s̄1, s̄2 is sufficient, since the
stochastic dynamics of s1 and s2 are coupled. We have chosen
s̄2 for convenience, since x2-state-space may be truncated at a
lower value, C2 = 180, than x1-state-space (see also Figure 2
(a)). The x2-component of the deterministic limit cycle satis-
fies x2 ∈ (10,30). Correspondingly, we introduce two zero-
drift networks: R3

0,C2−10(s2, s̄2), and R3
30,0(s2, s̄2), which re-

distribute the PMF from x2 ∈ [0,10], and from x2 ∈ [30,C2],
respectively, to the limit cycle region, x2 ∈ (10,30). We fix
the scaled rate coefficient K2

0,C2−10 to a large value (so that the
PMF is nearly zero for x2 ∈ [0,10]), and vary the coefficient
K2

30,0, which redistributes the PMF from the deterministic
equilibrium point to the limit cycle. Network R2

1(s̄2) is neces-
sary for the preservation of the deterministic dynamics of (11)
under the application of Algorithm 1.

In Figures 2(d), and (e), we show the joint, and x1-marginal,
stationary PMFs for an intermediate value of K2

30,0, when
the PMF is partially redistributed from x2 ∈ [30,C2] to x2 ∈
(10,30), so that the two peaks in (e) are of comparable sizes.
In Figure 2(f), we show a representative sample path, ob-
tained by applying the Gillespie algorithm on network (S35),
together with the deterministic trajectories obtained by solv-

ing (S34). One can notice that the stochastic system now
spends significantly more time near the limit cycle, when com-
pared to (c). Let us note that stochastic switching between a
coexisting equilibrium point and a limit cycle in a DNA-based
reaction network has been observed experimentally [26]. In
Figure 2(f)–(g), we show analogous plots, but for a sufficiently
large value of K2

30,0, when the PMF is almost completely redis-
tributed from x2 ∈ [30,C2] to x2 ∈ (10,30). Now, in contrast
to Figure 2(a)–(c), the PMF becomes unimodal, and concen-
trated around the limit cycle. Let us note that the red trajecto-
ries from Figures 2(f) and (i) were generated by numerically
solving the deterministic model (S34) from supplementary
material. For our purposes, it is not necessary to solve the cor-
responding (stiff) deterministic model of network (S35) from
supplementary material. The reason is that Algorithm 1 does
not influence the deterministic equilibrium points of a given
reaction network, regardless of the choice of the kinetic algo-
rithm parameters. Thus, while the deterministic limit cycle is
not necessarily preserved for the algorithm parameters chosen
in Figure 2(i), the enclosed deterministic unstable focus is
necessarily preserved. Consequently, the blue sample path
shown corresponds to noise-induced oscillations either near
a deterministic limit cycle, or near a deterministic unstable
focus.

4. Discussion
In this paper, we have presented the noise-control algorithm,
which is given as Algorithm 1. The algorithm maps an input
chemical reaction network to output networks, all under mass-
action kinetics, by introducing appropriate additional species
and reactions, such that the output networks satisfy the follow-
ing two properties. Firstly, the output networks have the same
deterministic model as the input network, in appropriate limits
of some of the parameters (rate coefficients) introduced by
the algorithm. Secondly, controllable state-dependent noise is
introduced into the stochastic model of the output networks.
Thus, Algorithm 1 may be used to control the intrinsic noise
of a given reaction network under mass-action kinetics, while
preserving the deterministic dynamics. Let us note that the
asymptotic conditions for the algorithm parameters are nec-
essary for preservation of the time-dependent deterministic
solutions. However, the time-independent deterministic so-
lutions (the deterministic equilibrium points), which capture
important features of the deterministic dynamics, are pre-
served under the algorithm even if the asymptotic conditions
are not satisfied.

The algorithm has been applied to a test problem, taking
the form of the one-species production-decay system given
by (1). Using analytical and numerical methods, we have
shown that the additional intrinsic noise, introduced by the
algorithm, may be used to favorably modify the stationary
probability mass function at arbitrary points in the state-space,
as demonstrated in Figure 1. For example, in Figure 1(b),
the noise is added to the whole interior of the state-space,
while in (e) only at a single point, in both cases resulting in
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noise-induce bimodality. On the other hand, in Figure 1(h),
by adding the noise to specific points in the state-space, the
network is redesigned to display noise-induced trimodality.
As shown in Figures 1(c), (f), (i), the blue stochastic trajec-
tories display multistability, while the red deterministic ones
remain monostable.

The algorithm has also been applied to a more challenging
problem, taking the form of the two-species system given
by (11), which, for the parameters taken in this paper, at the
deterministic level displays a bistability involving an equilib-
rium point and a limit cycle [20, 21]. At the stochastic level,
the system is significantly more likely to be found near the
equilibrium point, as demonstrated in Figures 2(a)–(c). We
have used the algorithm to redesign network (11), so that the
stochastic system spends comparable amounts of time near
the two attractors, as demonstrated in Figures 2(d)–(f). The
network was also redesigned to display noise-induced oscil-
lations, which is shown in Figures 2(g)–(i). Put another way,
one may view the dynamics shown in Figures 2(a)–(c) as be-
ing contaminated by the noise, which disrupts the oscillatory
chemical computation. Algorithm 1 has been applied to ad-
dress the disruption by appropriately reprogramming the noise.
Such control is of practical relevance, since stochastic switch-
ing between an equilibrium and a limit cycle has already been
observed experimentally in a DNA-based network [26].

The controllable state-dependent noise is generated by
Algorithm 1 using the zero-drift networks (15) and (16). Any
nonnegative function, defined on a bounded discrete domain,
may be represented by a linear combination of propensity
functions induced by an appropriate union of the zero-drift
networks. Thus, choosing suitable zero-drift networks, the
algorithm may control the intrinsic noise at arbitrary points
in the state-space of the stochastic dynamics of reaction net-
works. The cost of such a precision in noise-control is a larger
number of reactants in the underlying zero-drift networks.
However, while the high-molecular reactions introduced by
the algorithm are more expensive to synthetize, they do not
limit applicability of Algorithm 1 to DNA computing. The
reason for this is that such reactions may always be broken
down into sets of up-to bimolecular reactions, with asymptoti-
cally equivalent dynamics [49, 50], as outlined in Section 2.3
and exemplified in supplementary material. Let us stress that
the lower the molecular copy-numbers of a given reaction
network are, the more important it becomes to control their
stochastic behavior, and, fortunately, the less costly Algo-
rithm 1 becomes (since the zero-drift networks involve less
reactants).

Algorithm 1 constitutes a qualitatively novel scientific
discovery which will facilitate the progress of nucleic-acid-
based computing, such as DNA computing [23, 24, 25, 26].
In particular, we put forward a hybrid approach for construct-
ing DNA-based reaction networks: the deterministic model
may be used to guide the construction of reaction networks,
and then Algorithm 1 may be applied to favorably reprogram
the intrinsic noise in the stochastic model, while preserving

the mean-field behavior. Put another way, the deterministic-
stochastic hybrid approach allows one to reshape the probabil-
ity distributions of target chemical species, while inheriting
the fixed mean-field behavior. This provides a control over,
not only the probability distributions of the chemical species,
but also over their sample-paths, as e.g. demonstrated in Sec-
tion 3 with a noisy limit cycle. Furthermore, the algorithm
does not depend on the initial conditions of the underlying
species, beyond the conservation laws. This is in contrast
to the methods presented in [53, 54], which do not attempt
to control the sample-path behavior, and whose performance
depends strongly on the initial conditions of the underlying
species, which may impose significant experimental chal-
lenges. The noise-control algorithm may be of critical im-
portance when the synthetic networks involve species at low
copy-numbers, since then the stochastic effects may play a
significant role [24, 25, 26, 33, 34, 13, 18, 21, 30, 31, 32]. On
the one hand, the algorithm may enhance our understanding
of biology, via theoretical and experimental investigations of
the role of intrinsic noise in both prebiotic and biotic chemical
processes [24, 25, 26]. On the other hand, the algorithm may
facilitate in vivo implementations of synthetic DNA-networks,
where the reactions may take place at a cellular level. In
such circumstances, without a control, the noise may contami-
nate the performance of the synthetic networks. Algorithm 1
provides a way to control the stochastic effects, enriching
the DNA-based synthetic systems with novel, noise-induced
functionalities. For example, one may envisage using the
algorithm to design nucleic-acid-based circuits interacting fa-
vorably with gene-regulatory networks, where noise-induced
multimodality is known to play a critical role [55, 56]. On the
one hand, the algorithm could be used to induce multimodality
in the probability distribution of an appropriate intracellular
protein, resulting in cell phenotype diversity. On the other
hand, the algorithm could also be utilized to make the protein
distribution narrower around the single peak, thus inducing a
cell phenotype robustness.
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Figure 1. Panels (a), (d) and (g) display propensity functions β1,1(x), β5,10(x) and β (x)≡ β0,15(x)+β2,9(x)+β8,5(x)
+β12,0(x), respectively. Panels (b), (e) and (h) display the stationary PMF of networks R̂1∪R2

1 ∪R3
1,1, R̂1∪R2

1 ∪R2
5,10 and

R̂1∪R2
1 ∪ (R3

0,15∪R3
2,9∪R3

8,5∪R3
12,0), respectively, where R̂1∪R2

1 is given by (3), while the rest of the (zero-drift)
networks are as given in second step of Algorithm 1. In (h), K ≡ K0,15 = K2,9 = K8,5 = K12,0. Panels (c), (f), and (i) display in
blue the sample paths, corresponding to the PMFs shown as the blue histograms in (b), (e) and (h), respectively, and were
obtained by applying the Gillespie algorithm on the underlying networks. Also shown in red are the deterministic trajectories,
obtained by numerically solving the corresponding deterministic models. The dimensionless parameters are fixed to: k1 = 2.5,
k2 = 0.5, µ = 10−3, C = 15, and the state-space for species I1 is bounded in (b), (e) and (h) by 50. In (b) and (e), the
two-species stationary chemical master equation (CME) was numerically solved, while in (h) the boundary zero-drift networks
are taken in the asymptotic limits µ0,15,µ12,0→ 0. The blue and red trajectories from panel (i) were generated with
(µ0,15)

−1M0,15 = (µ12,0)
−1M12,0 = 107. The trajectories from (c), (f) and (i) were all initiated at the deterministic equilibrium,

X(0) = 5.
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Figure 2. Panel (a) displays the joint stationary PMF of network (11), while (d) and (g) display the stationary PMFs of
network (S35) from supplementary material, for (K0,C2−10,K30,0) = (1018,2×108) and (K0,C2−10,K30,0) = (1018,1018),
respectively, with the rest of the parameters being the same. Panels (b), (e) and (h) display the x1-marginal PMFs corresponding
to (a), (b) and (c), respectively. Panels (c), (f) and (i) display in blue the sample paths, corresponding to the PMFs shown in (b),
(e) and (h), respectively, and were obtained by applying the Gillespie algorithm on the underlying networks. Also shown in red
are two deterministic trajectories, one initiated near the equilibrium point, while the other near the limit cycle, obtained by
numerically solving equation (S34) from supplementary material. The dimensionless parameters are fixed to: k1 = 4,
k2 = 1.408, k3 = 0.0518, k4 = 0.164, k5 = 3.1×10−3, k6 = 4.8×10−3, k7 = 4, k8 = 8, k9 = 0.16, k10 = 0.104,
k11 = 2.1×10−3. In (a)–(b), (d)–(e) and (g)–(h), the stationary chemical master equation (CME) is numerically solved, with
the state-space truncated to (x1,x2) ∈ [0,C1]× [0,C2], where C1 = 300, C2 = 180, and µ,µ0,C2−10,µ30,0→ 0. The blue sample
paths from panels (f) and (i) were generated with (µ−1,(µ0,C2−10)

−1M0,C2−10,(µ30,0)
−1M30,0) = (103,1020,2×1010) and

(µ−1,(µ0,C2−10)
−1M0,C2−10,(µ30,0)

−1M30,0) = (103,1020,1020), respectively. The blue trajectories from (c), (f) and (i) were
all initiated near the deterministic limit cycle.
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Input: Let the input reaction network be given by

R̂(s1, . . . ,sN) :
N

∑
i=1

ci jsi
k j−→

N

∑
i=1

c′i jsi, j ∈ {1, . . . ,M}, (12)

where s1, . . . ,sN , are the species, k j the reaction rate coefficients, and ci j,c′i j the stoichiometric coefficients.

(1) Step: Reaction network R̂, given by (12), is mapped to a pairwise conservative network R̂1 given by

R̂1(s1, . . . ,sN , s̄1, . . . , s̄N) :
N

∑
i=1

(
ci jsi +(∆xi j s̄i + I

∆xi j
i )×1N(∆xi j)

) k j−→

N

∑
i=1

(
c′i jsi− (∆xi j s̄i)×1N(−∆xi j)+ I

∆xi j
i ×1N(∆xi j)

)
, j ∈ {1, . . . ,M}. (13)

Here, s̄i, I
∆xi j
i are additional species, ∆xi j = (c′i j− ci j), and 1N(·) is the indicator function of the natural numbers.

(2) Step: For each species I
∆xi j
i , a drift-corrector network is constructed, R2

∆xi j
(s̄i) = R2

∆xi j
(s̄i; I

∆xi j
i ,µ), given by

R2
∆xi j

(s̄i) : ∅ 1/µ−−→ I
∆xi j
i ,

∆xi j s̄i + I
∆xi j
i

1/µ−−→ ∆xi j s̄i. (14)

where 0≤ µ � 1.

(3) Step: For each species s̄i, a union of zero-drift networks may be constructed. Let n, n̄ ∈ N0, and (n+ n̄)≤Ci. Network
R3

n,n̄(si, s̄i) = R3
n,n̄(si, s̄i; ki

n,n̄), with n, n̄ 6= 0, is given by

R3
n,n̄(si, s̄i) : nsi + n̄s̄i

ki
n,n̄−−→ (n+1)si +(n̄−1)s̄i,

nsi + n̄s̄i
ki

n,n̄−−→ (n−1)si +(n̄+1)s̄i. (15)

Network R3
0,n̄(si, s̄i) = R3

0,n̄(si, s̄i; Bi,ki
0,n̄,µ0,n̄), with n̄ 6= 0, is given by

R3
0,n̄(si, s̄i) : n̄s̄i

ki
0,n̄−−→ si +(n̄−1)s̄i,

Cisi +Bi
ki

0,n̄−−→ (Ci−1)si + s̄i +Bi,

n̄s̄i
1/µ0,n̄−−−→ n̄s̄i +Bi,

Cisi +Bi
1/µ0,n̄−−−→Cisi, (16)

where 0≤ µ0,n̄� 1, and Bi is an additional species. Network R3
n,0 = R3

0,n(s̄i,si; B̄i,ki
n,0,µn,0).

Output: An output reaction network R is given by

R = R̂1∪R2∪R3, (17)

where R2 = ∪i∪∆xi j R
2
∆xi j

(s̄i), and R3 = ∪i∪(n,n̄) R3
n,n̄(si, s̄i).

Algorithm 1. The noise-control algorithm.



Supplementary material for
Noise control for molecular computing

Plesa et al., Journal of the Royal Society Interface

Notation. Set R is the space of real numbers, R≥ the space
of nonnegative real numbers, and R> the space of positive
real numbers. Similarly, Z is the space of integer numbers,
Z≥ the space of nonnegative integer numbers, and Z> the
space of positive integer numbers. Given two real numbers
a,b ∈R, open interval {x ∈R|a < x < b} is denoted by (a,b),
while closed interval {x ∈ R|a≤ x≤ b} by [a,b]. Given sets
R1 and R2, their union is denoted by R1 ∪R2, while their
intersection by R1 ∩R2. Support of function f : Z→ R is
defined by supp( f ) = {x ∈ Z| f (x) 6= 0}.

1. Dynamical models of chemical
reaction networks

Let us consider the mass-action reaction network R given by

R(s1, . . . ,sN) :
N

∑
i=1

ci jsi
k j−→

N

∑
i=1

c′i jsi, j ∈ {1, . . . ,M},

(S1)

where s1, . . . ,sN are the reacting species, k j the reaction rate
coefficients, and ci j,c′i j the stoichiometric coefficients. Let
us denote by c j,c′j ∈ NN

0 the vectors of the stoichiometric
coefficients of reaction j, and let ∆x j = c′j− c j.

The deterministic model of reaction network (S1) is given
by the following system of ordinary-differential equations
(ODEs), known as the reaction-rate equations [1]:

dx
dt

=
M

∑
j=1

k jxc j ∆x j, i ∈ {1, . . . ,N}. (S2)

Here, x = x(t) ∈ RN
≥ is the vector of species concentrations,

i.e. xi(t) is the concentration of species si at time t, and
xc j = ∏N

l=1 x
cl j
l , with the convention 00 = 1.

The stochastic model of reaction network (S1) is given by
the following system of partial difference-differential equa-
tions, known as the chemical master equation (CME) [1, 2]:

∂
∂ t

p(x, t) = L p(x, t) = ∑
j
(E
−∆x j
x −1)

(
α j(x)p(x, t)

)
.

(S3)

Here, p(x, t) is the probability mass function (PMF), i.e. the
probability that the vector of copy-numbers X = X(t) ∈ ZN

≥
of species s1, . . . ,sN at time t is given by x. Linear operator
L is called the forward operator, and step operator E

−∆x j
x is

such that E
−∆x j
x p(x, t) = p(x−∆x j, t). Function α j(x) is the

propensity function [1] of the j-th reaction from (S1), and is
given by

α j(x) = k jx
c j = k j

N

∏
l=1

x
cl j

l , (S4)

where x
cl j

l denotes a falling factorial of xl , i.e. x
cl j

l = xl(xl−
1) . . .(xl− cl j +1), with the convention x0 = 1 for all x ∈ Z≥.

2. Analysis of dynamical models of
network R̂1∪R2

1 ∪R3
1,1

In what follows, we analyse the deterministic and stochastic
models of the output reaction network R̂1∪R2

1 ∪R3
1,1, con-

sisting of the subnetworks given by (3) and (5) in the paper,
in the asymptotic limit µ → 0 (when the drift-corrector net-
work R2

1 fires infinitely fast). We also analyse the stochastic
model in the asymptotic limits K1,1→ 0, and K1,1→∞ (when
the zero-drift network R3

1,1 does not fire, and when it fires
infinitely fast, respectively). The obtained limiting dynamics
of the output network are compared with the dynamics of the
input network R̂, given by (1) in the paper.

2.1 The deterministic model in the limit µ → 0
Let us analyse equation (4), from the paper, in the asymptotic
limit µ → 0. It follows from the Tikhonov theorem [3] that
the ODE for y, given by second equation in (4), reduces to the
algebraic equation y = (c− x)−1 as µ → 0. Substituting the
algebraic equation into (4) results in

dx
dt

= k1− k2x,

x(0) = x0, as µ → 0. (S5)

Initial value problems (2), from the paper, and (S5) have
the same form, and let us denote their solutions by x̂(t; x̂0)
and x(t; x0), respectively. Then, choosing the conserva-
tion constant c ≥ maxt≥0x̂(t; x̂0) < ∞, and x0 = x̂0, ensures
that the concentration of auxiliary species s̄ is nonnegative,
x̄(t) = c− x(t) ≥ 0, and that the solutions of (2) and (4) are
asymptotically equivalent in the limit µ → 0.

2.2 The stochastic model in the limit µ → 0
CME induced by network R̂1∪R2

1 ∪R3
1,1 is given by

∂
∂ t

p(x,y, t) =
(

L 1 +
1
µ

L 2
1 +K1,1L

3
1,1

)
p(x,y, t),

(S6)

where x(t),y(t) ∈ Z≥ are copy-numbers of species s, I1

from (3), respectively, with

L 1 = k1(E−1
x −1)((C− x)y)+ k2(E+1

x −1)x,

L 2
1 = (E−1

y −1)+(C− x)(E+1
y −1)y,

L 3
1,1 = (E−1

x +E+1
x −2)β1,1(x), (S7)

and K1,1,β1,1(x) given in equation (8), in the paper. Opera-
tors L 1,L 2

1 ,L
3

1,1 are induced by subnetworks R̂1,R2
1 ,R

3
1,1,

respectively.
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Let us analyse system (S6) in the limit µ→ 0, and consider
the following perturbation series:

p(x,y, t) = p0(x,y, t)+µ p1(x,y, t)+ . . .

+µ i pi(x,y, t)+ . . . , (S8)

with i≥ 2. Substituting (S8) into (S6), equating terms of equal
powers in µ , and writing p0 = p0(x,y, t), p1 = p1(x,y, t), the
following system of equations is obtained:

O

(
1
µ

)
: L 2

1 p0 = 0,

O(1) : −L 2
1 p1 = (L 1 +K1,1L

3
1,1−

∂
∂ t

)p0. (S9)

Order 1/µ equation. Let us write p0(x,y, t) = p0(y|x)p0(x, t),
where p0(y|x) is the stationary PMF of y conditional on
x, while p0(x, t) is the marginal PMF of x. Substituting
p0(x,y, t) = p0(y|x)p0(x, t) into the first equation in (S9), with
t and x fixed, leads to−L 2

1 p0(y|x) = 0. It follows that p0(y|x)
is the Poisson distribution with parameter (C− x)−1, so that
the zero-order PMF is given by

p0(x,y, t) =
(

1
y!

(
1

(C− x)

)y

exp
(
− 1
(C− x)

))
p0(x, t).

(S10)

Order 1 equation. Substituting (S10) into the second
equation in (S9), summing over all the possible states y ∈
Z≥, using (S7), and equalities ∑y yp0(y|x) = (C− x)−1 and
∑y p0(y|x) = 1, one obtains the effective CME, given by

∂
∂ t

p0(x, t) =
(
L +K1,1L

3
1,1
)

p0(x, t), (S11)

where L is the forward operator corresponding to network (1),
and has the following form

L = k1(E−1
x −1)+ k2(E+1

x −1)x. (S12)

2.2.1 Limit K1,1→ 0
Setting the left-hand side to zero, and taking K1,1 = 0, in (S11),
and assuming C is fixed to a sufficiently large value, it fol-
lows that the stationary PMF is a Poisson distribution with
parameter k1/k2 [2]:

p0(x) =

{
1
x!

(
k1
k2

)x
exp
(
− k1

k2

)
, if x ∈ [0,C],

0, otherwise.
(S13)

2.2.2 Limit K1,1→ ∞
Let us substitute the perturbation series

p0(x) = f0(x)+
1

K1,1
f1(x)+ . . .

+

(
1

K1,1

)i

fi(x)+ . . . , (S14)

with i≥ 2, into (S11) with the left-hand side set to zero, and
consider the limit K1,1→ ∞. Then, equating terms of equal
powers in 1/K1,1, one obtains:

O (K1,1) : L 3
1,1 f0(x) = 0,

O (1) : −L 3
1,1 f1(x) = L f0(x). (S15)

Order K1,1 equation. The solution to the first equation in (S15)
is given by

f0(x) =





1− a
C , if x = 0,

a
C , if x =C,

0, otherwise,
(S16)

where a ∈ R≥ is an arbitrary constant.
Order 1 equation. Multiplying the second equation in (S15)

by x, and summing over x ∈ Z≥, with the convention that
f0(x) = 0 and β1,1(x) = 0 for x /∈ [0,C], one obtains the solv-
ability condition 0 = ∑∞

x=0 xL f0(x), which implies a = k1/k2.
Substituting a into (S16) leads to the zero-order approxima-
tion of the stationary PMF:

f0(x) =





1− 1
C

k1
k2
, if x = 0,

1
C

k1
k2
, if x =C,

0, otherwise.

(S17)

3. Zero-drift networks R3
n,n̄

The propensity function of reactions underlying R3
n,n̄(s, s̄),

n, n̄ ∈ Z≥, and (n+ n̄)≤C, is given by Kn,n̄βn,n̄ : [0,C]→R≥,
with

Kn,n̄ = Mn,n̄kn,n̄, (S18)

and

βn,n̄(x) = (Mn,n̄)
−1xn (C− x)n̄ , (S19)

where the scaling factor Mn,n̄ is introduced to approximately
normalize βn,n̄(x), and is given by

Mn,n̄ =

(
n

n+ n̄
C
)n( n̄

n+ n̄
C
)n̄

. (S20)

Function βn,n̄(x) is nonzero on the interval [n,C− n̄], with the
unique maximum approximately at Cn/(n+ n̄).

Interior zero-drift networks. Zero-drift network R3
n,n̄(s, s̄),

with n, n̄ 6= 0, satisfies equation (15) in the paper, and the
propensity function of its reactions, which is proportional
to (S19), is nonzero only in the interior of the state-space.
Since the propensity function of R3

n,n̄(s, s̄), with n, n̄ 6= 0, at-
tains its maximum in the interior of the domain, we call the
network an interior zero-drift network.

Boundary zero-drift networks. Network R3
0,n̄(s, s̄), sat-

isfying equation (16) in the paper, is a zero-drift network
in the limit µ0,n̄ → 0. Furthermore, in the same limit, the
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first two reactions from (16) have the same propensity func-
tion, which is proportional to (S19) with n = 0, and which
is nonzero at the left boundary point, x = 0. Similarly, net-
work R3

n,0 = R3
0,n(s̄,s; B̄,kn,0,µn,0) is a zero-drift network as

µn,0 → 0, and its first two reactions have the same propen-
sity function, which is nonzero at the right boundary point,
x =C. Since networks with n = 0 (respectively, n̄ = 0) gener-
ate propensity functions with the maximum values at the left
(respectively, right) boundary point, we call such networks
left (respectively, right) boundary zero-drift networks.

Basis zero-drift networks. Stoichiometric coefficients n, n̄
control the support of the intrinsic noise, which network R3

n,n̄
introduces into the stochastic dynamics, via the control of
support of function (S19). The larger the sum (n+ n̄) is, with
(n+ n̄)≤C, the smaller the support of (S19), and hence one
obtains a more precise noise-control. In the special case when
n+ n̄ = C, the propensity function (S19) is nonzero only at
a single point in the state-space, x = n. We call networks
R3

n,n̄(s, s̄), with n+ n̄ =C, basis zero-drift networks, and the
corresponding propensity functions basis propensity functions.
Any nonnegative function, defined on a bounded discrete
domain, may be represented by a suitable linear combination
of the basis propensity functions.

4. Stochastic DNA Compiler
In this section, we analyze the 4-domain DNA compiler
from [4], which has been shown to preserve the deterministic
dynamics when mapping suitable abstract networks to the
DNA-based ones. We show that the compiler also preserves
the stochastic dynamics. Furthermore, we apply the com-
piler to a reaction network designed using the noise-control
algorithm, and briefly outline the pre-compiling step: how to
approximate higher-order reactions with up-to second order
ones. Let us note that we change the notation slightly in this
section, in order to match it with the notation from [4].

First-order reactions. Consider an arbitrary input first-order
reaction

Xm
k−→

N

∑
i=1

ciXi, (S21)

involving abstract species X1,X2, . . . ,XN , and the following
output DNA-based second-order network

Xm +G εk−→ O,

O+T
q−→

N

∑
i=1

ciXi, (S22)

where X1,X2, . . . ,XN represent target single-stranded DNA
molecules, O is an intermediate single-stranded DNA, and G
and T are double-stranded DNAs called a gate and a transla-
tor, respectively [4]. Here, we assume rate coefficients k and
q are of order one, k,q = O(1), with respect to the asymp-
totic parameter 0 < ε � 1. Furthermore, we assume that the
copy-numbers of the reservoir species G and T are initially

given by G(0) = T (0) = 1/ε ≡ Nmax ∈ Z>, where we abuse
the notation slightly by denoting identically the species and
their corresponding copy-numbers. It has been shown that
reaction (S21) and network (S22) are approximately determin-
istically identical over suitable time-intervals for sufficiently
small ε . We now show that this is also true at the stochastic
level.

To this end, let us firstly assume ε is chosen small enough,
so that species G and T remain approximately fixed over
a desired time-interval [0,Ω], Ω ≥ 0, i.e. G(t) ≈ 1/ε and
T (t)≈ 1/ε for t ∈ [0,Ω], and so that network (S22) may then
be approximated by

Xm
k−→ O,

O
q/ε−−→

N

∑
i=1

ciXi. (S23)

Denoting the copy-numbers of species Xi and O by xi and o,
respectively, and defining new coordinates x̄i = (xi + cio) for
i ∈ {1,2, . . . ,N}, the CME induced by (S23) reads as

∂
∂ t

p(x̄,o, t) =
(

1
ε
L0 +L1

)
p(x̄,o, t), (S24)

where

L0 = (E+1
o −1)qo,

L1 = (E−∆x̄
x̄ E−1

o −1)k(x̄m− cmo),

and with ∆x̄i = ci for i 6=m, and ∆x̄m = cm−1. Substituting the
perturbation series p(x̄,o, t) = p0(x̄,o, t)+ ε p1(x̄,o, t)+ . . .
into (S24), one obtains the hierarchy of equations given by

O

(
1
ε

)
: L0 p0(x̄,o, t) = 0,

O(1) : −L0 p1(x̄,o, t) = (L1−
∂
∂ t

)p0(x̄,o, t). (S25)

The solution to the first equation from (S25) is given by
p0(x̄,o, t) = p0(x̄, t)δo,0, where δi, j is the Kronecker-delta
function (δ j, j = 1, and δi, j = 0 for i 6= j). Thus, it follows
that o converges to zero in probability, implying that x̄→ x.
Summing the second equation from (S25) over variable o, one
finally obtains the effective CME: ∂

∂ t p0(x, t)= (E−∆x
x −1)kxm.

Since this matches the CME of the input reaction (S21), we
have established that (S21) and (S22) match stochastically in
a weak sense.

Second-order reactions. Consider now an arbitrary input
second-order reaction

Xm +Xn
k−→

N

∑
i=1

ciXi, (S26)
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and the following output DNA-based second-order network

Xm +L
k−⇀↽−
q

H +B,

Xn +H
q−→ O,

O+T
q−→

N

∑
i=1

ciXi, (S27)

where X1,X2, . . . ,XN represent target single-stranded DNA
molecules, B and O are auxiliary single-stranded DNAs,
while L, H and T are auxiliary double-stranded DNAs [4].
Here, −⇀↽− denotes a reversible reaction (which is equivalent
to two irreversible reactions). We assume that the copy-
numbers of the reservoir species L, B and T are initially
given by L(0) = B(0) = T (0) = 1/ε = Nmax ∈ Z>. Fur-
thermore, for simplicity, let us also assume that the rate
coefficient q is chosen to be significantly larger than k, i.e.
k = µq, with 0 < µ � 1. Such an assumption may be re-
laxed by appropriately rescaling the rate coefficients appear-
ing in (S27) [4]. We now show that reaction (S26) and net-
work (S27) are approximately dynamically identical over suit-
able time-intervals at the stochastic level for sufficiently small
ε , and µ/ε ≡ λ = O(1).

Assume ε is chosen small enough, so that L(t) ≈ 1/ε ,
B(t) ≈ 1/ε , T (t) ≈ 1/ε over the desired time-interval t ∈
[0,Ω], and network (S27) is then approximately given by

Xm
λq−−⇀↽−−
q/ε

H,

Xn +H
q−→ O,

O
q/ε−−→

N

∑
i=1

ciXi. (S28)

Let us denote the copy-numbers of species Xi, H and O
by xi, h and o, respectively, and assume that species Xm
and Xn are distinct, i.e. that m 6= n. Defining new coordi-
nates x̄i = xi + cio for i 6= m, and x̄m = xm + cmo+ h, and
a slow time-scale τ = O(1) by τ = εt, and substituting
into the resulting CME the perturbation series p(x̄,h,o,τ) =
p0(x̄,h,o,τ)+ ε p1(x̄,h,o,τ)+ ε2 p2(x̄,h,o,τ)+ . . ., one ob-
tains the following system of equations

O

(
1
ε2

)
: L0 p0(x̄,h,o,τ) = 0,

O

(
1
ε

)
: −L0 p1(x̄,h,o,τ) = L1 p0(x̄,h,o,τ),

O(1) : −L0 p2(x̄,h,o,τ) = L1 p1(x̄,h,o,τ)

− ∂
∂τ

p0(x̄,h,o,τ). (S29)

Here, operators L0 and L1 are given by

L0 = (E+1
h −1)qh+(E+1

o −1)qo,

L1 = (E−1
h −1)λq(x̄m− cmo−h)

+(E−∆x̄
x̄ E+1

h E−1
o −1)q(x̄n− cno)h,

where ∆x̄i = ci for i /∈ {n,m} and ∆x̄i = ci−1 for i ∈ {n,m}.
The solution to the first equation from (S29) is given

by p0(x̄,h,o,τ) = p0(x̄,τ)δh,0δo,0. A solution to the sec-
ond equation is given by p1(x̄,h,o,τ) = p0(x̄,τ)δo,0 p1(h),
where the third factor satisfies hp1(h) = λE−1

h (x̄m− h)δh,0.
Let us note that o and h approach zero as ε → 0, imply-
ing that x̄→ x. Finally, substituting the obtained solutions
into the third equation from (S29), and summing over vari-
ables h and o, one obtains the effective CME ∂

∂ t p0(x, t) =
(E−∆x

x − 1)kxmxn p0(x, t), which is identical to the CME of
the input reaction (S26) with m 6= n. Applying similar rea-
soning when m = n also leads to the correct effective CME:
∂
∂ t p0(x, t) = (E−∆x

x −1)kxm(xm−1)p0(x, t), with ∆xi = ci for
i 6= m, and ∆xm = cm−2.

4.1 An Example
Let us now apply the molecular compiler on the reaction
network

R1 : s̄
k1−→ s,

s
k2−→ s̄,

R3
1,1 : s+ s̄

k1,1−−→ 2s,

s̄+ s
k1,1−−→ 2s̄. (S30)

Network (S30) has been obtained by applying Algorithm

1 from the paper on the conservative input network s̄
k1−→ s,

s
k2−→ s̄, so that the second step of the algorithm may be omitted.

It is similar to the network consisting of subnetworks given
by (3) and (5) in the paper, and is chosen here for simplicity.
Replacing s by X1, and s̄ by X2, to match the notation from [4],
a DNA-based implementation of (S30) is given by

R̄1 : X2 +G1
k1/Nmax−−−−→ O1,

O1 +T1
q−→ X1,

X1 +G2
k2/Nmax−−−−→ O2,

O2 +T2
q−→ X2,

R̄3
1,1 : X1 +L3

k1,1−−⇀↽−−
q

H3 +B3,

X2 +H3
q−→ O3,

O3 +T3
q−→ 2X1,

X2 +L4
k1,1−−⇀↽−−

q
H4 +B4,

X1 +H4
q−→ O4,

O4 +T4
q−→ 2X2, (S31)

where we require that the initial copy-numbers of the auxiliary
species Gi,Ti, for i = 1, . . . ,4, and Li,Bi, for i = 1,2, are all
initially set to a sufficiently large value Nmax ∈ Z>, and that q
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is set to a sufficiently large value, ensuring k1,1� q (note that
this condition may be relaxed [4]).

If, instead of the zero-drift network R3
1,1, we embed e.g. the

zero-drift network R3
2,2 into network R1 from (S30), which

is given by

R3
2,2 : 2s+2s̄

k2,2−−→ 3s+ s̄,

2s+2s̄
k2,2−−→ s+3s̄, (S32)

then a pre-compilation step is performed. In particular, we
first approximate (S32) by a set of up-to bimolecular reactions
e.g. as follows [5, 6]:

R̄3
2,2 : s+ s̄

K1−−⇀↽−−
1/ε

Q1,

s+Q1
K2−−⇀↽−−
1/ε

Q2,

s̄+Q2
K3−→ s+Q2,

s̄+Q2
K3−→ 2s̄+Q1, (S33)

where Q1 and Q2 are auxiliary species. Provided ε2K1K2K3 =
k2,2, εKi� 1, for i = 1,2,3, and 0 < ε � 1, networks (S32)
and (S33) are approximately dynamically identical. As op-
posed to the original fourth-order network (S32), the approxi-
mating second-order network (S33) can be mapped to a DNA-
based one using the compiler from [4].

In this section, we have verified one way to structurally
compile an input abstract network, involving low molecular
copy-numbers, into a DNA-based output network. Provided
the target species copy-numbers are sufficiently low, so that
the noise introduced by the zero-drift networks is significant
without requiring too large rate coefficients, it may be achiev-
able to constrain all the rate coefficients within six orders of
magnitude. Thus, in principle, low copy-number networks
designed using the noise-control algorithm are experimentally
realizable.

5. Network R̃

The deterministic model of reaction network R̃, given by
equation (11) in the paper, is given by

dx1

dt
= k1 + k2x1 + k3x2

1− k4x1x2− k5x2
1x2 + k6x1x2

2,

dx2

dt
= k7− k8x2 + k9x1x2 + k10x2

2− k11x3
2, (S34)

where x1 = x1(t),x2 = x2(t) are the concentrations of species
s1,s2, respectively, at time t.

5.1 An application of the noise-control algorithm
Network R̃1(s1,s2, s̄2) ∪ R2

1(s̄2) ∪ (R3
0,C2−10(s2, s̄2) ∪

R3
30,0(s2, s̄2)), arising from an application of the noise-control

algorithm on network R̃, is given by

R̃1(s1,s2, s̄2) : ∅ k1−→ s1,

s1
k2−→ 2s1,

2s1
k3−→ 3s1,

s1 + s2
k4−→ s2,

2s1 + s2
k5−→ s1 + s2,

s1 +2s2
k6−→ 2s1 +2s2,

s̄2 + I1
2

k7−→ s2 + I1
2 ,

s2
k8−→ s̄2,

s1 + s2 + s̄2 + I1
2

k9−→ s1 +2s2 + I1
2 ,

2s2 + s̄2 + I1
2

k10−−→ 3s2 + I1
2 ,

3s2
k11−−→ 2s2 + s̄2,

R2
1(s̄2) : ∅ 1/µ−−→ I1

2 ,

s̄2 + I1
2

1/µ−−→ s̄2,

R3
0,C2−10(s2, s̄2) : (C2−10)s̄2

k2
0,C2−10−−−−→ s2 +(C2−11)s̄2,

C2s2 +B2
k2

0,C2−10−−−−→ (C2−1)s2 + s̄2 +B2,

(C2−10)s̄2
1/µ0,C2−10−−−−−−→ (C2−10)s̄2 +B2,

C2s2 +B2
1/µ0,C2−10−−−−−−→C2s2,

R3
30,0(s2, s̄2) : 30s2

k2
30,0−−→ 29s2 + s̄2,

C2s̄2 + B̄2
k2

30,0−−→ s2 +(C2−1)s̄2 + B̄2,

30s2
1/µ30,0−−−−→ 30s2 + B̄2,

C2s̄2 + B̄2
1/µ30,0−−−−→C2s̄2.

(S35)
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