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Spatially distributed problems are often approximately modelled in terms of partial differential
equations (PDEs) for appropriate coarse-grained quantities (e.g. concentrations). The derivation
of accurate such PDEs starting from finer scale, atomistic models, and using suitable averaging, is
often a challenging task; approximate PDEs are typically obtained through mathematical closure
procedures (e.g. mean-field approximations). In this paper, we show how such approximate macro-
scopic PDEs can be exploited in constructing preconditioners to accelerate stochastic simulations
for spatially distributed particle-based process models. We illustrate how such preconditioning can
improve the convergence of equation-free coarse-grained methods based on coarse timesteppers. Our
model problem is a stochastic reaction-diffusion model capable of exhibiting Turing instabilities.

PACS numbers: 05.10.Ln, 87.18.Hf, 82.40.Bj, 87.18.La, 82.20.Wt

I. INTRODUCTION

Many mathematical models involving reaction and dif-
fusion (e.g. catalytic reactions, morphogenesis) are based
on partial differential equations (PDEs) describing the
evolution of species concentrations in space and time1,2.
One advantage of such PDE models is the extensive set
of existing theoretical and computational tools for their
analysis and efficient simulation. A disadvantage of such
continuum-based models in certain chemical and biolog-
ical contexts is the relatively low number of molecules of
some of the species involved. This may render mean-field
type PDE models inaccurate; individual-based stochastic
models become then more appropriate than continuum
ones.

Directly using a stochastic, molecular-based model for
a spatially distributed pattern-forming system will typi-
cally be very computationally intensive. It becomes then
important to extract useful coarse-grained, macroscopic
information from the microscopic molecular-based model
using as few detailed simulations as possible. This is the
goal of equation-free methods3–10 which were designed
for cases where the exact macroscopic equations are un-
available in closed form.

Deriving accurate macroscopic equations rigorously is
a challenging task (see discussions in Refs.11–13 for fluid
dynamics, bacteria or eukaryotic cells, respectively). The
mathematical assumptions leading to closures may not
be quantitatively correct over large parameter regimes,
making the PDE models inaccurate there. Equation-
free methods circumvent the derivation of accurate PDEs
by using short bursts of fine-scale simulation to esti-
mate necessary numerical quantities (residuals, action
of Jacobians) on demand, rather than through explicit
closed formulas. Here we will illustrate how even approx-

imate PDE models can be exploited to accelerate “exact”
(particle-based) simulations. In the context of equation-
free methods this can be accomplished naturally by us-
ing the approximate PDEs to construct preconditioners
in the iterative numerical linear algebra involved in fixed
point, stability and bifurcation computations. We call
this procedure “equation-assisted” computation.

Our model problem is a stochastic reaction-diffusion
system capable of exhibiting a Turing instability14. Such
models can serve as a prototypes of more realistic pat-
tern formation mechanisms during morphogenesis (see
e.g. Refs.15,16). The paper is organized as follows: In Sec-
tion II, we introduce this illustrative stochastic reaction-
diffusion model: the Schnakenberg17 system of two chem-
ical species in one dimension. It can predict pattern
formation under some conditions and it was also used
previously in complex models of limb development18.
In Section III we start by presenting the mean field
Schnakenberg PDEs at the limit of large particle num-
bers, and briefly summarize their bifurcation behavior
in a parameter regime where they exhibit pattern forma-
tion. We briefly describe, in Section IV, the computation
of bifurcation diagrams using a timestepper based ap-
proach – both deterministic and “equation-free”, based
on a stochastic simulator implementing a spatially dis-
cretized version of the Gillespie Stochastic Simulation
Algorithm19 (SSA). We also discuss basic features of pre-
conditioning and “equation-assisted” bifurcation compu-
tations. We then present, in Section V, our “equation-
assisted” results and discuss their comparison with the
“equation-free” case. Here the mean field PDE is used to
construct a preconditioner, to accelerate the numerical
linear algebra in our coarse-grained steady state compu-
tations. We conclude with a brief summary and discus-
sion.
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II. THE STOCHASTIC REACTION-DIFFUSION
MODEL

We consider the Schnakenberg17 system of two chem-
ical species U and V with the following reaction mecha-
nism:

A
k1−→ U

k2−→ C (1)

B
k3−→ V (2)

2U + V
k4−→ 3U. (3)

Here Eq. (1) describes production and degradation of U
and Eq. (2) describes production of V . Moreover, U is
also produced in the reaction Eq. (3). We will assume
that the concentrations of A and B are constants.

To simulate stochastically Eqs. (1) – (3), one can use
the Gillespie SSA, a standard way to model stochasti-
cally a spatially homogeneous (well mixed) chemical sys-
tem. The algorithm is based on answering two essential
questions at each time step: when will the next chem-
ical reaction occur, and what kind of reaction will it
be? Gillespie19 derived a simple way to answer these two
questions – at each step, the computer performs a reac-
tion, updates numbers of reactants and products and con-
tinues with another time step until the algorithm reaches
a time of interest.

Next, we introduce diffusion to the system. We assume
that U diffuses with (macroscopic) diffusion coefficient
d1 and V diffuses with (macroscopic) diffusion coefficient
d2. We consider a spatially one-dimensional domain –
the interval [0, 1] with suitable boundary conditions as
specified later. The generalization of Gillespie’s ideas to
spatially nonhomogeneous systems can be found in the
literature (see e.g. Refs.20,21). Here, we follow the most
straightforward way, adding diffusion as another set of
“reactions” to the system. Namely, we divide our domain
into m boxes (small intervals) of length h = 1/m. We
denote by Ui and Vi the number of respective molecules
in the spatial interval [(i − 1)/m, i/m] for i = 1, . . . ,m.
This means that we describe the state of the stochastic
reaction-diffusion system by two m-dimensional vectors
U =

[
U1, U2 . . . , Um

]
, V =

[
V1, V2 . . . , Vm

]
and we con-

sider the following reactions at each time step

A
k1−→ Ui

k2−→ C,

B
k3−→ Vi,

2Ui + Vi
k4−→ 3Ui,





i = 1, . . . ,m, (4)

Ui
d1−→Ui+1, Vi

d2−→Vi+1, i = 1, . . . ,m− 1, (5)

Ui
d1−→Ui−1, Vi

d2−→Vi−1, i = 2, . . . ,m, (6)

where Eq. (4) means that we implement the Schnaken-
berg reaction mechanism (Eqs. (1) – (3)) in every spa-
tial box. Equations (5) – (6) describe diffusion; the
transition rates between boxes are denoted by d1 and
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FIG. 1: (Color online) Solutions of Eqs. (8) – (9) with pe-
riodic boundary conditions for d1 = 5 × 10−4, d2 = 0.01,
0.03 and 0.06 at t = 100 with an initial condition being the
perturbed uniform steady state. Spatial patterns develop for
d2 > 0.0198; the solutions were shifted to have a local U min-
imum at x = 0. We plot U (red curve) and V (blue curve) in
the same picture.

d2 and they are connected to the macroscopic diffusion
coefficients through the formulas d1 = d1/h2 = d1m

2,
and d2 = d2/h2 = d2m

2. The Eqs. (4) – (6), together
with suitable boundary conditions, will be simulated us-
ing Gillespie SSA and will be our illustrative stochastic
reaction-diffusion problem in this paper.

III. DETERMINISTIC ANALYSIS OF THE
MODEL PROBLEM

If we have enough molecules in the system, then
Eqs. (4) – (6) are well approximated by a system of
two reaction-diffusion PDEs for the species concentra-
tions U and V ; at the mesh points xi, U(xi) = Ui/ω,
V (xi) = Vi/ω, where xi = (i− 1/2)h. The constant ω
can be interpreted as the number of molecules in the box
corresponding to a dimensionless concentration of 1. Re-
action and diffusion rates are scaled as follows: A = ωA,
B = ωB, k1 = k1, k2 = k2, k3 = k3, k4 = k4/ω2,
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FIG. 2: (Color online) Comparison of histograms obtained by
stochastic simulations with the deterministic results given by
solution of Eqs. (8)–(9) with periodic boundary conditions.
Solutions were shifted to have the local U minimum at x = 0.

d1 = d1/h2, d2 = d2/h2, where A and B are (constant)
concentrations of reactants A and B, kj , j = 1, 2, 3, 4,
are macroscopic reaction rate constants and d1, d2 are
macroscopic diffusion coefficients. Next (instead of fur-
ther nondimensionalization) we simply choose values for
the six kinetic parameters and we study the Turing insta-
bilities of the resulting model. In the rest of this paper,
we put A = 1, B = 1, k1 = 1, k2 = 2, k3 = 3, k4 = 1.
Then the scaling of kinetic constants reads as follows

A = ω, B = ω, k1 = 1, k2 = 2,

k3 = 3, k4 =
1
ω2

, d1 =
d1

h2
, d2 =

d2

h2
. (7)

Passing the number ω of molecules in a box to infinity and
the box length h to zero, i.e. ω → ∞ and h → 0+, one
can derive the following system of macroscopic partial
differential equations for concentrations U and V .

∂U

∂t
= d1

∂2U

∂x2
+ 1− 2U + U

2
V (8)

∂V

∂t
= d2

∂2V

∂x2
+ 3− U

2
V (9)

Here, U : [0, 1] → [0,∞), V : [0, 1] → [0,∞) and suit-
able boundary conditions (e.g. no-flux, periodic) must

be introduced. Considering no-flux or periodic boundary
conditions, one can easily verify that the homogeneous
steady state of Eqs. (8) – (9) is given by Uh(x, t) ≡ 2,
Vh(x, t) ≡ 3/4. Linearizing Eqs. (8) – (9), one sees that
the homogeneous steady state is stable for d1 = d2 = 0,
i.e. when no diffusion is present in the system. In fact,
the same result holds whenever d1 = d2: no spatial pat-
terning can be expected if the diffusion coefficients of
both species are the same. However, Turing14 showed
that the homogeneous steady state (Uh, Vh) might be-
come unstable for d1 6= d2. Indeed, linearizing Eqs. (8)
– (9), one finds that the steady state (Uh, Vh) is unsta-
ble and spatial patterns develop if d2 > 39.6 d1. In this
paper, we fix the diffusion coefficient d1 = 5×10−4. Spa-
tial patterns may then develop for d2 > 0.0198. We show
numerically computed solutions of Eqs. (8) – (9) with
periodic boundary conditions for different values of the
diffusion coefficient d2 in Fig. 1. The initial condition was
chosen to be (Uh, Vh) with small additive random noise.
The graphs of U (red solid curve) and V (blue dashed
curve) are plotted at dimensionaless time t = 100, and
can be practically considered as steady states; this has
been confirmed also through a steady state solver.

In Fig. 2, we compare representative SSA results with
the deterministic ones. We divide the domain [0, 1] into
m = 200 boxes and using ω = 100 (i.e., defining density
scaling so that dimensionless density 1 corresponds to
100 molecules of the relevant chemical species in a box)
and we choose the values of the parameters as in Eq. (7)
together with d1 = 5 × 10−4 and d1 = 0.06. We will
quantify the fluctuations of the stochastic simulations at
stationarity below.

IV. EQUATION-ASSISTED COMPUTATION:
THEORETICAL FRAMEWORK

A. Numerical bifurcation computations

The computer-assisted study of Turing patterns in a
deterministic PDE context requires the numerical com-
putation and parametric continuation of steady states.
Spatially distributed PDE steady states in a bifurcation
diagram are, in general, computed by discretizing the
PDE into a (sufficiently) large set of ODEs of the type
dx/dt = f(x;p), finding the roots of f(x;p) = 0 and
continuing them in parameter space. Here x ∈ RN is a
vector containing the system state (the discretized con-
centrations of U and V ), f : RN → RN is the right hand
side of the discretization of Eqs. (8) and (9) and p ∈ RM

is a M -dimensional parameter vector; here M = 1 since
we consider the single parameter d2. Pseudo-arclength
continuation and branch switching are by now standard
numerical tools that have been incorporated in special
purpose packages like AUTO22 or CONTENT23.

For deterministic problems for which a good dynamic
simulator is available, the so-called “timestepper-based”
approach allows the computation of bifurcation diagrams
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FIG. 3: (Color online) Bifurcation diagram of the determin-
istic Schnakenberg system of two species (U and V ) with re-
spect to the diffusion coefficient d2. The diffusion coefficient
for U , d1 is fixed at 5 × 10−4. Axis notation: a and b are
the first Fourier coefficients of the solution (for sin(x) and
cos(x) respectively). Different steady state solution branches
are plotted in different colors. Solid (dashed) lines represent
stable (unstable) steady states. The bifurcation points along
the solution curves are marked by circles and denoted with the
corresponding bifurcation type (“SN” for Saddle-Node bifur-
cation and “PF” for Pitchfork bifurcation). The straight line
represents the uniform steady state (as shown in the solution
profile for point 13). The inset is a blowup of the bifurcation
diagram for small d2. Representative solution profiles (solid
(dashed) line for U (V )) on different branches (numbered and
marked by “×”) are also included.

in the form of a “wrapper” around the dynamic simula-
tor (see e.g. Refs.24,25). Given the current state x as
an initial condition, the timestepper computes the fu-
ture (after a “reporting time” T ) state ΦT (x;p) ≡ x(T ).
Steady states of the original system are then found as
fixed points of Ψ(x) = 0 where Ψ(x) ≡ x−ΦT (x;p).

The bifurcation diagram in Fig. 3 has been computed
in both ways (giving, of course, identical results); a dis-
cussion of some pertinent details can be found in the
Appendix. Fixed point algorithms, like the Newton-
Raphson iteration, constitute the workhorse of these so-
lutions of large sets of coupled, nonlinear algebraic equa-

tions; these involve the repeated solutions of large sets of
linear, coupled algebraic equations. Consider now per-
forming these repeated linear solves through matrix-free
iterative linear solvers (such as GMRES26); in a nonlin-
ear equation context we will typically use a matrix-free
Newton-GMRES solver26. For the timestepper-based
computation (solving the nonlinear system Ψ(x) = 0) we
do not need to compute the Jacobian DΨ ≡ ∂Ψ(x)/∂x.
We only need to compute matrix-vector products of this
Jacobian with given known vectors v, which can be es-
timated by a finite different approximation DΨ · v ≈
[Ψ(x + εv)−Ψ(x)]/ε with suitably small ε.

Such matrix-free linear algebra methods constitute an
important component of equation-free bifurcation calcu-
lations. In this context macrosocopic, coarse-grained
equations are not explicitly available; yet we believe they
exist, and we do have available a fine-scale (in this case,
stochastic) dynamic simulator. We can then substitute
the (unavailable) deterministic timestepper with a fine
scale, stochastic timestepper involving lifting, evolving,
and restriction steps3,6,27.

This provides an estimate of the (unavailable) deter-
ministic timestepper for the (unavailable) closed macro-
scopic evolution equations, obtained on demand through
the stochastic simulator. All computations of the matrix-
free Newton-GMRES involve calls to such a timestep-
per (with systematically chosen initial conditions); the
stochastic simulator can then be used to numerically
compute coarse-grained bifurcation diagrams such as the
one in Fig. 3 even in the absence of closed macroscopic
evolution equations (i.e., equation-free).

In this paper, we propose an “equation-assisted” ap-
proach that accelerates equation-free computations by
linking approximate deterministic models with accurate
stochastic ones: equation-free bifurcation computations
(based on the coarse timestepper) are preconditioned us-
ing the timestepper of an (approximate) deterministic
model.

B. Preconditioning and Equation-Assisted
Computation

Good discussions of the basic features of Newton-
GMRES, as well as pseudocode and MATLAB imple-
mentations can be found in Refs.26,28. Consider solving
a general set of N nonlinear equations with N unknowns,
Ψ(x) = 0; the linear equations to be solved at each New-
ton step are of the form

A∆x = b (10)

for A ∈ RN×N , b ∈ RN , x ∈ RN with

A = DΨ|x=xc , b = −Ψ(xc),

where xc is the current solution guess at each Newton
step. For every iterative linear solve, it is important to
note that, at each iteration in GMRES, only one call to
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Ψ(x) is needed. GMRES does not require the Jacobian
matrix DΨ|x=xc

to be computed explicitly. The Jaco-
bian matrix always occurs in the form of a matrix-vector
product, which can be approximated by finite differences:
Avk ≈ [Ψ(xc+hvk)−Ψ(xc)]/h where h is suitably small.

When Newton-GMRES is used in steady state com-
putations using the coarse timestepper (i.e. Ψst(x) ≡
x−Φst

T (x;p) = 0, where Φst
T (x;p) is the coarse timestep-

per based on the stochastic simulator), each evaluation of
Ψst(x) involves evolving the coarse timestepper Φst

T (x;p)
for time T , which is often computationally intensive; pos-
sibly several replica simulations need to be performed for
variance reduction. It thus becomes an important task to
reduce the total number of function evaluations to con-
vergence. As discussed in Ref.26, GMRES requires less
overall function evaluations when the eigenvalues of the
matrix (i.e., A in Eq. (10)) are more clustered. For a
given linear system in the form of Eq. (10), the precon-
ditioning of GMRES involves finding a regular matrix P,
such that the preconditioned linear system,

PA∆x = Pb (11)

leads to a more clustered eigenvalue spectrum. Solving
Eq. (10) is equivalent to solving Eq. (11). It is well known
that the system in Eq. (11) will have better properties
(from a numerical point of view) than the original sys-
tem in Eq. (10) if P is close to the inverse of A, i.e. if
‖P−A−1‖ is small using a suitable matrix norm. Hence,
preconditioning by an appropriate matrix P can improve
the efficacy of numerical solvers for Eq. (10); the goal of
this paper is to show how this preconditioning idea can
be applied to equation-free stochastic reaction-diffusion
problems (and spatially distributed evolution problems
more generally).

An approximate deterministic evolution equation for
the stochastic system statistics may be available (Eqs. (8)
and (9)), based on closure assumptions, which is not ac-
curate enough to compute with; yet we can take advan-
tage of such an evolution equation by using it to cre-
ate a “good” preconditioning matrix P. This precon-
ditioning is implemented here by multiplying the orig-
inal output of each (stochastic simulation based) eval-
uation of Ψst(x) with P =

(DΨdet|x=xc

)−1, where
Ψdet(x) ≡ x −Φdet

T (x;p) is defined using the determin-
istic mean field PDE timestepper Φdet

T (x;p). That is,
we use the deterministic timestepper of the approximate
PDEs (here, at the current solution guess xc) to help ac-
celerate the equation-free Netwon-GMRES computation;
a much simpler preconditioning scheme would constantly
use the inverse of the deterministic timestepper at the de-
terministic steady state. At each Newton step the linear
equation set to be actually solved by GMRES after pre-
conditioning is

PDΨst|x=xc∆x = −PΨst(xc).

For the one-dimensional problem used for illustration
here, it is easy to compute Pv for a given vector v by
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FIG. 4: (Color online) Convergence of Newton-GMRES based
on the coarse timestepper for a stable steady state (point 2 in
Fig. 3). The y-axis is the norm of the (coarse) residual. The
dashed line shows the estimated magnitude of the stochastic
simulator fluctuations rescaled to account for replica averag-
ing (which we use to estimate the fluctuations in the evalua-
tion of the coarse timestepper). The relative error of the cor-
responding solution guess at each Newton step is shown in the
insets (solid (dashed) line for U(V ) with y-axis ranging from
-0.5 to 0.5 except the first one) along the convergence curve.
The converged coarse steady solution profiles are shown at the
upper right. Parameters used: m = 40 boxes in the domain
[0, 0.2], T = 0.05, ω = 2000 with 150 copies.

solving P−1y = v through direct linear algebra (e.g.
Gauss elimination). In general, however, it is worth not-
ing that P−1y = v can be solved for y with GMRES,
through repeated calls to the (deterministic) timestep-
per of the (not-so-accurate) deterministic PDEs (Eqs. (8)
and (9)).

V. RESULTS AND DISCUSSION

For our coarse timestepper (based on SSA simulation),
we discretize the one-dimensional domain [0, L] with
L = 0.2 into m = 40 equally spaced boxes. We choose
ω = 2000, which means that the unit density in each box
corresponds to 2000 molecules. Each evaluation of the
coarse timestepper corresponds to evolving 150 replicas
of the SSA simulator for time T = 0.05; the average of
all replicas is reported.

We have assumed that there exist some “underlying
PDEs” that describe the evolution of the (statistics of
the) SSA simulator averaged over an infinite number
of copies. In our computations we estimate the coarse
timestepper of these “underlying PDEs” by averaging
over several (here 150) copies; even though averaging
reduces their variance, fluctuations will always remain
when a finite number of copies is used. Note that we
should not, in general, expect these “underlying PDEs”
to be the same as the mean field PDE system described
in Section III (Eqs. (8) and (9)), which corresponds to
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FIG. 6: (Color online) Comparison of the leading coarse eigen-
values of Jacobian matrices based on deterministic timestep-
per DΨdet, the coarse timestepper DΨst, and the coarse
timestepper after preconditioning PDΨst, which are all eval-
uated at the computed unstable coarse steady state. (a)
Leading 40 (smallest magnitude) eigenvalues of DΨdet. The
eigenvalues have already started clustering at 1. (b) Lead-
ing 40 eigenvalues of DΨst. This (partial) spectrum is very
similar to the spectrum in (a). The appearance of complex
conjugate eigenvalue pairs close to 1 and eigenvalues larger
than 1 as in (b) (and possibly also in (c)) is probably caused
by the relatively large fluctuations in the evaluation of the
coarse timestepper (while the differences between the eigen-
values within this cluster are relatively small). (c) Leading 15
eigenvalues of PDΨst. Most of the eigenvalues are clustered
close to 1.

the limit of infinite numbers of molecules. We do, how-
ever, know that if the parameter ω increases to infinity,
the “underlying PDEs” do converge to Eqs. (8) and (9).

We start by using matrix-free Newton-GMRES to com-
pute representative spatially nonuniform (both stable
and unstable) coarse steady states through the SSA sim-
ulator. The Newton-GMRES fixed point solver used is
adapted from the MATLAB code nsoli28 with two mod-
ifications: (a) constant relative tolerance for each GM-
RES solve; and (b) since our preconditioner changes ev-
ery time we update the current solution guess, an ad-
ditional function for constructing the updated precon-
ditioner was included as an additional input parameter.
The convergence of Newton-GMRES to a coarse, spa-
tially nonuniform, stable steady state (point 2 in Fig. 3)
is shown in Fig. 4. The magnitude of the fluctuations
introduced by the stochastic simulator is estimated at
this coarse steady state as follows: from long-term SSA
simulations, after the stationary state has been reached,
we estimate the standard deviation σi for each Ui and
Vi, i = 1 . . . m; our estimate of the magnitude of the
fluctuations is the Euclidean norm of this vector of stan-
dard deviations. Averaging over n replicas should scale
this estimate by a factor of

√
n; the resulting estimate

is marked by a dashed line in Figs. 4 and 5. This num-
ber also provides an estimate of a reasonable expected
residual norm upon convergence of the Newton-GMRES.

Because of the presence of fluctuations in the evalua-
tion of the coarse timestepper, an inexact matrix-vector
product is computed at each GMRES iteration. The
convergence of GMRES in the presence of noise is the
focus of extensive study in the current literature (see
e.g. Refs.29–31). These references include discussions of
bounds of the attainable accuracy of the computed so-
lution and possible relaxation strategies in the presence
of noise. In the context of Newton-GMRES, the right
hand side of the linear equation we want to solve at each
Newton step (i.e. −Ψ(xc)) is also computed with fluctu-
ations.

A representative unstable coarse steady state (point
4 in the bifurcation diagram) is also computed with
Newton-GMRES. In this case, however, we also im-
plemented the equation-assisted preconditioning of the
coarse GMRES, as discussed in Section IV, using the in-
verse of the corresponding Jacobian computed from the
known deterministic approximate PDEs. The conver-
gence of Newton-GMRES before and after precondition-
ing (that is equation-free and equation-assisted, respec-
tively) is compared in Fig. 5. The leading parts of the
eigenvalue spectra of DΨdet, DΨst (the first 40 eigen-
values) and PDΨst (the first 15 eigenvalues) evaluated
at the coarse steady state are computed using the coarse
timestepper and the iterative eigenvalue solver ARPACK
(implemented in MATLAB as function eigs) and shown
in Fig. 6. A quick inspection of the numerically com-
puted leading spectra shows that, after preconditioning,
the eigenvalues of the preconditioned Jacobian based on
the coarse timestepper were indeed more clustered close
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to 1, consistent with the reduction in GMRES iterations
observed in Fig. 5.

Note that the first vector in the Krylov subspace con-
structed for GMRES (v1) is generally obtained by setting
the initial solution guess for the linear system to zero.
This implies that v1 is different for the preconditioned
and unpreconditioned GMRES (b and Pb for the linear
system Eq. (10), respectively, where P is the precondi-
tioner). Since all the subsequent vectors in the Krylov
subspace are built upon the first ones, this may also lead
to a difference in the number of GMRES iterations to
convergence.

Figure 5 shows the cumulative calls to the coarse
timestepper needed to reduce the nonlinear residual,
which is similarly defined for both the preconditioned
and the unpreconditioned case. The results indicate that
the preconditioner is effective in reducing the nonlinear
residual, and efficient in terms of overall timestepper eval-
uations. The preconditioned and unpreconditioned lin-
ear residuals, on the other hand, are measured in dif-
ferent norms (‖P(b −A∆xk)‖2 and ‖b −A∆xk‖2); we
impose the same relative tolerance for convergence. For
non-noisy problems and very tight relative termination
tolerances, the results of the two types of linear solve
at the end of the first Newton step would be practically
the same; with larger termination tolerances, given the
presence of noise, this is clearly not the case. When the
initial guess is far away from the true solution (at the
first Newton step) the initial tolerance for GMRES can
be set relatively high, to avoid “oversolving” the linear
equation at the early stages of convergence.

VI. CONCLUSION

The purpose of this paper is to illustrate a simple idea:
that coarse-grained, macroscopic equations can be used
to assist detailed, fine scale stochastic simulations even
when they are not really accurate. This is accomplished
by using certain features of such closed-form macroscopic
equations (such as their discretized linearizations) as pre-
conditioners in equation-free iterative linear algebra com-
putations. This is then an “equation-assisted” approach:
we compute with a coarse timestepper based on the fine
scale model, but accelerate the convergence of these com-
putations using “the best available” continuum determin-
istic model.

In this paper we illustrated the concept using a coarse
timestepper based on a spatially distributed SSA reaction-
diffusion implementation of the Schnakenberg kinetic
scheme, and preconditioning with the corresponding Ja-
cobian derived from the mean-field PDEs. This al-
lowed us to accelerate the equation-free computation of
both stable and unstable spatially structured reaction-
diffusion steady states. The approach can be used as
a computational “wrapper” around different types of in-
ner stochastic simulators. The inner simulator was based
on spatially discretized SSA; the approach could also be

wrapped around “already accelerated” SSA schemes (e.g.
those exploiting separation of time scales32–34). The ap-
proach could also be wrapped around non-SSA, lattice
gas spatially distributed kinetic Monte Carlo simulators,
or around simulators based on “the best available” an-
alytically coarse-grained models of kinetic Monte Carlo
processes (e.g. Refs.35,36). It can also be wrapped around
different (non-kMC) types of fine scale or hybrid models
such as Lattice-Boltzmann inner simulators10 (with den-
sity PDE preconditioning), or around molecular, Brow-
nian or dissipative particle dynamics simulators of con-
densed matter problems, with the preconditioning com-
ing from traditional continuum closures (elasticity the-
ory, non-Newtonian rheology). Beyond steady state com-
putations, such preconditioning might also be helpful in
other coarse-grained computations involving matrix-free
iterative linear algebra, such as implicit coarse integra-
tion schemes.
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APPENDIX: THE BIFURCATION DIAGRAM

The bifurcation diagram with respect to the diffusion
coefficient d2 of species V is computed using both the
steady state and the deterministic timestepper approach
with identical results and is plotted in Fig. 3.

We used the following parameters in our computations
with the deterministic timestepper from the discretized
ODE system: domain length L = 0.2, number of nodes
m = 40, time reporting horizon T = 1.

The stability of the steady state solutions is identified
by checking the leading eigenvalues (λi) of the Jacobian
matrix of the linearized ODE system evaluated at the
steady states; we confirmed that the eigenvalues of the
linearization of our timestepper at steady state (µi) in-
deed satisfy λi = ln µi/T . The matrix-free eigenvalue
solver ARPACK is used to compute the leading eigenval-
ues for both the deterministic and the coarse timsteppers.

The first two Fourier coefficients of the steady state
solution, a and b (for sin(x) and cos(x) respectively),
are plotted versus the bifurcation parameter d2. The
(partial) bifurcation diagram consists of four different
branches of solutions (plotted in different colors).

The steady states computed in this bifurcation dia-
gram show at most one peak due to the relatively short
domain length. Steady states with n peaks (as shown in
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Fig. 1) can be easily obtained by using n copies of the
one-peak solution as building blocks; yet the stabilities

of the multi-peak and one-peak steady states are not the
same (see e.g. Ref.37).
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