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FROM INDIVIDUAL TO COLLECTIVE BEHAVIOR IN
BACTERIAL CHEMOTAXIS∗

RADEK ERBAN† AND HANS G. OTHMER†

Abstract. Bacterial chemotaxis is widely studied from both the microscopic (cell) and macro-
scopic (population) points of view, and here we connect these very different levels of description
by deriving the classical macroscopic description for chemotaxis from a microscopic model of the
behavior of individual cells. The analysis is based on the velocity jump process for describing the
motion of individuals such as bacteria, wherein each individual carries an internal state that evolves
according to a system of ordinary differential equations forced by a time- and/or space-dependent
external signal. In the problem treated here the turning rate of individuals is a functional of the
internal state, which in turn depends on the external signal. Using moment closure techniques in one
space dimension, we derive and analyze a macroscopic system of hyperbolic differential equations
describing this velocity jump process. Using a hyperbolic scaling of space and time, we obtain a
single second-order hyperbolic equation for the population density, and using a parabolic scaling,
we obtain the classical chemotaxis equation, wherein the chemotactic sensitivity is now a known
function of parameters of the internal dynamics. Numerical simulations show that the solutions of
the macroscopic equations agree very well with the results of Monte Carlo simulations of individual
movement.
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1. Introduction. The ability to detect and respond to changes in the environ-
ment is a basic necessity for survival of all organisms, and as a result, a variety of
mechanisms have evolved by which organisms sense their environment and respond
to signals they detect. Often the response involves movement toward a more favor-
able environment or away from a noxious substance. The movement response can
entail changing the speed of movement and the frequency of turning, which is called
kinesis; it may involve directed movement, which is called taxis; or it may involve a
combination of these. Taxes and kineses may be characterized as positive or nega-
tive, depending on whether they lead to accumulation at high or low points of the
external stimulus that triggers the motion. A variety of both modes are known, and
include responses to gradients of oxygen and other chemicals, gradients of adhesion to
the substrate, and other effects. Both tactic and kinetic responses involve two major
steps: (i) detection of the signal and (ii) transduction of the external signal into an
internal signal that triggers the response. From the modeling and analysis standpoint,
an important characteristic of both modes of response is whether or not the individual
merely detects the signal or alters it as well, for example by amplifying it so as to relay
the signal. When there is no significant alteration, the individual simply responds to
the spatio-temporal distribution of the signal. However, when the individual produces
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or degrades the signal, there is coupling between the local density of individuals and
the intensity of the signal. This occurs, for example, when individuals aggregate in
response to a signal from “organizers” and relay the signal as well.

In several systems, including the flagellated bacterium Escherichia coli and the
amoeboid cell Dictyostelium discoideum, a detailed understanding of how extracellular
signals are transduced into behavioral changes is emerging from experimental work,
while at the macroscopic level a great deal is known about solutions of the classical
chemotaxis equations. However, the chemotaxis equations to date have been based
on phenomenological descriptions of how cells respond to signals, and at present there
is little understanding of how microscopic properties translate into the macroscopic
parameters. The motion of E. coli has been studied for forty years, and much is known
about how they sense and process environmental signals. E. coli alternates two basic
behavioral modes, a more or less linear motion, called a run, and a highly erratic
motion, called tumbling, the purpose of which is to reorient the cell. During a run the
bacteria move at approximately constant speed in the most recently chosen direction.
Run times are typically much longer than the time spent tumbling, and when bacteria
move in a favorable direction (i.e., either in the direction of foodstuffs or away from
harmful substances) the run times are increased further. These bacteria are too small
to detect spatial differences in the concentration of an attractant on the scale of a
cell length, and during a tumble they simply choose a new direction essentially at
random, although it has some bias in the direction of the preceding run [7, 4]. The
effect of alternating these two modes of behavior, and in particular, of increasing the
run length when moving in a favorable direction, is that a bacterium executes a three-
dimensional (3D) random walk with drift in a favorable direction when observed on a
sufficiently long time scale [4, 25, 5]. Models for signal transduction and adaptation
in this system are given in [40, 2, 28].

In the absence of external cues, many organisms use a random walk strategy
to determine their pattern of movement. In this case the movement of organisms
released at a point in a uniform environment can be described as an uncorrelated,
unbiased random walk of noninteracting particles on a sufficiently long time scale.
In an appropriate continuum limit the cell density n, measured in units of cells/LN ,
where L denotes length and N = 1, 2, or 3, satisfies the diffusion equation

∂n

∂t
= D∆n.(1.1)

Here the cell flux is given by j = −D∇n, and the simplest description of cell motion in
the presence of an attractant or repellent is obtained by adding a directed component
to the diffusive flux to obtain

j = −D∇n + nuc,(1.2)

where uc is the macroscopic chemotactic velocity. The taxis is positive or negative
according to whether uc is parallel or antiparallel to the direction of increase of the
chemotactic substance. The resulting evolution equation for n is

∂n

∂t
= ∇ · (D∇n− nuc),(1.3)

and this is called a chemotaxis equation. In a phenomenological approach one postu-
lates a constitutive relation for the chemotactic velocity of the form

uc = χ(S)∇S,(1.4)
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where S is the concentration of the chemotactic substance and the function χ(S) is
called the chemotactic sensitivity. When χ > 0, the tactic component of the flux is
in the direction of ∇S and the taxis is positive. With this postulate, (1.3) takes the
form

∂n

∂t
= ∇ · (D∇n− nχ(S)∇S).(1.5)

We call equations of this type classical chemotaxis equations, though frequently that
term is used for a system of equations comprising (1.5) and a reaction-diffusion equa-
tion for the evolution of the signal substance. A recent review of the mathematical
aspects of chemotaxis equations is given in [21].

A problem in using equations such as (1.5) to describe chemotaxis is how one
justifies the constitutive assumption (1.4) and, in particular, how one incorporates
microscopic responses of individual cells into the chemotactic sensitivity. A number
of phenomenological approaches to the derivation of the chemotactic sensitivity or
chemotactic velocity have been taken, including simply postulating the form in (1.4)
[23, 33] or deriving the velocity directly in terms of forces exerted by the cell [35].
Other more fundamental approaches have also been used to relate the chemotactic
velocity or sensitivity to a microscopic description of movement. In the first, one
begins with a lattice walk or space jump process, either in discrete or continuous
time, and postulates how the transition probabilities depend on the external signal.
For a discrete time walk the chemotaxis equation is derived in the diffusion limit of
this process, by letting the space step size h and the time step δt go to zero in such a
way that the ratio h2/δt is a constant, namely D. A more general approach leads to a
renewal equation, from which a partial differential equation is obtained by particular
choices of the jump kernel and the waiting time distribution [29]. Another method,
based on a continuous time reinforced random walk in which the walker modifies the
transition probabilities of an interval for successive crossings, is developed in [31] for
a single tactic substance.

A space jump process is suitable for certain organisms, but an alternative stochas-
tic process that may be more appropriate for describing the motion of cells is called
the velocity jump process [29]. In this process the velocity, rather than the spatial po-
sition, changes by random jumps at random instants of time. The governing evolution
equation for the simplest version of this process is

∂

∂t
p(x, v, t) + v · ∇p(x, v, t) = −λp(x, v, t) + λ

∫
V

T (v, v′)p(x, v′, t)dv′,(1.6)

where p(x, v, t) denotes the density of particles at spatial position x ∈ Ω ⊂ RN , moving
with velocity v ∈ V ⊂ RN at time t ≥ 0 [29]. Here λ is the (constant) turning rate,
and 1/λ is a measure of the mean run length between velocity jumps. In general, the
turning frequency λ must depend on the extracellular signal, as transduced through
the signal transduction network and the motility control system. The turning kernel
T (v, v′) gives the probability of a velocity jump from v′ to v if a jump occurs, and
implicit in the above formulation is the assumption that the choice of a new velocity
is independent of the run length.

The forward equation (1.6) for a velocity jump process is similar to the Boltz-
mann equation, wherein the right-hand side is an integral operator that describes the
collision of two particles, and is therefore quadratic in p [11]. The kernel of the inte-
gral operator is specified by the dynamics, and it is well known that an appropriate
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scaling of space and time leads at least formally from the Boltzmann equation to a
diffusion process [26, 17]. This also holds for transport equations and more general
transport processes (see, e.g., [18, 34, 36]). The earliest derivation of the chemotactic
sensitivity from a velocity jump process was done by Patlak [36], who used kinetic
theory arguments to express uc in terms of averages of the velocities and run times
of individual cells. Alt [1] significantly extended Patlak’s approach to the analysis of
taxis and his results have been applied to E. coli using a phenomenological description
of signal transduction [12].

In [19, 30] the kinetic equation approach for deriving chemotactic equations was
further developed using a kernel T that may include an external bias. A general
Perron–Frobenius property of the turning operator T defined by the right-hand side
of (1.6) and a proper scaling of space and time lead to a Hilbert expansion of the long-
term dynamics that produces a parabolic limiting equation. In certain cases there is
no taxis, and the parabolic limit is anisotropic, in that the resulting equation for the
macroscopic density,

n(x, t) =

∫
V

p(x, v, t)dv,(1.7)

is

∂n

∂t
= ∇ ·D∇n,(1.8)

where D is an N ×N nondiagonal matrix. Necessary and sufficient conditions under
which the diffusion matrix D reduces to a scalar times the identity were also obtained.
In previous work the external bias enters the turning kernel and turning rate as
an order ε term [1, 30], and the perturbation analysis done in [30] shows that the
chemotaxis equation is obtained only in this case. In the approach used in [30] an
external bias of order one in the turning kernel can be admitted, but with suitable
restrictions this leads to (1.8) rather than the chemotaxis equation in the diffusion
limit.

The prototypical organisms whose motion can be described as a velocity jump
process are the flagellated bacteria such as E. coli. A bacterium runs at a constant
velocity for a random length of time, then tumbles for a random length of time,
chooses a new direction at random, and repeats the cycle. When motion is restricted
to one space dimension and the tumble phase is neglected, this leads to a telegraph
process described by the hyperbolic system

∂p+

∂t
+ s

∂p+

∂x
= −λp+ + λp−,

(1.9)
∂p−

∂t
− s

∂p−

∂x
= λp+ − λp−,

where p±(x, t) are the probabilities densities of particles that are at (x, t) and are
moving to the right (+) and left (−) and s is the speed. This model was first analyzed
by Goldstein [16], and subsequently by others [22, 27, 29]. It can be shown that if
λ is a constant, the system reduces to a damped wave equation called the telegraph
equation for the total density p ≡ p+ + p−, and on a finite domain with reflecting
boundary conditions, solutions are asymptotically constant in space and time. Even
if there is a fixed background signal and the turning rate depends on the signal but is
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independent of the direction of travel, still there is no aggregation at extrema of the
signal: all solutions are asymptotically constant [32].

It is not difficult to see formally that the turning rate for left-moving particles
must be different from that for right-moving particles in order to produce a nonzero
chemotactic velocity [32], and this has been analyzed in detail in [20]. However, at
present there is little understanding of the interplay between the intracellular dy-
namical system that describes signal transduction and quantities such as the turning
rate and turning kernel in a macroscopic, population-level description of motion. Our
objective here is to develop a mathematical framework in which one can systemati-
cally extract information about population-level behavior for adapting walkers from
microscopic models of individual behavior, and to apply it to a caricature of adapting
intracellular dynamics. We use E. coli as a prototype system, but the methodology
and the results apply more generally.

The paper is organized as follows. In the following section we briefly describe
the signal transduction network in E. coli to motivate the simplified description used
herein. Next we introduce the transport equations for systems with internal dynam-
ics, which are the starting point for the derivation of the macroscopic limit. We derive
the macroscopic moment equations (section 4), the modified version of the classical
chemotaxis equation (section 6), and the classical chemotaxis equation (section 7). Fi-
nally, we show some illustrative numerical results, we apply our results to experiments
with an exponential signal gradient, and we discuss generalizations of our approach.
The extension of the results herein to higher space dimensions is done in [15].

2. Internal dynamics. E. coli have 4–6 flagella distributed uniformly over the
cell surface and move by rotating them in a corkscrew-like manner [37, 41]. When
rotated counterclockwise, the flagella coalesce into a propulsive bundle, resulting in
a relatively straight “run” [8]. When rotated clockwise they fly apart, resulting in a
“tumble” which reorients the cell but causes no significant change of location. The cell
thus alternates between runs and reorienting tumbles. In the absence of stimuli, the
bias or probability per unit time of a tumble (PCW ) is essentially independent of when
the last tumble occurred [41]. The mean run interval is about 1 sec in the absence
of chemotaxis, the mean tumble interval is about 0.1 sec, and both are distributed
exponentially [6]. A chemoeffector (attractant or repellent) alters the probabilities
that the flagella will rotate in a given direction, thus changing the frequencies and du-
ration of runs and tumbles. E. coli respond chemotactically to a variety of attractants
and repellents over a wide range of concentrations [6]. A typical response, which we
define as a measurable change in bias from baseline following a transient increase in
the concentration of an attractant or a decrease in that of a repellent, is as follows.
After a brief latency period there is an increase in PCCW (probability per unit time of
a run) above the baseline probability of approximately 0.64 [8]. This early response,
which is typically rapid, constitutes the excitation, and it is followed by a period of
relatively slow adaptation to the stimulus. Adaptation eventually returns the bias to
baseline, allowing the cell to respond to further changes.

The magnitude of the change in bias in response to an exponentially increasing
attractant concentration increases approximately linearly with the ramp rate [9]. As-
suming equilibrium binding, the fraction of receptors occupied is θ = S/(KD + S),
where S is the concentration and KD is the dissociation constant. Therefore θ̇ =
KDS/(KD + S)2 · d lnS/dt, and if S ∼ KD, then 4θ̇ ∼ d lnS/dt, which is the ramp
rate. Thus the magnitude of the response is an approximately linear function of the
rate of change in occupancy, which provides a superficial explanation of the observed
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Fig. 2.1. Signaling components and pathways for E. coli chemotaxis. Chemoreceptors (MCPs)
span the cytoplasmic membrane (hatched lines), with a ligand-binding domain on the outside and a
catalytic domain on the cytoplasmic side. MCP complexes have two alternative signaling states. In
the attractant-bound form, the receptor inhibits CheA autokinase activity; in the unliganded form,
the receptor stimulates CheA (A) activity. The overall flux of phosphoryl groups P to CheB (B)
and CheY (Y) reflects the proportion of signaling complexes in the inhibited and stimulated states.
Changes in attractant concentration shift this distribution, triggering a flagellar response. Adap-
tation occurs when the ensuing changes in the CheB phosphorylation state alter its methylesterase
activity, producing a net change in the MCP methylation state that cancels the stimulus signal (cf.
[42] for a review; figure reproduced from [40], with permission).

adaptation. Because of adaptation, the response is not directly dependent on the ab-
solute concentration of chemoeffector [41], but instead the sensory system functions
as a derivative detector.

E. coli is also extremely sensitive to small changes in chemoeffector levels. The
cells can respond to slow exponential increases in attractant levels that correspond to
rates of change in the fractional occupancy of chemoreceptors as small as 0.1% per
second [9, 38]. Thus a cell can respond even when there is only a small change in the
receptor occupancy over a typical sampling period. High sensitivity is also seen when
cells are subjected to small impulses or step increases in attractant concentration,
though the evidence is mixed. Segall, Block, and Berg [38] report that a change in
receptor occupancy of 0.42% elicits a 23% change in bias—a ratio, or gain, of 55—but
Khan et al. [24] report a maximum gain of only 6.

The main features of the E. coli chemotaxis excitation and adaptation pathways
are as follows [10] (see Figure 2.1). Chemical stimuli are detected by transmembrane
receptors, which in turn generate cytoplasmic signals that control the flagellar motors.
Aspartate, the attractant chemoeffector most commonly used in experiments, binds
directly to the periplasmic domain of its transducer, Tar. This initiates a complicated
sequence of biochemical steps, the net effect of which is to temporarily reduce the
level of the motor control protein CheYP following an increase in attractant, thereby
temporarily increasing PCCW = 1 − PCW and increasing the fraction of time spent
running as opposed to tumbling. Detailed models of this network are now available
[40, 2, 28], and we refer the reader to the original literature. For our purposes we wish
to abstract the essential features of the signal transduction and response processes.

2.1. Cartoon internal dynamics. The essential aspects that a simplified de-
scription must reproduce in order to make it useful for studying macroscopic phenom-
ena are (i) it must exhibit excitation, which here means a change in bias in response
to a stimulus, (ii) the bias must return to baseline levels (i.e., the response must
adapt) on a time scale that is slow compared to excitation, and (iii) the signal trans-
duction network should amplify signals appropriately. Let y = (y1, y2, . . . , ym) ∈ R

m
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denote the internal state variables, which can include the concentrations of recep-
tors, proteins, etc., and let S(x, t) = (S1, S2, . . . , SM ) ∈ R

M denote the signals in the
environment. Then all current deterministic models of bacterial signal transduction
pathways can be cast in the form of a system of ordinary differential equations that
describe the evolution of the intracellular state, forced by the extracellular signal.
Thus

dy

dt
= f(y, S),(2.1)

where f : R
m × R

M → R
m describes the particular model. The question is, given

an accurate microscopic model, can we derive a macroscopic description, and can
we use it to predict the effect on macroscopic behavior of changes in the microscopic
parameters? At present this is very difficult to do with a full description of the internal
dynamics for E. coli, which may involve 20 or more variables, and as a first step we
use a simpler cartoon description of signal transduction that was developed in [32],
which incorporates the essential features described above.

We describe the internal dynamics with two internal variables, i.e., y ∈ Y ⊂ R
2,

and we suppose that the internal state evolves according to the system of ordinary
differential equations

dy1

dt
=

g(S(x, t)) − (y1 + y2)

te
,(2.2)

dy2

dt
=

g(S(x, t)) − y2

ta
,(2.3)

where te and ta are constants, x is the current position of a cell, S : R
N × [0,∞) →

[0,∞) is the concentration of the chemoattractant, and g : [0,∞) → [0,∞) models
the first step of signal transduction. For any constant signal S these equations have
the property that

lim
t→∞

y1 = 0 and lim
t→∞

y2 = g(S),(2.4)

and therefore y1 adapts perfectly to any constant stimulus. The time constants te
and ta are labeled in anticipation of using y1 for the internal response and y2 as the
adaptation variable, and therefore we call te and ta the excitation and adaptation
time constants, respectively. In order to obtain the desired response, one must have
te < ta. In E. coli the excitation is much faster than adaptation, and we have te 	 ta.

Since y1 adapts perfectly, any continuous function h : R → R of y1 can be used to
model the response to changes in the extracellular signal, and the response will adapt;
i.e., the steady state response will be independent of the magnitude of the stimulus
S. In Figure 2.2 we compare the response of the cartoon model with the response
predicted by a detailed model of the entire signal transduction pathway. It is clear
that the cartoon model can capture the essential changes in the bias in E. coli using
a suitable definition of the response. For the simplest velocity jump process in which
tumbling is ignored, we identify the response with the turning frequency λ(y). In a
more detailed description in which the tumble phase is accounted for, one can relate
the internal state more directly to experimental results on the switching frequency
[13]. This will be done in section 9.1; here we use λ(y) ≡ Response = h(y1). Moreover,
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Fig. 2.2. (left) The computed change in bias in response to a step change in attractant for a
complete signal transduction model [40]. (right) The graph of the response of the internal dynamics
(2.2)–(2.3), given a step change of the signal. Here the response is defined as Response = 0.5 + y1;
moreover, g = Identity, te = 0.01, and ta = 5. The signal function is 0 in the time interval [0, 10],
and the signal is equal to 0.3 in the time interval [10, 50].

for simplicity we will assume that h is a linear function of y1 (which is always true
for small responses y1); i.e., we suppose that

λ(y) ≡ Response = λ0 − by1,(2.5)

where λ0 is the basal turning frequency for a fully adapted cell and b is a positive
constant. The term by1 describes the change in the turning frequency in response
to a signal, and the negative sign accounts for the fact that an increase of y1 should
produce a decrease in the turning rate.

The function g in (2.2) and (2.3) describes the transduction of the signal, and a
reasonable choice for this is to suppose that it depends on the fraction of receptors
occupied, in which case

g(S) = G

(
S

KD + S

)

for some other function G, where KD is the dissociation constant for the attractant
[9]. We shall assume in the derivation that g = Identity, and that te = 0 in (2.2). The
results for a general function g and te 
= 0 can be derived similarly, and we state them
at the end of the corresponding sections (see (6.34), (7.12), etc.).

Whatever the choice of g, the formal solution to (2.2) and (2.3) can be obtained
explicitly. However, because x = x(t) is the cell position at time t in a given external
concentration field, the integration must be along the cell trajectory, which is a biased
random walk. Hence, S(x, t) is a stochastic input to the signal transduction system.

3. Individual behavior. We suppose that the extracellular signal is specified
as S(x, t), and for the present we neglect the time spent tumbling; the tumble phase
is incorporated in section 9.1. Let p(x, v, y, t) be the density function of bacteria in
a (2N + m)-dimensional phase space with coordinates (x, v, y), where x ∈ R

N is the
position of a cell, v ∈ V ⊂ R

N is its velocity, and y ∈ Y ⊂ R
m is its internal state,

which evolves according to (2.1). Thus p(x, v, y, t)dxdvdy is the number of cells with
position between x and x + dx, velocity between v and v + dv, and internal state
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between y and y + dy. The evolution of p is governed by the following transport
equation:

∂p

∂t
+ ∇x · vp + ∇v · Fp + ∇y · fp = Q,(3.1)

where F denotes the external force acting on the individuals and Q is the rate of
change of p due to reactions, random choices of velocity, collisions, etc. Here we
ignore external forces and set F ≡ 0. Moreover, we assume that there is only one
process represented in Q: that which generates the random velocity change, and we
assume that the changes are the result of a Poisson process of intensity λ(y). Then

Q = −λ(y)p(x, v, y, t) +

∫
V

λ(y)T (v, v′, y)p(x, v′, y, t)dv′,

where the kernel T (v, v′, y) gives the probability of a change in velocity from v′ to
v, given that a reorientation occurs. The kernel T is nonnegative and satisfies the
normalization condition

∫
V
T (v, v′, y)dv = 1.

Consequently, the transport equation (3.1) takes the following form:

∂p

∂t
+ ∇x · vp + ∇y · fp = −λ(y)p +

∫
V

λ(y)T (v, v′, y)p(x, v′, y, t)dv′.(3.2)

The objective of this paper is to derive a macroscopic description for chemotaxis
from the microscopic model, i.e., an evolution equation for the macroscopic density
of individuals

n(x, t) =

∫
Y

∫
V

p(x, v, y, t)dvdy.(3.3)

Since we are primarily concerned with how the internal dynamics (2.1) influence the
macroscopic behavior, we will only consider movement in one dimension. Considering
2D and 3D models does not alter the process of incorporating the internal dynamics
into the macroscopic equations, but it does raise technical issues that will be discussed
elsewhere [15]. Moreover, we assume that the speed is constant, and therefore we
analyze the following generalization of the simple telegraph process described by (1.9):
let p±(x, y, t) be the density of the particles that are at (x, t) with the internal state y
and are moving to the right (+) or left (−), and suppose that the internal state evolves
according to the system of equations (2.1). Then p±(x, y, t) satisfy the equations

∂p+

∂t
+ s

∂p+

∂x
+

m∑
i=1

∂

∂yi

[
fi(y, S)p+

]
= λ(y)

[
−p+ + p−

]
,(3.4)

∂p−

∂t
− s

∂p−

∂x
+

m∑
i=1

∂

∂yi

[
fi(y, S)p−

]
= λ(y)

[
p+ − p−

]
.(3.5)

Written as a system, this takes the form

∂

∂t

(
p+

p−

)
+ s

(
1 0
0 −1

)
∂

∂x

(
p+

p−

)
+ ∇y ·

[
f(y, S)

(
p+

p−

)]

= λ(y)

(
−1 1
1 −1

)(
p+

p−

)
.(3.6)
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This is a hyperbolic system in diagonal form that has two independent characteristics
for s > 0, and it is therefore strictly hyperbolic for s > 0.

To analyze the system (3.4)–(3.5), we must specify the internal dynamics (2.1)
and the turning rate λ(y). Here we shall use the internal dynamics (2.2)–(2.3) and
the turning rate given by (2.5). Moreover, for simplicity we suppose that the signal
S(x) is a time-independent scalar function, that te = 0, and that g = Identity. (The
results for a general function g and te 
= 0 can be derived similarly, and we state them
at the end of the corresponding sections; see (6.34), (7.12), etc.) Then the internal
dynamics and the response are given as follows:

dy2

dt
=

S(x) − y2

ta
,(3.7)

λ(y) ≡ Response = λ0 − b(S(x) − y2).(3.8)

It is convenient to define the new internal state variable z2 as

z2 = y2 − S(x),(3.9)

and then

dz2

dt
=

S(x) − y2

ta
− S′(x)

dx

dt
= −z2

ta
∓ S′(x)s,(3.10)

where the sign of the last term is determined by the sign of the velocity of the particle.
Moreover,

λ(z2) ≡ λ(y) = λ0 − b(S(x) − y2) = λ0 + bz2.(3.11)

Later we will make use of an estimate on the internal state derived in the following
lemma, and to avoid repetition, we introduce the following definition. Suppose that
the cell moves in one dimension according to a velocity jump process with internal
dynamics, and that the internal state z2 of the cell evolves according to (3.10). We
call this the standard process.

Lemma 3.1. Suppose that the cells execute the standard process, and suppose that

|S′(x)| ≤ K for x ∈ R and |z2(0)| ≤ staK.

Then we have

|z2(t)| ≤ staK for t ≥ 0.

Proof. If z2(t) = −staK, then the estimate |S′(x)| ≤ K implies dz2
dt ≥ 0. Similarly,

if z2(t) = staK, then the estimate |S′(x)| ≤ K implies dz2
dt ≤ 0. As |z2(0)| ≤ staK, we

have |z2(t)| ≤ staK for all t ≥ 0.
For a physically reasonable model we must ensure that the turning rate λ(z2) is

always nonnegative, and for this we introduce the following standing hypothesis:

Assume that |S′(x)| ≤ C, where C is given by C =
λ0

bsta
.(3.12)

Given (3.12), we have the following lemma.
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Lemma 3.2. Suppose that the cells execute the standard process and that (3.12)
is satisfied. Suppose that initially λ(z2(0)) ≥ 0. Then we have

λ(z2(t)) ≥ 0 for all t ≥ 0.

Proof. The linear turning rate (3.11) is nonnegative if and only if z2 ≥ −λ0

b . As

λ(z2(0)) ≥ 0, we have z2(0) ≥ −λ0

b . Then Lemma 3.1 implies that z2(t) ≥ −λ0

b for
t ≥ 0. Consequently, the turning rate λ(y) is nonnegative for all t ≥ 0.

In view of the preceding assumptions and simplifications, the evolution equations
(3.4)–(3.5) for the densities p±(x, z2, t) can be written as

∂p+

∂t
+ s

∂p+

∂x
+

∂

∂z2

[(
−z2

ta
− sS′(x)

)
p+

]
= (λ0 + bz2)

[
−p+ + p−

]
,(3.13)

∂p−

∂t
− s

∂p−

∂x
+

∂

∂z2

[(
−z2

ta
+ sS′(x)

)
p−

]
= (λ0 + bz2)

[
p+ − p−

]
.(3.14)

In the following sections we use (3.13)–(3.14) to derive macroscopic equations. First,
however, we address the question of existence and nonnegativity of the densities
p±(x, z2, t). In the following lemma we establish these properties for the general
system (3.4)–(3.5), and this implies the result for (3.13)–(3.14).

Lemma 3.3. Suppose that f ∈ C1(Rm × R
M ), and let S : R × [0,∞) → R

M

be continuous. Moreover, suppose that λ(y) in (3.4)–(3.5) is always nonnegative, and
that p+

0 : R
m+1 → [0,∞) and p−0 : R

m+1 → [0,∞) are given nonnegative compactly
supported C1-functions. Then there exists a domain Q ⊂ R

m+1×[0,∞) containing the
entire plane t = 0 such that the system of equations (3.4)–(3.5) with initial conditions
p±(x, y, 0) = p±0 (x, y) has a unique C1-solution in Q. Moreover, the functions p± are
nonnegative wherever they are defined.

Proof. As remarked earlier, the general system (3.6) has two independent char-
acteristics, and this applies to (3.4)–(3.5) as well. Consequently, we can apply the
modified implicit function theorem to show local existence of a unique classical solu-
tion (see [3, section 2.4.4]). To prove nonnegativity, let us consider that the solution
is NOT nonnegative and define

t0 = inf{ τ : there exists (x, y) such that p+(x, y, τ) < 0 or p−(x, y, τ) < 0 };

i.e., t0 is the last time for which the nonnegativity of solutions is satisfied. In partic-
ular, we have p±(·, ·, t0) ≥ 0.

Let χ+
x,y,t0(τ) be a characteristic through the point (x, y, t0) for (3.4), and let

χ−
x,y,t0(τ) be a characteristic through the point (x, y, t0) for (3.5). Thus χ±

x,y,t0(τ) are

curves in the (m + 2)-dimensional (x, y, t)-space along which (3.4)–(3.5) read as

d

dτ
p+(χ+

x,y,t0(τ)) = −c(χ+
x,y,t0(τ))p+(χ+

x,y,t0(τ)) + λ(χ+
x,y,t0(τ))p−(χ+

x,y,t0(τ)),

(3.15)

d

dτ
p−(χ−

x,y,t0(τ)) = λ(χ−
x,y,t0(τ))p+(χ−

x,y,t0(τ)) − c(χ−
x,y,t0(τ))p−(χ−

x,y,t0(τ)),(3.16)
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wherein

c(x, y, t) = λ(y) +

m∑
i=1

∂fi(y, S(x, t))

∂yi
.

Let us suppose that p+(x, y, t0) = 0. Then (3.15) implies (using τ = t0, λ(y) ≥ 0 and
p−(x, y, t0) ≥ 0)

d

dτ
p+(x, y, t0) ≥ 0.(3.17)

Similarly, if p−(x, y, t0) = 0, then (3.16) gives d
dτ p

−(x, y, t0) ≥ 0. Consequently, there
exists a constant c > 0 such that the solutions p± are nonnegative in the time interval
[t0, t0 + c). This is a contradiction with the choice of t0.

4. Moment equations. The next step is to derive evolution equations for
macroscopic variables from the simplified system (3.13)–(3.14). Since there are only
two velocities and one internal state variable, the density n(x, t) is given by (cf. (3.3))

n(x, t) =

∫
R

p+(x, z2, t) + p−(x, z2, t)dz2.(4.1)

The objective is to derive an evolution equation involving only n, if possible. For this
purpose define N = p+(x, z2, t)+p−(x, z2, t) and J = s(p+(x, z2, t)−p−(x, z2, t)); the
former is the microscopic particle density, obtained by integrating p over v, while the
latter is a microscopic flux obtained similarly. In this notation, (4.1) can be written

n(x, t) =

∫
R

N (x, z2, t)dz2,(4.2)

and we define the additional moments

j(x, t) =

∫
R

J (x, z2, t)dz2,(4.3)

n1(x, t) =

∫
R

z2N (x, z2, t)dz2,(4.4)

j1(x, t) =

∫
R

z2J (x, z2, t)dz2,(4.5)

and

j2(x, t) =

∫
R

(z2)
2J (x, z2, t)dz2.(4.6)

The quantity j is the macroscopic particle flux, n1 and j1 are first moments with
respect to the slow component of the internal state of the microscopic density and
flux, respectively, and j2 is the second moment of the microscopic flux with respect
to the slow component of the internal state. All moments with respect to z2 are well
defined by virtue of Lemma 3.1 and the standing assumption (3.12), which implies
that p vanishes identically outside some sufficiently large interval in |z2|.
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Next, by multiplying (3.13) and (3.14) by 1 or z2, integrating with respect to
z2, and adding or subtracting the resulting equations, we obtain the following four
moment equations:

∂n

∂t
+

∂j

∂x
= 0,(4.7)

∂j

∂t
+ s2 ∂n

∂x
= −2λ0j − 2bj1,(4.8)

∂n1

∂t
+

∂j1
∂x

= −S′(x)j − 1

ta
n1,(4.9)

∂j1
∂t

+ s2 ∂n1

∂x
= −s2S′(x)n−

(
2λ0 +

1

ta

)
j1 − 2bj2.(4.10)

We see that the moment equations for a density-flux pair introduce a higher-order
flux via the change in turning rate, as measured by b. If S(x) is constant, the effect
of the signal disappears and the second pair is uncoupled from the first. In section 6
we rescale the variables and then close the system of four moment equations with the
assumption that

j2 = 0;(4.11)

i.e., we simply neglect the second-order flux. The moment closure (4.11) will be
rigorously justified in the case of shallow gradients of the signal. The moment closures
for arbitrary signal functions will be discussed in section 9.2.

Of course one can ask what a lower-order closure (i.e., the closure assumption
on j1) leads to, and it is easy to see that if we assume that j1 = 0, we obtain the
telegraph equation

1

2λ0

∂2n

∂t2
+

∂n

∂t
=

s2

2λ0

∂2n

∂x2
.(4.12)

Since the external signal S is completely absent from this equation, this approximation
is not suitable for studying the dependence of n on the signal. Clearly (4.12) applies
if there is no effect of the signal on the turning rate, and in this case there can be no
taxis.

From (4.7)–(4.10) we can derive evolution equations for various statistics of the
motion that give insight into the asymptotics of solutions of the system of moment
equations. These are derived in the following section.

5. Evolution of certain statistics of the motion. We denote by n0 the total
number of particles in the domain. This is a conserved quantity and is given by

n0 =

∫
R

n(x, t)dx.

The mean position of the particles 〈x〉(t) and the mean square displacement 〈x2〉(t)
are given by

〈x〉(t) =
1

n0

∫
R

xn(x, t)dx, 〈x2〉(t) =
1

n0

∫
R

(x− 〈x〉)2 n(x, t)dx.(5.1)
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We define the spatial moments of j, j1, and j2 as follows:

j0 =

∫
R

j(x, t)dx, jx =

∫
R

xj(x, t)dx, j0
1 =

∫
R

j1(x, t)dx, j0
2 =

∫
R

j2(x, t)dx.

Then, multiplying (4.7) by x and by (x− 〈x〉(t))2, and integrating the resulting equa-
tions with respect to x, we find that

d

dt
〈x〉 =

j0

n0
and

d

dt
〈x2〉 =

2jx − 2〈x〉j0

n0
.(5.2)

Integrating (4.8) and (4.10) with respect to x, we obtain the evolution equations for
j0 and j0

1 :

d

dt
j0 = −2λ0j

0 − 2bj0
1 ,(5.3)

d

dt
j0
1 = −s2

∫
R

S′(x)n(x, t)dx−
(

2λ0 +
1

ta

)
j0
1 − 2bj0

2 .(5.4)

We can solve (5.3)–(5.4) explicitly for j0 as a function of the quantities
∫

R
S′(x)n(x, t)dx

and j0
2 . Then the evolution equation (5.2) for 〈x〉 reads

d

dt
〈x〉 =

e−2λ0t

n0

[
j0(0)+

∫ t

0

et
′/ta2b

(
− j0

1(0)

+

∫ t′

0

e2λ0t
′′+t′′/ta

{
s2

∫
R

S′(x)n(x, t)dx + 2bj0
2

}
dt′′

)
dt′

]
.

Thus the mean displacement is driven by the flux j0, which is in turn forced by the
projection of the local density onto the gradient, as given by the integral term in S′,
as well as by the higher-order flux j0

2 . From the foregoing one can conclude that if 〈x〉
tends to a constant as t → ∞, then the total flux j0 must vanish as t → ∞, and this
in turn requires that the term s2

∫
R
S′(x)n(x, t)dx + 2bj0

2 must tend to zero. Thus
this is a necessary, but not sufficient, condition for steady patterns. Similarly, one
can derive the system of evolution equations for the mean square displacement.

In order to gain further insight into the evolution of the statistics of motion, let
us suppose that

S′(x) = C = constant and j2 = 0.

To derive equations for the mean position 〈x〉 and the mean square displacement 〈x2〉
under this restriction we introduce some additional moments

n0
1 =

∫
R

n1(x, t)dx, nx
1 =

∫
R

xn1(x, t)dx, and jx1 =

∫
R

xj1(x, t)dx.

Then, integrating (4.8), (4.9), and (4.10) with respect to x, we obtain the system

d

dt

⎛
⎝ j0

n0
1

j0
1

⎞
⎠ =

⎛
⎜⎝

−2λ0 0 −2b
−C − 1

ta
0

0 0 −
(
2λ0 + 1

ta

)
⎞
⎟⎠

⎛
⎝ j0

n0
1

j0
1

⎞
⎠ +

⎛
⎝ 0

0
−s2Cn0

⎞
⎠.(5.5)
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Similarly, multiplying (4.8), (4.9), and (4.10) by x and integrating with respect to x,
we obtain

d

dt

⎛
⎝ jx

nx
1

jx1

⎞
⎠ =

⎛
⎜⎝

−2λ0 0 −2b
−C − 1

ta
0

0 0 −
(
2λ0 + 1

ta

)
⎞
⎟⎠

⎛
⎝ jx

nx
1

jx1

⎞
⎠ +

⎛
⎝ s2n0

j0
1

s2n0
1 − s2C〈x〉n0

⎞
⎠ .

(5.6)

Together (5.5) and (5.6) form a system of six linear nonhomogeneous equations. The
eigenvalues of the matrix of this 6×6 system, which has the 3×3 blocks of the separate
system along the diagonal, are in fact just the diagonal entries, and are therefore real
and negative. Since n0 is constant, it follows that the system has a unique stable
steady state given by

j0 =
bs2Cta

λ0 + 2λ2
0ta

n0 and 2jx − 2〈x〉j0 =

(
s2

λ0
+

2b2s4C2t3a
(λ0 + 2λ2

0ta)
2

)
n0.

Thus, (5.2) implies that, asymptotically for t → ∞, we have

〈x〉(t) =
bs2Cta

λ0 + 2λ2
0ta

t and 〈x2〉(t) =

(
s2

λ0
+

2b2s4C2t3a
(λ0 + 2λ2

0ta)
2

)
t.(5.7)

The second of these shows that when the gradient S′(x) = C, the standard process is
asymptotically a diffusion process with diffusion constant

D =
s2

2λ0
+

b2s4C2t3a
(λ0 + 2λ2

0ta)
2
.(5.8)

Later, using the scaling in (6.8), we will see that the second term in (5.8) is smaller
than the first, and thus in (5.8) D ∼ s2/2λ0.

6. The hyperbolic scaling and derivation of a hyperbolic chemotaxis
equation. The macroscopic equations for n and j that can be obtained from the
moment equations depend on the time and space scales of interest. In this section we
use a hyperbolic scaling of space and time, which can capture the initial time evolution
of the system. Using this scaling, we give a heuristic derivation of a hyperbolic
version of the classical chemotaxis equation. Moreover, we also give an alternate
random walk interpretation to the derived hyperbolic chemotaxis equation in section
6.1. In section 7, we use a parabolic scaling valid for large times, which leads to the
classical chemotaxis equation. This equation is also a parabolic limit of the hyperbolic
chemotaxis equation derived here in cases where the signal is fixed. When the signal
itself evolves in time, this need not be true.

Let L, T, and s0 be scale factors for the length, time, and velocity, respectively;
let N0 be a scale factor for the particle density; and define the dimensionless variables

x̂ =
x

L
, t̂ =

t

T
, n̂ =

n

N0
, ĵ =

j

N0s0
,

n̂1 =
n1

N0
, ĵ1 =

j1
N0s0

, and ĵ2 =
j2

N0s0
.(6.1)
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Then the moment equations (4.7)–(4.10) can be written in the dimensionless form

∂n̂

∂t̂
+ ε

∂ĵ

∂x̂
= 0,(6.2)

∂ĵ

∂t̂
+ εŝ2 ∂n̂

∂x̂
= −2λ̂0 ĵ − 2 b̂ ĵ1,(6.3)

∂n̂1

∂t̂
+ ε

∂ĵ1
∂x̂

= −ε Ŝ′(x̂) ĵ − 1

t̂a
n̂1,(6.4)

∂ĵ1

∂t̂
+ εŝ2 ∂n̂1

∂x̂
= −εŝ2 Ŝ′(x̂) n̂−

(
2λ̂0 +

1

t̂a

)
ĵ1 − 2 b̂ ĵ2,(6.5)

where

ε ≡
(
s0T

L

)
, ŝ ≡ s

s0
, λ̂0 ≡ λ0T, b̂ ≡ bT, t̂a ≡ ta

T
, and Ŝ′(x̂) ≡ LS′(x).

(6.6)

In order to derive the macroscopic equations, we have to specify L, T , and s0 and
estimate the dimensionless parameters. The typical space scale of macroscopic exper-
iments is several millimeters or centimeters, a typical speed of bacterium is s = 10 –
20 µm/sec, and a characteristic time scale depends on our interests. Here, we choose

T = 1 sec, L = 1 mm, and s0 = 10µm/sec;(6.7)

i.e., we use a time scale that is of the same order as the mean time between directional
changes, since this characterizes the initial evolution. Assuming that the adaptation
time and the bias are also of the same order as the mean run time, we get

ε ≈ 10−2 and ŝ ∼ λ̂0 ∼ b̂ ∼ t̂a ∼ O(1).(6.8)

Using an approximation given later, this scaling will lead to a hyperbolic chemotaxis
equation. For simplicity, we drop the hats on x, t, s, λ0, b, ta, S and the hats on
moments, and use the same symbols for the dimensionless variables. Then the moment
equations (6.2)–(6.5) read as follows:

∂n

∂t
+ ε

∂j

∂x
= 0,(6.9)

∂j

∂t
+ ε s2 ∂n

∂x
= −2λ0 j − 2 b j1,(6.10)

∂n1

∂t
+ ε

∂j1
∂x

= −ε S′(x) j − 1

ta
n1,(6.11)

∂j1
∂t

+ ε s2 ∂n1

∂x
= −ε s2 S′(x)n−

(
2λ0 +

1

ta

)
j1 − 2 b j2.(6.12)

In order to close this system we have to specify

j2 = F(n, j, n1, j1),(6.13)
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where the functional F is to be determined. To do that, we first rewrite our standing
assumption (3.12) using hyperbolic scaling (6.7)–(6.8). We denote the dimensionless
constant C again as C for simplicity, and then (3.12) for the dimensionless signal
gradient reads as follows:

|S′(x)| ≤ C, where C ∼ O
(

1

ε

)
.(6.14)

Thus the maximal possible gradient that satisfies (3.12) is O (1/ε) on the hyperbolic
scale. In other words, the restriction on the gradients that guarantees positivity of
the turning rate is very weak, and we strengthen it as follows.

Definition 6.1. We call the signal gradient shallow on the hyperbolic scale if

|S′(x)| ≤ K, where K ∼ O(1).(6.15)

In the following, we investigate the case of shallow gradients, and to do that, we
have to estimate the moments in (6.9)–(6.12).

Lemma 6.2. Suppose that the signal gradient is shallow. Then the moments in
(6.9)–(6.12) can be estimated as follows:

j

n
≤ K1,

n1

n
≤ εK2,

j1
n

≤ εK3,
j2
n

≤ ε2K4,(6.16)

where the constants K1, K2, K3, and K4 are O(1).

Proof. We use (4.6) rescaled by (6.1), (6.6), the nonnegativity of p±, Lemma 3.1,
(4.1), and (6.8) to estimate

j2 =
s

N0

∫
R

(z2)
2
[
p+(x, z2, t) − p−(x, z2, t)

]
dz2

≤ s

N0

∫
R

(z2)
2
[
p+(x, z2, t) + p−(x, z2, t)

]
dz2

≤ ε2(Ks ta)
2 s

N0

∫
R

[
p+(x, z2, t) + p−(x, z2, t)

]
dz2 = ε2(Kta)

2s3 n = ε2K4 n,

where K4 ∼ O(1). This proves the last inequality in (6.16), and the proof of the other
inequalities is similar.

Therefore the term 2bj2 in equation (6.12) is O(ε2) when the gradient is shal-
low, and we can close the moment equations (6.9)–(6.12) with the moment closure
assumption

j2 = 0.(6.17)

This will introduce the error of order O(ε2) into (6.12). The corresponding orders of
the remaining moments are given in Lemma 6.2.

Next we show that one can obtain a hyperbolic chemotaxis equation for n, pro-
vided a certain assumption on the decay of modes holds. To do that, we write the
system (6.9)–(6.12) in the matrix form

∂v

∂t
+ ε

∂

∂x
(Av) = B(x, ε)v + r,(6.18)
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where

v =

⎛
⎜⎜⎝

n
j
n1

j1

⎞
⎟⎟⎠, A =

⎛
⎜⎜⎝

0 1 0 0
s2 0 0 0
0 0 0 1
0 0 s2 0

⎞
⎟⎟⎠, r =

⎛
⎜⎜⎝

0
0
0

−2bj2

⎞
⎟⎟⎠,(6.19)

and

B(x, ε) =

⎛
⎜⎜⎜⎝

0 0 0 0
0 −2λ0 0 −2b
0 −εS′(x) − 1

ta
0

−εs2S′(x) 0 0 −
(
2λ0 + 1

ta

)
⎞
⎟⎟⎟⎠ .(6.20)

Equation (6.18) holds for any signal function satisfying the standing assumption
(3.12), since it is just a different formulation of the system (6.9)–(6.12). Assuming
(6.17), the system (6.18) can be written in the form

∂v

∂t
+ ε

∂

∂x
(Av) = B(x, ε)v.(6.21)

This is a hyperbolic system of four linear PDEs with nonconstant coefficients for four
unknowns: n, j, n1, and j1. The matrix B(x, ε) has the interesting property that its
eigenvalues do not depend on the signal S(x), and consequently the eigenvalues of
B(x, ε) are independent of ε and x. An easy calculation gives the following four (not
necessarily distinct) eigenvalues of B(x, ε):

λ1 = 0, λ2 = −2λ0, λ3 = − 1

ta
, λ4 = −1 + 2λ0ta

ta
.(6.22)

Let us note that three of the eigenvalues, λ2, λ3, and λ4, are negative. Moreover,
λ4 < λ2 and λ4 < λ3.

System (6.21) cannot be solved explicitly, so we simplify it heuristically as follows.
First consider the system (6.21) with ε = 0, in which case (6.21) reduces to the system
of ordinary differential equations

∂w

∂t
= B(x, 0)w,

where the matrix B(x, 0) has four eigenvalues given by (6.22). Consequently, the long
time behavior is given by the eigenvectors corresponding to the largest eigenvalues.
Next, let us consider the system (6.21) with ε 
= 0. As ε is a small parameter, we use
the following heuristic argument to derive a hyperbolic chemotaxis equation.

The eigenvectors of B(x, ε) are

λ1 = 0 : ϑ1 =

⎛
⎜⎜⎝

λ0 + 2λ2
0ta

bεs2S′(x)ta
−b(εsS′(x)ta)

2

−εs2S′(x)taλ0

⎞
⎟⎟⎠ , λ2 = −2λ0 : ϑ2 =

⎛
⎜⎜⎝

0
−1 + 2λ0ta
εS′(x)ta

0

⎞
⎟⎟⎠ ,

(6.23)

λ3 = − 1

ta
: ϑ3 =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ , λ4 = −1 + 2λ0ta

ta
: ϑ4 =

⎛
⎜⎜⎝

0
2bλ0ta

εS′(x)bta
λ0

⎞
⎟⎟⎠ .(6.24)
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Let us suppose that 2λ0 
= 1
ta
. Then we can write the unknown vector function v(x, t)

as a linear combination of the eigenvectors ϑi, i = 1, . . . , 4, i.e.,

v(x, t) = c1(x, t)ϑ1 + c2(x, t)ϑ2 + c3(x, t)ϑ3 + c4(x, t)ϑ4.(6.25)

We are interested in the evolution of the first component of v, which is n. The first
component is nonzero only for the vector ϑ1, and consequently we have

n(x, t) = (λ0 + 2λ2
0ta)c1(x, t).

Then (6.25) reads as follows:

v(x, t) =
n(x, t)

(λ0 + 2λ2
0ta)

ϑ1 + c2(x, t)ϑ2 + c3(x, t)ϑ3 + c4(x, t)ϑ4.(6.26)

The parameter ε is small compared with 2λ0 + 1
ta

(see (6.8)). Consequently, the
major dynamical features will be given by the eigenvectors corresponding to the zero
eigenvalue and the eigenvalues with lower absolute value. We have the inequalities

λ4 < λ2 < λ1 = 0 and λ4 < λ3 < λ1 = 0,(6.27)

and therefore we consider the projection

v(x, t) =
n(x, t)

(λ0 + 2λ2
0ta)

ϑ1 + c2(x, t)ϑ2 + c3(x, t)ϑ3,

to obtain (from the fourth component of the vector v)

j1(x, t) = −εs2S′(x)ta
1 + 2λ0ta

n(x, t).(6.28)

This can be used to reduce the system (6.21) to the following system of two equations:

∂n

∂t
+ ε

∂j

∂x
= 0,(6.29)

∂j

∂t
+ εs2 ∂n

∂x
= −2λ0j + 2b

εs2S′(x)ta
1 + 2λ0ta

n.(6.30)

The last step is to reduce these two equations to one equation for n. To this end, we
differentiate (6.29) with respect to t and (6.30) with respect to x to obtain

∂2n

∂t2
+ ε

∂2j

∂t∂x
= 0,

∂2j

∂x∂t
+ εs2 ∂

2n

∂x2
= −2λ0

∂j

∂x
+ 2b

∂

∂x

εs2S′(x)ta
1 + 2λ0ta

n.(6.31)

Then, solving (6.31) for n, we obtain the hyperbolic version of the classical chemotaxis
equation (compare with (1.5)):

∂2n

∂t2
+ 2λ0

∂n

∂t
=

∂

∂x

(
ε2s2 ∂n

∂x
− 2 b ε2s2 ta

1 + 2λ0ta
S′(x)n

)
.(6.32)

Finally, let us note that s (or ŝ) given by (6.6) is the value of the speed of bacteria
in units of s0. On the other hand, if we give the values for characteristic time T and
length L by (6.7), then the characteristic speed can be also considered as L/T = 1
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mm/sec. In these units, the value of bacterial speed is simply given by s = εs. Using
s instead of s, we can rewrite (6.32) in the following form:

∂2n

∂t2
+ 2λ0

∂n

∂t
=

∂

∂x

(
s2 ∂n

∂x
− 2 b s2 ta

1 + 2λ0ta
S′(x)n

)
.(6.33)

Here, the chemotactic sensitivity is given as a function of bacterial speed s, adaptation
time ta, and turning parameters λ0 and b, namely,

χ =
b s2 ta

λ0 + 2λ2
0ta

,

which we have already derived for the case in which the signal gradient is constant
(see (5.7)). Equation (6.33) was derived for the simplified cartoon model (3.7), but a
similar analysis can be done for the full model (2.2)–(2.3) with te 
= 0 and a general
function g. This leads to the following hyperbolic chemotaxis equation (cf. (6.33)),

∂2n

∂t2
+ 2λ0

∂n

∂t
=

∂

∂x

(
s2 ∂n

∂x
− g′(S(x))

2 b s2 ta
(1 + 2λ0ta)(1 + 2λ0te)

S′(x)n

)
,(6.34)

and the chemotactic sensitivity is now given by

χ = g′(S(x))
b s2 ta

λ0(1 + 2λ0ta)(1 + 2λ0te)
.(6.35)

Note that we can derive (6.33) as the limit te → 0 of (6.34) for g = Identity. It should
also be noted that in either case (and those that follow) the chemotactic sensitivity
vanishes as ta → 0, which is to be expected since the system adapts instantaneously
in this case. In this limit one sees, via (3.12) and Lemma 6.2, the interplay between
the adaptation time and the allowable magnitude of the gradient: as ta → 0 we can
allow the bound K̄ on |S′(x)| in Definition 6.1 to grow as long as |K̄ta| ∼ O(1), and
we obtain the same conclusions as in Lemma 6.2.

In contrast, one cannot extract from (6.35) the effect of letting ta → ∞, because
the derivation of (6.34) or its simplified version (6.33) make use of the inequalities
(6.27) to conclude that the projection of the solution onto the eigenvector ϑ4 dies out
faster than other modes. The spectral gap in (6.27) between λ4 and other eigenvalues
does not persist in the limit ta → ∞, and in addition the constant C tends to zero in
the standing assumption (3.12). Consequently, we need a model for large ta in which
the turning rate is given by some nonlinear nonnegative function of the signal. Let
us also note for later reference that the hyperbolic chemotaxis equation (6.34) gives
the same parabolic limit as we will derive in section 7 from the full system (6.21).

6.1. A different random walk interpretation of the hyperbolic chemo-
taxis equation. As we observed in the discussion in the introduction and in [15],
biasing the turning rates depending on the direction of travel will lead to a nonzero
chemotactic velocity, and in this section we show that one can explicitly extract that
bias from the chemotactic sensitivity derived from the cartoon internal dynamics.
This leads back to a system of equations for left- and right-moving particles, but
now without internal dynamics. One could obtain this by inverting the procedure
that leads from the hyperbolic system without internal dynamics to the second-order
scalar equation for the total density, but we proceed directly. The advantage of this
system is that it provides a direct step to a microscopic model that bypasses the in-
ternal dynamics, and hence may be better suited for stochastic simulations. It also
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suggests a model for chemotaxis in eukaryotic cells, which can measure gradients over
their length.

Consider a random walk in which a particle moves along the x-axis at a con-
stant speed s but at random instants of time reverses its direction according to a
Poisson process with the turning frequency

λ = λ0 ±
b s tag

′(S(x))

(1 + 2λ0ta)(1 + 2λ0te)
S′(x).(6.36)

Here the sign depends on the direction of the particles: plus for particles moving to
the left and minus for particles moving to the right. Let u±(x, t) be the density of
particles at (x, t) that are moving to the right (plus) or left (minus) (note that here,
and only in this section, there are no internal variables). Then u±(x, t) satisfy the
equations

∂u+

∂t
+ s

∂u+

∂x
= −

(
λ0 −

b s tag
′(S(x))

(1 + 2λ0ta)(1 + 2λ0te)
S′(x)

)
u+

+

(
λ0 +

b s tag
′(S(x))

(1 + 2λ0ta)(1 + 2λ0te)
S′(x)

)
u−,(6.37)

∂u−

∂t
− s

∂u−

∂x
=

(
λ0 −

b s tag
′(S(x))

(1 + 2λ0ta)(1 + 2λ0te)
S′(x)

)
u+

−
(
λ0 +

b s tag
′(S(x))

(1 + 2λ0ta)(1 + 2λ0te)
S′(x)

)
u−.(6.38)

The density of particles at (x, t) is given by the sum n(x, t) = u+(x, t) + u−(x, t).
Then, adding and subtracting (6.37) and (6.38), one can rewrite them as a system of
two equations of the form (6.29)–(6.30) for the variables n = u++u− and j = u+−u−.
Then one can follow the same procedure as before to show that the density n of these
direction-sensing random walkers is described by (6.34). In this case, (6.34) is valid
for all times for all biologically reasonable parameter regimes.

7. The parabolic scaling and derivation of the classical chemotaxis
equation. The previous analysis used the scaling (6.7)–(6.8) and led to the hyper-
bolic chemotaxis equation (6.33), but the arguments are formal in several places. This
equation formally reduces for large times to the classical chemotaxis equation (1.5),
but to derive the latter rigorously we introduce a parabolic scaling that leads directly
from the moment equations (4.7)–(4.10) to the classical chemotaxis equation. For this
purpose we define a long time scale, as was done in [19], by setting

t̂ =
t

Tp
, where Tp =

1

ε2
T,(7.1)

where T = 1 sec is the time scale used in the hyperbolic scaling. All other parameters
remain the same as in (6.1), (6.6), (6.7), and (6.8), and therefore the dimensionless
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equations (6.2)–(6.5) take the form

ε2 ∂n̂

∂t̂
+ ε

∂ĵ

∂x̂
= 0,(7.2)

ε2 ∂ĵ

∂t̂
+ εŝ2 ∂n̂

∂x̂
= −2λ̂0 ĵ − 2 b̂ ĵ1,(7.3)

ε2 ∂n̂1

∂t̂
+ ε

∂ĵ1
∂x̂

= −ε Ŝ′(x̂) ĵ − 1

t̂a
n̂1,(7.4)

ε2 ∂ĵ1

∂t̂
+ εŝ2 ∂n̂1

∂x̂
= −εŝ2 Ŝ′(x̂) n̂−

(
2λ̂0 +

1

t̂a

)
ĵ1 − 2 b̂ ĵ2.(7.5)

For simplicity, we drop the hats in (7.2)–(7.5), and we consider the case of shallow
gradients S′(x) ∼ O(1) as before (see Definition 6.1). Therefore we can use the
moment closure j2 = 0 as before, and (7.2)–(7.5) can be written in the following
matrix form

ε2 ∂v

∂t
+ ε

∂

∂x
(Av) = εQ(x)v + Rv,(7.6)

where v and A are given by (6.19) and

Q(x) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 −S′(x) 0 0

−s2S′(x) 0 0 0

⎞
⎟⎟⎠

and R =

⎛
⎜⎜⎜⎝

0 0 0 0
0 −2λ0 0 −2b
0 0 − 1

ta
0

0 0 0 −
(
2λ0 + 1

ta

)
⎞
⎟⎟⎟⎠ .

Here all the entries of the matrices A, Q(x), and R are O(1). Assuming the regular
perturbation expansion

v = v0 + εv1 + ε2v2 + · · · , where v0 =

⎛
⎜⎜⎝

n0

j0

n0
1

j0
1

⎞
⎟⎟⎠ and v1 =

⎛
⎜⎜⎝

n1

j1

n1
1

j1

⎞
⎟⎟⎠ ;

substituting this into (7.6); and comparing terms of equal order in ε, we obtain

ε0 : Rv0 = 0,(7.7)

ε1 :
∂

∂x

(
Av0

)
−Q(x)v0 = Rv1,(7.8)

ε2 :
∂v0

∂t
+

∂

∂x

(
Av1

)
−Q(x)v1 = Rv2.(7.9)

The first equation, (7.7), implies that

v0 = (n0, 0 , 0 , 0 )T ;
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consequently, the second equation, (7.8), implies

j1 = − s2

2λ0

∂n0

∂x
+

bs2ta
λ0 + 2λ2

0ta
S′(x)n0.(7.10)

Finally, (7.9) implies that the left-hand side

∂v0

∂t
+

∂

∂x

(
Av1

)
−Q(x)v1

is in the range of the operator R : w → Rw. Consequently, using a Fredholm alterna-
tive, the left-hand side must be orthogonal to the vector (1, 0, 0, 0)T . Hence,

∂n0

∂t
+

∂j1

∂x
= 0.

Finally, using (7.10), we derive the classical chemotaxis equation in the following form:

∂n0

∂t
=

∂

∂x

(
s2

2λ0

∂n0

∂x
− bs2ta

λ0 + 2λ2
0ta

S′(x)n0

)
.(7.11)

Equation (7.11) was derived for the simplified cartoon model (3.7), but a similar
analysis can be done for the full cartoon model (2.2)–(2.3). This leads to the classical
chemotaxis equation

∂n

∂t
=

∂

∂x

(
s2

2λ0

∂n

∂x
− g′(S(x))

bs2ta
λ0(1 + 2λ0ta)(1 + 2λ0te)

S′(x)n

)
.(7.12)

This is the parabolic counterpart of the hyperbolic equation (6.34) and leads once
again to the formula (6.35) for the chemotactic sensitivity. Rigorous estimates on
how well the solution of the parabolic equation approximates the solution of the
moment equations can be obtained using arguments analogous to those in [19].

8. Numerical examples. The macroscopic descriptions of chemotaxis embod-
ied in either the modified classical chemotaxis equation (6.33) or the classical chemo-
taxis equation (7.11) are approximations of the original transport equation and the
stochastic process describing movement that underlies it. In this section we present
two numerical examples that illustrate how well the macroscopic descriptions approx-
imate the solution of the microscopic process. We start by describing our numerical
methods.

8.1. Numerical methods. The parameters in our computations are assumed
to be dimensionless, and we choose b = 1, ta = 1, λ0 = 1, and s = 0.1; i.e., s is small
compared to other parameters (compare with scaling (6.7)–(6.8)).

To solve the system (6.9)–(6.12), closed by (6.17), numerically, we first transform
this system to the diagonal form

∂v

∂t
+ D1

∂

∂x
v = C1(x)v.

Here D1 is a diagonal 4 × 4 matrix. Then we use an explicit finite difference method
with upwinding. To solve the hyperbolic modified chemotaxis equation (6.33) numer-
ically, we first transform it to the system of two first-order equations in the diagonal
form

∂w

∂t
+ D2

∂

∂x
w = C(x)w,
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where D2 is a diagonal 2×2 matrix. Again, we use an explicit finite difference method
with upwinding.

To solve the classical chemotaxis equation (7.11) numerically, we use an implicit
finite difference method (backward difference approximation in time and centered
difference approximation for spatial derivatives).

Finally, to simulate the random walk of individuals, we consider an ensemble
of 2000 or 8000 particles. Each particle is described by three variables—position
x, velocity ±s, and the internal state y. We use a small time step dt = 0.01 (i.e.,
the unbiased turning frequency divided by 100). During each time step the particle
moves with speed s in the chosen direction, and we integrate the internal dynamics
to find the change of y. At the end of each time step, a random number from [0, 1] is
generated and compared with the probability of the turn λ(y)dt. If the turn occurs,
the bacterium will move during the next time step in the opposite direction.1

8.2. Traveling bands. In this example we analyze the motion of the individuals
in the interval [0, 20] with the signal S(x) given by

S(x) = 28 − 2|x− 14|.(8.1)

The signal has a global maximum at the point 14, and its derivative is S′(x) =
−2 sign (x−14) for x 
= 14. We assume the same initial condition for all computations,
namely,

n(x, 0) =

{
1 for x ∈ [5, 6],
0 for x 
∈ [5, 6];

(8.2)

we assume that all individuals are perfectly adapted at t = 0; and we use no-flux
boundary conditions.

In Figure 8.1 we compare the results of the stochastic simulation of the random
walk with the solutions of the macroscopic system (6.9)–(6.12) closed by (6.17). It
happens that the solution of the modified chemotaxis equation (6.33) and the solution
of the classical chemotaxis equation (7.11) are indistinguishable on the plots from the
solution of (6.9)–(6.12). Thus the macroscopic results presented can be viewed as
plots of the solution of any of these macroscopic equations.

In Figure 8.1 we see that the band travels to the right (i.e., toward the maximum
of the signal), as expected, and then the individuals who arrive at the maximum first
aggregate there. Eventually all individuals aggregate around the maximum of the
signal. From the plots we also see that numerically the macroscopic equations give
very good results in comparison with the Monte Carlo simulations. Finally, if we
use the results for the time interval [0, 600], i.e., under the influence of the constant
gradient, we can compute the average speed of the bacteria in this interval and find
that

V
.
=

1

150
=

|b|s2S′(x)ta
λ0 + 2λ2

0ta
,

which agrees with the result in (5.7).

1A Monte Carlo simulation that incorporates the internal dynamics used here, as well as a more
detailed description of the motor behavior, is given in [39].
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Fig. 8.1. The graphs show the solutions of the macroscopic system (6.9)–(6.12) closed by (6.17)
(thick smooth line) and the results of stochastic simulations of the velocity jump process with internal
state variables (thin line). Moreover, the thick line can also be viewed as a solution of the modified
chemotaxis equations (6.33) and the solution of the classical chemotaxis equation (7.11), since the
solutions of (6.33), (7.11), and (6.9)–(6.12) closed by (6.17) are indistinguishable on this scale. We
used 2000 particles for the Monte Carlo simulations, and the parameters b = 1, ta = 1, λ0 = 1, and
s = 0.1.
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Fig. 8.2. The graphs of the density of bacteria under the influence of the exponential signal
function (8.3) with x0 = 14 and C = 1. Initially the bacteria were uniformly distributed at a density
equal to 1. The figure shows the density of bacteria at time T = 300 (left) and T = 600 (right). The
bacteria aggregate around the point x = 14, as expected. In this figure we use the internal dynamics
(2.2)–(2.5) with g(S) = 2 ln(S), ta = b = λ0 = 1, te = 0, and s = 0.1. The solution of the classical
chemotaxis equation (7.11) (thick line) and the Monte Carlo simulation (thin line) are shown.

8.3. Exponential signal ramp. Various chemotaxis experiments have been
done with exponential signal functions [14, 43]. The standard setup is that initially
there is a uniform concentration of bacteria in the medium with an exponential signal
ramp of the form

S(x) =

{
Cex x ≤ x0,
Cex0 x ≥ x0.

(8.3)

After several minutes, bacteria aggregate at the top of the exponential ramp, i.e.,
around the point x0.

As a second numerical example and test of the macroscopic equations, we re-
produce these experiments with the exponential signal ramp. We again use here the
internal dynamics (2.2)–(2.5) with a suitable choice of g. The exponential signal ramp
was used experimentally because a cell swimming in one direction sees a constant rate
of increase of the signal, and therefore the bias should remain approximately constant.
To take this into account, we could choose

g(S) = C
S(x)

KD + S(x)
.(8.4)

However, as we only want to reproduce the experimental results qualitatively, we can
approximate (8.4) by the logarithmic function. The numerical results for this are
shown in Figure 8.2. We plot the solution of the classical chemotaxis equation (7.11),
but the solutions of (6.9)–(6.12) and (6.33) again give the same results. Moreover, we
also qualitatively reproduce the behavior observed in experiments (cf. [14, 43]).

9. Extensions of the analysis. In this section, we discuss two extensions of
our analysis—the inclusion of a finite-duration tumbling state and the moment closure
for arbitrary signal gradients.

9.1. Inclusion of a finite-duration tumbling state. As we mentioned earlier,
the movement of E.coli consists of “running” smoothly with a speed s and “tumbling”
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randomly. Tumbles cause the bacterium to reorient and swim in a new random direc-
tion. The duration of both runs and tumbles are exponentially distributed with means
of 1 sec and 10−1 sec, respectively, in the absence of an extracellular signal. Thus cells
spend 10 percent of the total time in the tumbling state. Earlier we neglected this
time by assuming an instantaneous reversal of direction, but we now include it. We
again restrict the analysis to one space dimension, since the generalization to higher
dimensions only introduces some technical issues. We denote by

• p0(x, y, t) the number density of tumbling bacteria at time t and at point x
with internal state y;
• p±(x, y, t) the number density of bacteria running to the right (resp., left) at
time t and at point x with internal state y.

Suppose that a cell with internal state y moves along the x-axis at a constant speed
s and at random instants of time stops with stopping time governed by a Poisson
process of intensity α(y), and that a cell with internal state y tumbling at the point
x to move at random instants of time starts according to a Poisson process with the
intensity β(y). Further, suppose that the direction of movement is unbiased, i.e., that
the tumbling particle will go with probability 0.5 to the right and with probability
0.5 to the left, given that movement starts.

For simplicity we consider the simplified cartoon internal dynamics (3.7)–(3.8).
Using the change of internal variables y2 = S(x) + z2, the movement of bacteria can
be described by the following equations:

∂p+

∂t
+ s

∂p+

∂x
+

∂

∂z2

[(
−z2

ta
− sS′(x)

)
p+

]
= −α(y)p+ +

1

2
β(y)p0,(9.1)

∂p0

∂t
+

∂

∂z2

[(
−z2

ta

)
p0

]
= α(y)(p+ + p−) − β(y)p0,(9.2)

∂p−

∂t
− s

∂p−

∂x
+

∂

∂z2

[(
−z2

ta
+ sS′(x)

)
p−

]
= −α(y)p− +

1

2
β(y)p0.(9.3)

In order to compare this model with the previous one, we will specify α(y) and β(y)
as follows:

α(y) = 2λ0 + 2bz2, β(y) = β0 − β1z2,(9.4)

where

λ0 > 0, b > 0, β0 > 0, β1 ≥ 0.

Then this model is equivalent to the model in section 4 in the limit β0 → ∞. One can
show, using techniques similar to those used before, that the average position of the
particles under the influence of a constant gradient S′(x) = C is given by (cf. (5.7))

〈x〉(t) =
bs2Cta

λ0 + 2λ2
0ta

(
β0

2λ0 + β0

)
t.(9.5)

Thus the tumbling state slows down the movement by the factor β0/(2λ0 + β0), and
we recover (5.7) as β0 → ∞. Moreover, one can derive the following modified classical
chemotaxis equation (cf. (6.33)):

∂2n

∂t2
+ 2λ0

∂n

∂t
=

∂

∂x

(
s2 ∂n

∂x
− 2s2bta

1 + 2λ0ta

(
β0

2λ0 + β0

)
S′(x)n

)
.
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9.2. Moment closure for arbitrary signal gradients. Heretofore we have
used the approximation (6.17), which is appropriate for shallow signal gradients. The
question arises as to what can be done for large signal gradients, i.e., for signals that
satisfy the standing assumption (3.12). Can we also find a moment closure of the
form (6.13)?

To do that, we have to approximate the neglected term

2bj2 = 2bs

∫
R

(z2)
2
[
p+(x, z2, t) − p−(x, z2, t)

]
dz2 = 2b

∫
R

(z2)
2J (x, z2, t)dz2.(9.6)

Recall that the internal variable z2 ∈ R evolves according to (3.10), i.e., according to
the differential equation

dz2

dt
= −z2

ta
∓ S′(x)s,(9.7)

where the sign of the last term is determined by the sign of the velocity of the par-
ticle. Equation (9.7) suggests that we can assume z2 ≈ ∓S′(x)sta. This is simply an
assumption, but it leads to the following two naive moment closures:

2bj2 = 2bs

∫
R

(z2)
2
[
p+(x, z2, t) − p−(x, z2, t)

]
dz2

= 2bs

∫
R

(z2)(z2)p
+(x, z2, t)dz2 − 2bs

∫
R

(z2)(z2)p
−(x, z2, t)dz2

.
= 2bs

∫
R

(−S′(x)sta)(z2)p
+(x, z2, t)dz2 − 2bs

∫
R

(S′(x)sta)(z2)p
−(x, z2, t)dz2

= −2bS′(x)tas
2

∫
R

z2

[
p+(x, z2, t) + p−(x, z2, t)

]
dz2 = −2bS′(x)tas

2n1,(9.8)

2bj2 = 2b

∫
R

(z2)
2J (x, z2, t)dz2

.
= 2b

∫
R

(∓S′(x)sta)
2J (x, z2, t)dz2 = 2b(S′(x))2t2as

2j.

(9.9)

These are both consistent with the moment closure (6.17) for shallow gradients of
the signal, and consequently they lead to the same equations (6.33) and (7.11) in
that case. On the other hand, they are much better than (6.17) for arbitrary signal
gradients, which we illustrate here numerically.

To this end, suppose that the derivative of the signal function S(x) is constant,
i.e., S′(x) = C and, as in section 5, we derive the corresponding average velocity of
the individuals V (i.e., the average velocity which is approached asymptotically; cf.
(5.7)). Surprisingly, the result is the same for both moment closures (9.8) and (9.9),
namely,

V =
btas

2S′(x)

λ0 + 2λ2
0ta − 2b2t3as

2(S′(x))2
.

As in section 8, we set b = λ0 = ta = 1 and s = 0.1, and then have C = 10 and

V =
S′(x)

300 − 2(S′(x))2
(9.10)
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Fig. 9.1. The dashed line shows the average velocity V given by the formula (9.10) as a function
of the gradient of the signal. The solid line presents the average velocities of the bacteria obtained
by the stochastic simulation.

for S′(x) ∈ [−10, 10]. To verify this formula numerically, we make several stochastic
simulations of the velocity jump process with internal variables, with the same pa-
rameters b = λ0 = ta = 1 and s = 0.1 for the constant gradients of the signal from
the interval [0,10].

Figure 9.1 shows the graph of V (dashed line) as a function of gradient S′(x).
The solid line presents the velocities obtained by the stochastic simulation of the
velocity jump process with internal variables. We see that, for the maximum possible
signal function S′(x) = 10, all individuals move to the right with the speed s = 0.1,
as expected. Moreover, we also see that the macroscopic equations obtained by the
moment closure (9.8) or by moment closure (9.9) can give good macroscopic moment
equations when used in (6.9)–(6.12).

10. Discussion and conclusions. We have shown how information about mi-
croscopic intracellular processes such as signal transduction and response can be trans-
lated into the macroscopic chemotactic sensitivity that appears in the macroscopic
description of chemotaxis. This was done for a highly simplified description of in-
tracellular dynamics, one which is based on linear dynamics for the response to an
extracellular signal, but which nonetheless incorporates the two most important char-
acteristics of any detailed signal transduction network, namely, excitation and adap-
tation. Linear dynamics and linear response may well be adequate for describing the
type of signal changes a swimming bacterium normally sees, but that remains to be
established. In addition, a great deal of further work is needed to identify the essential
response modes in a general signal transduction network, even if a near-equilibrium
assumption is used. A difficult part of that will be to determine how the extracellular
signal feeds into the linearized response of the cell.

The moment approach used here leads firstly to a system of hyperbolic equations,
and then via a hyperbolic (resp., parabolic) scaling of space and time to a single
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hyperbolic (6.34) (resp., parabolic (7.12)) equation for the density of individuals.
One can also use other scalings of space and time. For example, the parabolic scaling
uses T ∼ O(1/ε2), but if one uses T ∼ O(1/ε3), the result is the elliptic equation for
the steady states of (6.34).

The first systematic derivation of a chemotaxis equation from a velocity jump
process is due to Patlak [36], who considers both internal and external biases in
detail, but these biases are imposed. A basic assumption in [36] is that the run length
is chosen and fixed whenever the particle turns, which is quite different from the
stochastic process treated here. As was observed elsewhere [30], the particle motion
between turns is deterministic, and thus, were the speed and run length constant, the
process would be formally equivalent to a space jump process [29]. In general one
can show that this process leads to a renewal equation that generalizes the renewal
equation (15) derived in [29], from which a diffusion equation is obtained by suitable
choice of the waiting time and jump distributions. Others have treated a process
similar to the one treated here without the internal dynamics since Patlak’s work,
and the reader is referred to [30] for a review of the literature.
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