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Abstract. A class of stochastic individual-based models, written in terms of coupled velocity jump
processes, is presented and analysed. This modelling approach incorporates recent experimental findings
on behaviour of locusts. It exhibits nontrivial dynamics with a “phase change” behaviour and recovers
the observed group directional switching. Estimates of the expected switching times, in terms of number
of individuals and values of the model coefficients, are obtained using the corresponding Fokker-Planck
equation. In the limit of large populations, a system of two kinetic equations with nonlocal and nonlinear
right hand side is derived and analyzed. The existence of its solutions is proven and the system’s long-time
behaviour is investigated. Finally, a first step towards the mean field limit of topological interactions is
made by studying the effect of shrinking the interaction radius in the individual-based model when the
number of individuals grows.
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1 Introduction

Individual-based behaviour in biology can be often modelled as a velocity jump process [20]. Here, the
velocity of an individual is subject to sudden changes (“jumps”) at random instants. If the velocity changes
are completely random, this process simply leads to diffusive spreading of individuals in an appropriate
limit [18]. The situation becomes more complicated whenever the velocity changes are biased according to
an individual’s environment. A classical example is bacterial chemotaxis [8]. Individual bacteria change
their frequency of velocity changes according to their environment. If they swim in a favourable direction
(e.g. towards a nutrient source), they are less likely to change their direction. On the other hand, they
are more likely to turn if they are heading away from a foodstuff [9].

In this paper, we modify the velocity jump methodology to model the behaviour of locusts. Our model
is motivated by the recent experiments of Buhl et al [2]. They studied an experimental setting, in which
locust nymphs marched in a ring-shaped arena. The collective behaviour depended strongly on locust
density. At low densities, there was a low incidence of alignment among individuals. Intermediate densities
were characterized by long periods of collective motion in one direction along the arena interrupted by
rapid changes of group direction. If the density of locusts was further increased, the group quickly adopted
a common and persistent rotational direction. Yates et al [24] analysed experimental data of Buhl et al [2]
and proposed that the frequency of random changes in the direction of an individual increases when the
individual looses the alignment with the rest of the group. In this paper, we incorporate this observation
into a stochastic individual-based model formulated as a velocity jump process. We show that this model,
although phenomenologically very simple, has the same predictive power as other modelling approaches
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previously used in this area [7, 2]. In particular, it exhibits (i) a rapid transition from disordered movement
of individuals to highly aligned collective motion as the size of the group grows, and (ii) sudden and rapid
switching of the group direction, with frequency decreasing as group size increases.

The individual-based model is introduced in Section 2. The ring-shaped arena, used in Buhl’s experi-
ments [2], is modelled as one-dimensional interval with periodic boundary conditions. Locusts march with
a constant speed and each individual switches its direction randomly. The individual switching frequency
increases in response to a loss of alignment. In Section 3, the corresponding Fokker-Planck equation is
derived for the system with global interactions and possible types of qualitative behaviour of the system
are classified. For the case of ordered group motion, where two distinct metastable states exist, an ap-
proximate analytic formula for the mean switching time between these two states is derived. Then, in
Section 4, the kinetic formulation of the model is obtained in the limit as the number of locusts tends to
infinity. The existence of solutions of the kinetic model is shown in Section 5 and the long time behaviour
is investigated in Section 6. We conclude with analysis of the dependence of collective behaviour on the
size of the interaction radius of the individuals in Section 7.

2 Individual based model

We consider a group of N agents (locusts) with time-dependent positions xi(t) and velocities vi(t), i =
1, . . . , N . To mimic the ring-shaped arena set-up of [2], we assume that the agents move along a one-
dimensional circle, which we identify with the interval Ω = [0, 1) with periodic boundary conditions, and
move either to the right or to the left with the same unit speed, i.e.

xi(t) ∈ Ω, vi ∈ {−1, 1} and
dxi

dt
(t) = vi(t). (2.1)

We define the local average velocity of the ensemble, seen by the i-th agent, as

uloc
i =

∑N
m=1 w(|xi − xm|)vm
∑N

m=1 w(|xi − xm|)
, (2.2)

where w is a weight function defined on Ω with the properties:

[A1] w is bounded and nonnegative on Ω,

[A2] w(0) > 0.

For example, w(s) = χ[0,σ](s), where χ[0,σ] is the characteristic function of the interval [0, σ] and σ > 0
is a interaction radius, satisfies conditions [A1] and [A2]. This is a common choice of w in biological
applications [7, 24]. It is worth noting that, due to the assumption [A2], the definition (2.2) always makes
sense and uloc

i ∈ [−1, 1].
The agents switch their velocities to the opposite direction (i.e., from vi = 1 to vi = −1 and vice

versa) based on N independent Poisson processes with the rates

γi = γ0 + b ξ(vi − uloc
i ) , i = 1, . . . , N ,

where γ0 ≥ 0 and b ≥ 0 are fixed parameters and the “response to disalignment” function ξ : [−2, 2] →
[0,∞) is assumed to be convex, differentiable and symmetric with respect to the origin. Taking the Taylor
expansion of ξ(s) around s = 0, we obtain

ξ(s) = α0 + α2s
2 + O(s3) .
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Figure 1: An example of the transition to ordered motion as N grows. We use (2.1)–(2.4) with b = 1,
γ0 = 0.2 and w = χ[0,0.2]. Shown are the normalized histograms of the group mean velocities u = 1

N

∑N
i=1 vi

recorded in 105 time steps of length 10−2, with N = 5 (left panel), N = 7 (middle panel) and N = 12
individuals (right panel). The system does not prefer any particular state for N = 5. Two quasi-stable
states of ordered collective motion are easily recognizable for N = 12.

We can set α0 = 0 without loss of generality, because it can be absorbed in γ0. Since the individuals
switch their velocities less frequently when they are aligned ([24]), ξ(s) has a global minimum at s = 0.
This implies that α2 ≥ 0. If α2 > 0, we can set α2 = 1 by choosing an appropriate time scale. Therefore,
ξ(s) has the general form s2 + O(s3). For the rest of the paper, we choose the form ξ(s) = s2 for
simplicity. Other choices are certainly possible, for example, in the limiting case α2 = 0 the leading order
approximation is given by a higher order term, which, however, complicates the analysis. However, it is
worth noting that the derivation of the kinetic equation performed in Section 4 is possible, for example,
also for ξ(s) = |s|n, n ≥ 3.

With ξ(s) = s2, the turning rate “from the right to the left”, γR→L, and the rate for the opposite
turn, γL→R, are given by

γR→L
i = γ0 + b (1 − uloc

i )2 for the switch from vi = 1 to vi = −1 , (2.3)

γL→R
i = γ0 + b (1 + uloc

i )2 for the switch from vi = −1 to vi = 1 . (2.4)

This velocity jump process describes the tendency of the individuals to align their velocities to the
average velocity of their neighbors. Despite its relative simplicity, the model provides similar predictions
as the Vicsek and Czirók model [7] and its modification [24] and is in qualitative agreement with the
experimental observations made in [2]: the transition to ordered motion as N grows (Figure 1) and the
density-dependent switching behaviour between the ordered states (Figure 2, bottom).
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Figure 2: An example of the behaviour of the model (2.1)–(2.4) with global interactions (w ≡ 1): the large
noise case (top) with N = 20, b = 1 and γ0 = 1.3 and small noise case (bottom) with N = 20, b = 1 and
γ0 = 0.3. Left are the histograms of the group mean velocities u recorded in 105 time steps of length 10−2,
compared to the plot of the (properly scaled) stationary solution ps of the corresponding Fokker-Planck
equation (solid line). Right are the plots of the temporal evolution of the group mean velocity u during
5× 104 timesteps. In the small noise case, one can clearly distinguish the two quasi-stationary states and
observe the switching between them.
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3 Analysis of the individual based model with global interactions

In this section, we simplify the individual-based model by assuming w ≡ 1 in (2.2), i.e. uloc
i = u for all

i = 1, . . . , N , where

u(t) :=
1

N

N
∑

i=1

vi(t) =
2r(t) − N

N
, (3.1)

where r(t) is the number of individuals which are going to the right at time t. Using this simplification,
we will obtain an explicit formula for the mean switching time between the ordered states. However,
for the derivation of the kinetic decription and its analysis (Section 4), we will allow general weights w,
imposing only the assumption [A1] and a slightly reinforced version of [A2].

Let p(r, t) be the probability that r individuals move to the right (i.e., with velocity 1) at time t ≥ 0.
It satisfies the master equation

∂

∂t
p(r, t) = (r + 1) γR→Lp(r + 1, t) − r γR→Lp(r, t)

+ (N − r + 1) γL→Rp(r − 1, t) − (N − r) γL→Rp(r, t) , (3.2)

where γR→L and γL→R are given by (2.3) and (2.4), respectively. The subscript i in (2.3)–(2.4) is dropped
in (3.2) because all individuals have the same turning rates. Using the system size expansion [23] and the
definition (3.1) of the average velocity u(t), we obtain the following Fokker-Planck equation

∂p(u, t)

∂t
=

∂

∂u

(

2u
[

γ0 − b(1 − u2)
]

p(u, t)
)

+
∂2

∂u2

(

2

N

[

γ0 + b(1 − u2)
]

p(u, t)

)

, (3.3)

where p(u, t) is the probability distribution function of the average velocity (3.1) at time t. The stationary
solution ps of (3.3) is

ps(u) = C exp[−ΦN(u)] (3.4)

where C is the normalization constant and the potential ΦN is given by

ΦN (u) = −
N

2
u2 +

(

1 −
γ0N

b

)

ln
(

γ0 + b(1 − u2)
)

. (3.5)

The comparision of the stationary probability distribution function ps with the results obtained by long-
time simulation of the stochastic individual-based model is shown in Figure 2. Differentiating (3.5) twice,
we obtain

Φ′′
N (0) =

N

(γ0 + b)2

(

(

γ0 −
b

N

)2

−

(

b +
b

N

)2
)

(3.6)

Consequently, we distinguish the following two cases:

(1) Large noise: If
γ0

b
≥ 1 +

2

N
, then ΦN has the global minimum at u = 0.

(2) Small noise: If
γ0

b
< 1 +

2

N
, then ΦN has a local maximum at u = 0. The only local and global

minima are at ± us where

us =

√

1 +
2

N
−

γ0

b
.
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It is worth noting that us > 1 if N is small, namely for N < 2b/γ0. This is a consequence of approximations
made during the derivation of the Fokker-Planck equation (3.3).

In the large noise case, the system prefers the disordered state u = 0, while, in the small noise case,
the system has two preferred ordered states ±us where it spends most of the time and eventually switches
between them (see Figure 2, bottom panel).

Using Kramers theory [15, 13], the mean switching time τN between the states −us and us can be
approximated as

τN (−us 7→ us) ≈
Nπ

γ0 + b

exp(ΦN (0) − ΦN (−us))
√

−Φ′′
N (0)Φ′′

N (−us)
, (3.7)

which has an exponential asymptotic with respect to large N given by

τN (−us 7→ us) ≈
2π

b − γ0

√

γ0

2(γ0 + b)
exp

{

N

[

b − γ0

2
−

γ0

b
ln

(

2γ0

γ0 + b

)]}

.

This is in agreement with the experimental observations, [2], as well as with the modified Czirok-Vicsek
model of [24], where the mean switching time is as well exponential in N . Finally, it is interesting to note
that with the transform b = γ0b in (3.7), one has

τ(N, γ0, b) = γ0τ(N, b) ,

i.e., if b/γ0 is kept fixed, the mean switching time scales linearly with γ0.
In the numerical experiment shown in Figure 2 bottom (small noise case with γ0 = 0.3, b = 1 and

N = 20 agents), we have two metastable states located approximately at us = ±0.894. The estimate
mean turning time given by formula (3.7) is τN (−us 7→ us) = 61.1. Performing 106 time steps of length
10−2, the observed mean switching time (defined as a mean transition time between the states v = −0.8
and v = 0.8 or vice versa) was 58.8, showing a very good agreement.

4 Kinetic description

In this section we derive the kinetic description of the system of N interacting agents and formally pass
to the limit N → ∞ to obtain the corresponding kinetic equation. For this, we have to accept a slight
reinforcement of the assumption [A2] on w, namely,

[A2’] w > 0 on the interval [0, r) for some r > 0.

The state of the system of N agents at time t ≥ 0 is described by the probability density function
pN (t, x1, v1, . . . , xN , vN ) of finding the i-th agent in position xi ∈ Ω with velocity vi ∈ {−1, 1}, for i =
1, . . . , N . When convenient, we will use the abbreviation pN = pN (t,x,v), with x = (x1, . . . , xN ) ∈ ΩN

and v = (v1, . . . , vN ) ∈ {±1}N . The probability density pN (t,x,v) evolves according to

∂

∂t
pN +

N
∑

i=1

vi
∂

∂xi
pN = −L[pN ] + G[pN ] , (4.1)

where L[pN ] (resp. G[pN ]) is the loss (resp. gain) term corresponding to the velocity jumps. Using
(2.3)–(2.4), the rate of the switch vi 7→ −vi is for i ∈ {1, . . . , N} given by

γi(x,v) = γ0 + b
(

vi − u[xi;x,v]
)2

,
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where u[xi;x,v] = uloc
i is defined by (2.2), i.e. u[xi;x,v] is the local average velocity seen by an agent

located at xi ∈ Ω, based on the system configuration [x,v]. Consequently, the loss term is given by

L[pN ](t,x,v) =
N
∑

i=1

γi(x,v) pN (t,x,v) . (4.2)

We define the operator Mi : {±1}k → {±1}k for k ∈ {1, . . . , N} and i ∈ {1, . . . , k} by

Mi(v) = (v1, . . . , vi−1,−vi, vi−1, . . . , vk), (4.3)

i.e. Mi(v) denotes the velocity vector created from v by changing the sign of its i-th component. Then
the gain term G[pN ](t,x,v) is given by

G[pN ](t,x,v) =

N
∑

i=1

γi(x,Mi(v)) pN (t,x,Mi(v)) , (4.4)

where

γi(x,Mi(v)) = γ0 + b
(

− vi − u[xi;x,Mi(v)]
)2

.

Consequently, the right hand side of (4.1) is

(G − L)
[

pN
]

(x,v) = γ0

(

N
∑

i=1

pN (x,Mi(v)) − NpN (x,v)

)

(4.5)

+ b
N
∑

i=1

(

(

− vi − u[xi;x,Mi(v)]
)2

pN (x,Mi(v)) −
(

vi − u[xi;x,v]
)2

pN (x,v)
)

,

where we dropped the dependance on time t to simplify the notation. Finally, we postulate the so-called
indistinguishability-of-particles: We only consider solutions pN that are indifferent to permutations of their
(xi, vi)-arguments. Such solutions are admissible, since the equation (4.1) with the collision operator (4.5)
is as well indifferent with respect to interchange of the (xi, vi)-pairs.

4.1 Derivation of the BBGKY hierarchy

To derive an analogue of what is called the BBGKY hierarchy in the classical kinetic theory of gases (see,
for instance, [6]), we define, for k = 1, . . . , N , the k-agent marginals

pN,k(xk,vk) =
∑

v∈{±1}N−k

∫

ΩN−k

pN (xk,x,vk,v) dx , xk ∈ Ωk , vk ∈ {±1}k . (4.6)

In what follows, the coordinates of xk and x will be denoted as

xk = (xk
1 , x

k
2 , . . . , x

k
k) , x = (x1, x2, . . . , xN−k) ,
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that is, x = (xk,x) = (xk
1 , x

k
2 , . . . , x

k
k, x1, x2, . . . , xN−k). The same notational convention is used for

velocities, i.e., v = (vk,v) = (vk
1 , vk

2 , . . . , vk
k , v1, v2, . . . , vN−k). Note that, due to the indistinguishability-

of-particles, the marginals are well defined and indifferent with respect to permutations of the pairs of
arguments (xi, vi), i = 1, . . . , k. Integrating (4.1), we obtain

∂

∂t
pN,k(xk,vk) +

k
∑

i=1

vi
∂

∂xi
pN,k(xk,vk) =

∑

v∈{±1}N−k

∫

ΩN−k

(G − L)[pN ](xk,x,vk,v) dx . (4.7)

Substituting (4.5) into the right-hand side of (4.7), we get

∑

v∈{±1}N−k

∫

ΩN−k

(G − L)[pN ](xk,x,vk,v) dx

= γ0

k
∑

i=1

(pN,k(xk,Mi(v
k)) − pN,k(xk,vk))

+ b
∑

v∈{±1}N−k

∫

ΩN−k

k
∑

i=1

{

(

− vk
i − u[xi;x

k,x,Mi(v
k),v]

)2
pN (xk,x,Mi(v

k),v)

−
(

vk
i − u[xi;x

k,x,vk,v]
)2

pN (xk,x,vk,v)
}

= (γ0 + b)

k
∑

i=1

(pN,k(xk,Mi(v
k)) − pN,k(xk,vk))

+ 2b
∑

v∈{±1}N−k

∫

ΩN−k

k
∑

i=1

vk
i

(

u[xi;x
k,x,Mi(v

k),v] pN (xk,x,Mi(v
k),v)

+ u[xi;x
k,x,vk,v] pN (xk,x,vk,v)

)

dx

+ b
∑

v∈{±1}N−k

∫

ΩN−k

k
∑

i=1

(

(

u[xi;x
k,x,Mi(v

k),v]
)2

pN (xk,x,Mi(v
k),v)

−
(

u[xi;x
k,x,vk,v]

)2
pN (xk,x,vk,v)

)

dx. (4.8)

Since we are interested in the limit N → ∞ with k fixed, we can rewrite the definition (2.2) as follows

u[xi;x
k,x,vk,v] =

∑k
m=1 w(|xk

m − xi|)v
k
m +

∑N−k
m=1 w(|xm − xi|)vm

∑k
m=1 w(|xk

m − xi|) +
∑N−k

m=1 w(|xm − xi|)

= u[xi;x,v] + O

(

k

N

)

, (4.9)

where we define

u[z;x,v] =

∑N−k
m=1 w(|xm − z|)vm
∑N−k

m=1 w(|xm − z|)
for z ∈ Ω.
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Substituting (4.9) in (4.8) and (4.7), we obtain the BBGKY hierarchy

∂

∂t
pN,k(xk,vk) +

k
∑

i=1

vi
∂

∂xi
pN,k(xk,vk) = (γ0 + b)

k
∑

i=1

(

pN,k
(

xk,Mi

(

vk
)

)

− pN,k
(

xk,vk
))

+ 2b
k
∑

i=1

vk
i

(

qN,k
(

xi; xk,Mi

(

vk
)

)

+ qN,k
(

xi; xk,vk
))

(4.10)

+ b

k
∑

i=1

(

rN,k
(

xi; xk,Mi

(

vk
)

)

− rN,k
(

xi; xk,vk
))

+ O

(

k

N

)

,

where

qN,k
(

z; xk,vk
)

=
∑

v∈{±1}N−k

∫

ΩN−k

u[z;x,v] pN
(

xk,x,vk,v
)

dx . (4.11)

and

rN,k
(

z; xk,vk
)

=
∑

v∈{±1}N−k

∫

ΩN−k

u[z;x,v]2 pN
(

xk,x,vk,v
)

dx . (4.12)

4.2 Passage to the limit N → ∞

The usual procedure of deriving the mean field equation is to write the BBGKY hierarchy (4.10) in terms
of pN,k and pass to the limit N → ∞ to obtain the so-called Boltzmann hierarchy for pk := limN→∞ pN,k

[22]. Then, one shows that the Boltzmann hierarchy admits solutions generated by the molecular chaos
ansatz (see below). In our case, however, this strategy cannot be pursued; although we could derive
uniform estimates allowing us to pass to the limit N → ∞ in the BBGKY hierarchy, we are not able to
express the limiting marginals qk := limN→∞ qN,k and rk := limN→∞ rN,k in terms of pk. Consequently,
we have no clue what the correct molecular chaos ansatz for qk and rk should be.

Instead, we assume the propagation of chaos already at the level of the BBGKY hierarchy, before
passing to the limit N → ∞: we assume that, for large N , pN is well approximated by the product of the
limiting one-particle marginals p := limN→∞ pN,1, i.e.

pN (t,x,v) ≈

N
∏

i=1

p(t, xi, vi) for all t ≥ 0 , x ∈ ΩN , v ∈ {±1}N . (4.13)

This corresponds to vanishing statistical dependence (correlations) between the agents as N → ∞ and
is the usual phenomenon observed in systems of interacting particles, see for instance [6] in the context
of classical kinetic theory or [16, 17] in the context of biological systems. Moreover, if one interprets
qN,k (resp. rN,k) as the first (resp. second) order moment of pN with respect to u[z;x,v], then one can
understand (4.13) as the moment closure assumption for the non-closed system of moments generated
by (4.1).

The essential point is that now we may insert (4.13) into (4.11) and (4.12) to obtain explicit expressions
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for qk and rk in terms of p:

qk(z;xk,vk) = lim
N→∞

qN,k
(

z; xk,vk
)

= (4.14)

(

k
∏

i=1

p(xk
i , v

k
i )

)

× lim
N→∞

∑

v∈{±1}N−k

∫

ΩN−k

∑N−k
m=1 w(|xm − z|)vm
∑N−k

m=1 w(|xm − z|)

N−k
∏

i=1

p(xi, vi) dx ,

and

rk(z;xk,vk) = lim
N→∞

rN,k
(

z; xk,vk
)

= (4.15)

(

k
∏

i=1

p(xk
i , v

k
i )

)

× lim
N→∞

∑

v∈{±1}N−k

∫

ΩN−k

(

∑N−k
m=1 w(|xm − z|)vm
∑N−k

m=1 w(|xm − z|)

)2 N−k
∏

i=1

p(xi, vi) dx .

Study of the limit N → ∞ in (4.14) and (4.15)

We start by setting k = 1, which is the case considered in Section 4.3. To simplify the notation, we drop
the bars over x and v, and, without loss of generality, choose z = 0. First, we explore the symmetry of
the expression (4.14) as follows:

∑

v∈{±1}N

∫

ΩN−1

∑N−1
m=1 w(xm)vm

(N − 1)SN (x)

N−1
∏

i=1

p(xi, vi) dx

=

N−1
∑

m=1

∫

ΩN−1

w(xm)

(N − 1)SN (x)
[p(xm, 1) − p(xm,−1)]

∑

v∈{±1}N−2

∏

i6=m

p(xi, vi) dx

=
N−1
∑

m=1

∫

ΩN−1

w(xm)

(N − 1)SN (x)
j(xm)

∏

i6=m

̺(xi) dx

=

∫

ΩN−1

w(x1)

SN (x)
j(x1)

N−1
∏

i=2

̺(xi) dx ,

with the notation

̺(x) := p(x, 1) + p(x,−1) ,

j(x) := p(x, 1) − p(x,−1) ,

and

SN (x) :=
1

N − 1

N−1
∑

i=1

w(xi) . (4.16)

Due to the normalization of pN , we have
∫

Ω ̺(x) dx = 1. Consequently, in what follows we denote by
P̺(t) the time dependent probability measure corresponding to the probability density ̺(t). Since w is
bounded and nonnegative by assumption [A1], it is integrable with respect to P̺ and we may define

I :=

∫

Ω
w(x) dP̺(x) ≥ 0 . (4.17)
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The forthcoming analysis will be performed given the assumption I > 0; the case I = 0 will be discussed
in Remark 2.

Lemma 1 Let P̺ be a probability measure on Ω with density ̺ and j ∈ L1(Ω) such that |j| ≤ ρ. Let
w : Ω → [0,∞) with w ∈ L∞(Ω) be such that the integral I defined by (4.17) is positive. Define

QN :=

∫

ΩN−1

w(x1)j(x1)

SN (x)
dx1

N−1
∏

i=2

dP̺(xi) .

Then

lim
N→∞

QN =
1

I

∫

Ω
w(y)j(y) dy .

Proof: We can treat w(y) as a random variable with respect to the probability measure P̺(y). The
essential tool of the proof is the law of large numbers, which states that SN (x) converges to I in measure,
in the sense that for each ε > 0,

lim
N→∞

PN−1
̺

(

{x ∈ ΩN−1; |SN (x) − I| > ε}
)

= 0 , (4.18)

where PN−1
̺ denotes the (N − 1)-fold tensor product of the probability measures P̺. Moreover, the

existence of the m-th order moment of w with respect to P̺,
∫

Ω
|w(y)|m dP̺(y) < ∞ ,

implies the rate of convergence (see [1])

lim
N→∞

(N − 1)m−1PN−1
̺

(

{x ∈ ΩN−1; |SN (x) − I| > ε}
)

= 0 . (4.19)

Let us denote by AN (ε) the set {x ∈ ΩN−1, |SN (x) − I| < ε} and by Ac
N (ε) its complement in ΩN−1.

Choosing 0 < ε < I/2 and x ∈ AN (ε), we have the estimate
∣

∣

∣

∣

w(x1)

SN (x)
−

w(x1)

I

∣

∣

∣

∣

≤
2ε

I2
w(x1) .

Consequently,
∫

AN (ε)

∣

∣

∣

∣

w(x1)

SN (x)
−

w(x1)

I

∣

∣

∣

∣

dPN−1
̺ (x) ≤

2ε

I2

∫

ΩN−1

w(x1) dPN−1
̺ (x) =

2ε

I
.

On the other hand, the integral over Ac
N (ε) is estimated with

∫

Ac

N
(ε)

∣

∣

∣

∣

w(x1)

SN (x)
−

w(x1)

I

∣

∣

∣

∣

dPN−1
̺ (x) ≤

∫

Ac

N
(ε)

w(x1)

I
dPN−1

̺ (x) +

∫

Ac

N
(ε)

w(x1)

SN (x)
dPN−1

̺ (x) .

The first term on the right hand side converges to zero as N → ∞ by (4.18) and the boundedness of w.
Using (4.16), the second term is estimated by

∫

Ac

N
(ε)

w(x1)

SN (x)
dPN−1

̺ (x) ≤ (N − 1)PN−1
̺ (Ac

N (ε))
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and vanishes as N → ∞ due to (4.19) with m = 2. Consequently, we have shown that the term

∣

∣

∣

∣

QN −
1

I

∫

Ω
w(y)j(y) dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

ΩN−1

(

w(x1)

SN (x)
−

w(x1)

I

)

j(x1) dx1

N−1
∏

i=2

dP̺(xi)

∣

∣

∣

∣

∣

≤

∫

ΩN−1

∣

∣

∣

∣

w(x1)

SN (x)
−

w(x1)

I

∣

∣

∣

∣

dPN−1
̺ (x)

can be made arbitrarily small, for sufficiently large N .

The formula (4.15) can be analysed in a similar way as we did for (4.14). Namely, we exploit its symmetry
as follows,

∑

v∈{±1}N−1

∫

ΩN−1

(

∑N−1
m=1 w(xm)vm

(N − 1)SN (x)

)2 N−1
∏

i=1

p(xi, vi) dx

=
1

(N − 1)2

N−1
∑

i=1

∑

m6=i

∫

ΩN−1

w(xi)w(xm)j(xi)j(xm)

S2
N(x)

dxi dxm

∏

k 6=i,m

dP̺(xk)

+
1

(N − 1)2

N−1
∑

m=1

∫

ΩN−1

w(xm)2

S2
N (x)

dPN−1
̺ (x)

=
N − 2

N − 1

∫

ΩN−1

w(x1)w(x2)j(x1)j(x2)

S2
N (x)

dx1 dx2

N−1
∏

k=3

dP̺(xk)

+
1

N − 1

∫

ΩN−1

w(x1)
2

S2
N (x)

dPN−1
̺ (x) . (4.20)

The limiting behaviour of the first term is studied in the following Lemma:

Lemma 2 With the assumptions and notation of Lemma 1, and defining

RN :=

∫

ΩN−1

w(x1)w(x2)j(x1)j(x2)

S2
N (x)

dx1 dx2

N−1
∏

k=3

dP̺(xk) ,

we have

lim
N→∞

RN =

(

1

I

∫

Ω
w(y)j(y) dy

)2

.

Proof: We follow the lines of the proof of Lemma 1. Defining again AN (ε) := {x ∈ ΩN−1, |SN (x)− I| <
ε} and Ac

N (ε) := ΩN−1 \ AN (ε), with 0 < ε < I/2, we derive the estimates

∫

AN (ε)

∣

∣

∣

∣

w(x1)w(x2)

S2
N (x)

−
w(x1)w(x2)

I2

∣

∣

∣

∣

dPN−1
̺ (x) ≤

10ε

I

12



and

∫

Ac

N
(ε)

∣

∣

∣

∣

∣

w(x1)w(x2)

S2
N−1(x)

−
w(x1)w(x2)

I2

∣

∣

∣

∣

∣

dPN−1
̺ (x) ≤

∫

Ac

N
(ε)

w(x1)w(x2)

I2
dPN−1

̺ (x)

+ (N − 1)2
[

PN−1
̺ (Ac

N (ε)
]2

,

where the first term vanishes in the limit N → ∞ due to (4.18) and the second one by (4.19) with m = 3.

By a slight modification of the above Lemma, one obtains the limit of the second term of (4.20), namely

lim
N→∞

∫

ΩN−1

w(x1)
2

S2
N (x)

dPN−1
̺ (x) =

1

I

∫

Ω
w(y)2 dP̺(y) .

Therefore, the limit as N → ∞ of (4.20) is

lim
N→∞

∑

v∈{±1}N−1

∫

ΩN−1

(

∑N−1
m=1 w(xm)vm

(N − 1)SN (x)

)2 N−1
∏

i=1

p(xi, vi) dx = lim
N→∞

RN =

(

1

I

∫

Ω
w(y)j(y) dy

)2

, (4.21)

where we used Lemma 2.

Remark 1 Lemmas 1 and 2 were formulated for the case k = 1, however, all the calculations can be
easily generalized for any (fixed) value of k.

4.3 Derivation of kinetic and hydrodynamic description

Let us denote p+(t, x) := p(t, x, 1) and p−(t, x) := p(t, x,−1). We define u(t, x), the continuous analogue
of the local average velocity (2.2), by

u(t, x) :=

∫

Ω w(|x − z|)(p+(t, z) − p−(t, z)) dz
∫

Ω w(|x − z|)(p+(t, z) + p−(t, z)) dz
for x /∈ S0[p

+, p−](t) , (4.22)

where

S0[p
+, p−](t) :=

{

x ∈ Ω;

∫

Ω
w(|x − z|)(p+(t, z) + p−(t, z)) dz = 0

}

.

We extend the definition of u(t, x) to the whole domain Ω by setting u(t, x) = 0 for x ∈ S0[p
+, p−](t), see

Remark 2.
The kinetic equation for p is obtained by setting k = 1 in the BBGKY-hierarchy (4.10) with the

molecular chaos assumption (4.13) and passing to the limit N → ∞. Using Lemma 1 and formula (4.21),
we obtain

q1(x;x, v) = p(t, x, v)u(t, x) , and r1(x;x, v) = p(t, x, v)u(t, x)2 . (4.23)

Consequently, (4.10) reduces to the following system of two equations

∂tp
+ + ∂xp+ = −[γ0 + b(1 − u)2]p+ + [γ0 + b(1 + u)2]p− , (4.24)

∂tp
− − ∂xp− = −[γ0 + b(1 + u)2]p− + [γ0 + b(1 − u)2]p+ . (4.25)
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Equivalently, defining the mass density ̺ and flux j by

̺(t, x) := p+(t, x) + p−(t, x) , j(t, x) := p+(t, x) − p−(t, x) , (4.26)

the system can be written in the hydrodynamic description as

∂t̺ + ∂xj = 0 , (4.27)

∂tj + ∂x̺ = −2[γ0 + b(1 + u2)]j + 4b̺u , (4.28)

u(t, x) :=











∫

Ω w(|x − z|)j(t, z) dz
∫

Ω w(|x − z|)̺(t, z) dz
, x /∈ S0[̺](t) ,

0 , x ∈ S0[̺](t) ,

(4.29)

with

S0[̺](t) :=

{

x ∈ Ω;

∫

Ω
w(|x − z|)̺(t, z) dz = 0

}

.

Remark 2 Due to the assumption [A2′], we have p+(t, x) = p−(t, x) = 0 on S0[p
+, p−](t). Therefore,

both qN,1(x; x, v) in (4.14) and rN,1(x; x, v) in (4.15) are equal to zero by definition. Consequently,

q1(x;x, v) = lim
N→∞

qN,1(x; x, v) = 0 , and r1(x;x, v) = lim
N→∞

rN,1(x; x, v) = 0 ,

and formulas (4.23) remain valid irrespective of the particular choice of the value of u(t, x). This justifies
our extension of the definition of u(t, x) by setting it equal to zero for x ∈ S0[p

+, p−](t).

5 Existence of solutions to the kinetic system

The main goal of this Section is to prove the following Theorem:

Theorem 1 Let γ0 ≥ 0, b ≥ 0 and w satisfy the assumptions [A1] and [A2′]. Then, for every T > 0
and every nonnegative initial datum (p+

0 , p−0 ) ∈ L∞(Ω) × L∞(Ω) there exists a nonnegative solution to
the kinetic formulation (4.24)–(4.25) in L∞([0, T ] × Ω). This also establishes solutions ̺ = p+ + p−,
j = p+ − p− of the hydrodynamic formulation (4.27)–(4.29) with the corresponding initial condition.

Proof of Theorem 1: The proof is carried out in three steps and is only sketched here, omitting details
where the techniques are standard. For notational convenience, we will work both with the kinetic and
hydrodynamic representation of the system and treat (p+, p−) and (̺, j) as synonyms, related by (4.26).

Step 1. First, we consider a linearized version of (4.24)–(4.25), where we solve for p+ and p− given a
prescribed u ∈ L∞([0, T ] × Ω) with |u| ≤ 1. This constitutes a strictly hyperbolic system with unique
mild, nonnegative solution in C([0, T ];L∞(Ω)), constructed by a standard fixed point iteration (see, for
instance, [10], Section 7.3). The solution is given by the Duhamel formula

p+(t, x) = p+(0, x − t) +

∫ t

0
Q+[p+, p−](s, x + (s − t)) ds , (5.1)

p−(t, x) = p−(0, x + t) +

∫ t

0
Q−[p+, p−](s, x − (s − t)) ds , (5.2)
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with Q±[p+, p−] = ∓[γ0 +b(1−u)2]p+± [γ0 +b(1+u)2]p−. Moreover, for any fixed T > 0, we have apriori
boundedness of p+ and p− in L∞([0, T ] × Ω), depending only on the initial condition. Indeed, denoting
h(t) := supx∈Ω p+(t, x) + supx∈Ω p−(t, x), and remembering the uniform boundedness |u| ≤ 1, we have

h(t) ≤ h(0) + (γ0 + 4b)

∫ t

0
h(s) ds ,

and the apriori boundedness follows from an application of the Gronwall lemma on the time interval [0, T ].

Step 2. We consider a regularized version of (4.24)–(4.25) where u is substituted by uε, defined by

uε(x) :=
J(x)

ε + R(x)
with J(x) :=

∫

Ω
w(|x − z|)j(z) dz , R(x) :=

∫

Ω
w(|x − z|)̺(z) dz . (5.3)

For any fixed ε > 0, a solution is found by the Schauder fixed point iteration on the mean velocity uε [10].
The compactness of the corresponding Schauder operator is provided by the Arzela-Ascoli theorem. In-
deed, let us take a sequence un with ‖un‖L∞([0,T ]×Ω) ≤ 1 and let p+,n and p−,n be the corresponding
mild solutions of the kinetic system, given by the Duhamel formula (5.1)–(5.2) with un in place of u,
and let ̺n = p+,n + p−,n and jn = p+,n − p−,n. As explained in Step 1, for any fixed T > 0 we have
‖p+,n‖L∞([0,T ]×Ω), ‖p

+,n‖L∞([0,T ]×Ω) bounded uniformly with respect to n. Defining the function

ω(x) :=

∫

Ω
|w(z) − w(|z − x|)|dz for x ∈ Ω ,

one has limx→0 ω(x) = 0 (continuity of translation [21]). By Hölder inequality,

|Jn(x) − Jn(y)| ≤ ‖jn‖L∞(Ω) ω(x − y) ,

with Jn(x) :=
∫

Ω w(|x − z|)jn(z) dz. Moreover, we have the uniform boundedness

|Jn(x)| ≤ ‖jn‖L∞(Ω) ‖w‖L1(Ω) ,

and analogous estimates hold for Rn(x) :=
∫

Ω w(|x − z|)̺(z) dz. Consequently, we have

|un
ε (x) − un

ε (y)| ≤
1

ε
|Jn(x) − Jn(y)| +

1

ε2
|Jn(x) − Jn(y)|Rn(y) +

1

ε2
|Rn(x) − Rn(y)||Jn(y)|

≤
1

ε
‖jn‖L∞(Ω)

(

1 +
2

ε
‖̺n‖L∞(Ω) ‖w‖L1(Ω)

)

ω(x − y) .

This uniform equicontinuity together with the uniform boundedness |un
ε | ≤ 1 allows us to apply the

Arzela-Ascoli Lemma and obtain the compactness of the Schauder operator. Therefore, for every fixed
ε > 0, we have a nonnegative solution (p+

ε , p−ε ) of the regularized system (4.24), (4.25), (5.3), uniformly
bounded (with respect to ε) in L∞([0, T ] × Ω).

Step 3. Finally, we pass to the limit ε → 0. Due to the uniform boundedness, a subsequence of p±ε ⇀ p±

weakly* in L∞([0, T ];L∞(Ω)); we need to show that the limit of the nonlinear terms ̺εuε and u2
εjε is ̺u

and, resp., u2j, with u given by (4.22), or, equivalently, (4.29). The limit passage in the distributional
formulation of the term ̺εuε with a test function ϕ ∈ C∞

c ([0, T ) × Ω) is performed as follows:
∣

∣

∣

∣

∫ ∞

0

∫

Ω
(̺εuε − ̺u)ϕdxdt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ ∞

0

∫

Ω
(̺ε − ̺)uϕdxdt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∞

0

∫

Ω
̺ε(uε − u)ϕdxdt

∣

∣

∣

∣

.
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The first term vanishes in the limit ε → 0 due to the weak* convergence of ̺ε towards ̺ with uϕ a valid
test function. Concerning the second term, we will show that

∫

Ω ̺ε(uε − u)ϕdx tends to zero for almost
all t ∈ [0, T ] and conclude the convergence of the time integral by the Lebesgue dominated convergence
theorem. Let us fix t ∈ [0, T ] and define the set Sδ by

Sδ := {x ∈ Ω; R(x) < δ} ,

with δ ≥ 0 and R defined in (5.3). Then, we have

∣

∣

∣

∣

∫

Sδ

̺ε(uε − u)ϕdx

∣

∣

∣

∣

≤ 2

∫

Sδ

̺ε|ϕ|dx −−→
ε→0

2

∫

Sδ

̺|ϕ|dx

= 2

∫

Sδ\S0

̺|ϕ|dx −−→
δ→0

0 ,

where the second line is due to ̺ = 0 on S0 and because meas(Sδ \ S0) tends to zero as δ → 0. Next, for
x ∈ Ω \ Sδ,

|uε(x) − u(x)| ≤
|Jε(x)||Rε(x) − R(x)|

R(x)Rε(x)
+

|Jε(x) − J(x)|

R(x)

≤
1

δ
(|Rε(x) − R(x)| + |Jε(x) − J(x)|) ,

where Jε(x) =
∫

Ω w(|x − z|)jε(z) dz and Rε(x) =
∫

Ω w(|x − z|)̺ε(z) dz. Therefore, due to the uniform
convergence of Rε and Jε to R and, resp., J on Ω (implied by the uniform equicontinuity and boundedness
of the families {Rε}ε>0 and {Jε}ε>0), we have

∣

∣

∣

∣

∣

∫

Ω\Sδ

̺ε(uε − u)ϕdx

∣

∣

∣

∣

∣

≤
(

supΩ\Sδ
|uε − u|

)

∫

Ω
̺ε|ϕ|dx

≤
1

δ

(

‖Rε − R‖L∞(Ω) + ‖Jε − J‖L∞(Ω)

)

‖̺ε‖L∞(Ω) ‖ϕ‖L1(Ω) −−→
ε→0

0 .

We conclude by passing δ → 0. The limit passage in the term u2
εjε is performed similarly (note that

|jε| ≤ ̺ε).

It is worth noting that the assumption [A1] of Theorem 1 can be relaxed. In fact, we posed the requirement
[A1] of boundedness of w on Ω in order to establish the definition (2.2) of uloc

i in the discrete model and
pass to the limit N → ∞. However, at the level of the kinetic or hydrodynamic description, we may
relax this to w ∈ L1(Ω). Moreover, formally it is possible to consider even singular weights, in particular
w = δ0, which leads to u = j/̺ and removes the nonlocality. In fact, one can see the choice w = δ0 as the
limiting case when the interaction radius shrinks to zero: for almost all x ∈ Ω such that ̺(x) 6= 0, one has

lim
σ→0

∫

Ω χ[0,σ](|x − z|)j(z) dz
∫

Ω χ[0,σ](|x − z|)̺(z) dz
=

j(x)

̺(x)
,

where χ[0,σ] is the characteristic function of the interval [0, σ]. One can interpret this as a model where
only pointwise local observations of the system are possible.
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By a slight modification of the proof of Theorem 1 it is possible to show that given a sequence of
weights wn converging strongly in L1(Ω) to w, the solutions (ρn, jn) corresponding to the weights wn

converge weakly* in L∞([0, T ];L∞(Ω)) to the solution corresponding to the weight w. However, we need
the condition [A2’] to be satisfied uniformly; consequently, the question whether and how the solution
corresponding to w = δ0 can be obtained as a limit of solutions with wσ = χ[0,σ] as σ → 0 remains an
interesting open problem. An even more interesting question is what is the limit of the discrete model as
N → ∞ if the interaction radius is shrinking as some power of 1/N . This question is studied in Section 7
below.

6 Long time behaviour

In this Section we provide several conjectures about the long time behaviour of the kinetic system (4.22),
(4.24), (4.25) or, equivalently, the hydrodynamic system (4.27)–(4.29). To get some insight into the long
time dynamics, we start with a numerical example. We solve the kinetic system using standard semi-
implicit finite difference method with upwinding. The initial condition is p+

0 = 2.2 on [0.125, 0.375] and
zero otherwise, p−0 = 1.8 on [0.625, 0.875] and zero otherwise. In Figure 6 we show the results for the
choice of parameters b = 1 and γ0 = 0.3 and the weight function w = χ[0,0.2].

We conjecture that with regular weights w satisfying [A1] and [A2’], the solutions (ρ, j) to (4.27)–(4.29)
converge to the constants ρ ≡ 1 and j ≡ js with some js ∈ R, exponentially fast as t → ∞. Moreover,
in the large noise case γ0 > b, we hypothesize that js ≡ 0. Unfortunately, we are only able to provide an
analytical proof in the rather special case w ≡ 1 and γ0 > b:

Lemma 3 Assuming w ≡ 1, we have u(t, x) ≡ u(t), where u(t) satisfies the ordinary differential equation

u̇ = −2(γ0 + b(u2 − 1))u , (6.1)

subject to the initial condition u(0) =
∫

Ω j(0, x) dx. Moreover,

(i) if γ0 ≤ b, then limt→∞ u(t) = sign(u(0))
√

1 − γ0b−1,

(ii) if γ0 > b, then limt→∞ u(t) = 0 and

|u(t)| ≤ |u(0)|e−2(γ0−b)t . (6.2)

Moreover, j converges to zero exponentially fast in the L2-sense:
∫

Ω
j2(t, x) dx ≤ ce−4γ0t

for a suitable constant c.

Proof: Integrating (4.28) with w ≡ 1 with respect to x ∈ Ω, we obtain (6.1). This has the stationary
state u = 0, which is stable if and only if γ0 > b. Moreover, if γ0 < b, two additional stable stationary
states u = ±

√

1 − γ0b−1 exist. This establishes the first statement. Further, we have

d

dt

(

1

2
u2

)

= −2(γ0 + b(u2 − 1))u2 ≤ −2(γ0 − b)u2 ,
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Figure 3: Numerical results with w = χ[0,0.2], b = 1 and γ0 = 0.3: p+ and p− converge to constant states,
the mass density ̺ converges to 1, the flux j (full line) and averaged velocity u (dashed line) converge to
a constant.
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and an application of the Gronwall lemma gives (6.2).
To prove the convergence of j to zero, we consider the identity

1

2

d

dt

∫

Ω

(

̺2 + j2
)

dx = −2(γ0 + b(1 + u2))

∫

Ω
j2 dx + 4bu

∫

Ω
̺j dx . (6.3)

An application of the Cauchy-Schwartz inequality and the decay rate (6.2) yield

4bu

∫

Ω
̺j dx ≤ 2b

∫

Ω
j2 dx + 2bu2

∫

Ω
̺2 dx ≤ 2b

∫

Ω
j2 dx + 2b|u(0)|2e−4(γ0−b)t

∫

Ω
̺2 dx .

Then, an integration of (6.3) in time leads to

∫

Ω
̺2(T, x) dx ≤ c0 + 4b|u(0)|2e−4(γ0−b)t

∫ T

0

∫

Ω
̺2(t, x) dxdt ,

with c0 :=
∫

Ω ̺2
0(x) + j2

0(x) dx. Consequently, by the Gronwall lemma,
∫

Ω ̺2 dx is bounded uniformly in
time by a constant c1 if γ0 > b. Inserting this information into (6.3) gives

∫

Ω
j2(T, x) dx ≤ c0 − 4γ0

∫ T

0

∫

Ω
j2(t, x) dxdt + 4bc1|u(0)|2

∫ T

0
e−4(γ0−b)t dt

≤ c − 4γ0

∫ T

0

∫

Ω
j2(t, x) dxdt

and an application of the Gronwall lemma yields the second statement.

6.1 The case w = δ0

In this subsection we briefly discuss the long time behaviour in the singular case w = δ0. Again, we start
with a numerical example where we solve the kinetic system with the parameters b = 1 and γ0 = 0.3. The
initial condition is chosen as before, see Figure 6 (left panels). In Figure 6.1 we present the time evolution
of p+, p−, ρ, j and u. Based on the numerical observations, we conjecture that, for the small noise case
γ0 < b, the long time dynamics are given by the travelling wave profiles (p+

s , p−s ), satisfying

∂tp
+
s + ∂xp+

s = 0 ,

∂tp
−
s − ∂xp−s = 0 ,

and p+
s −p−s

p+
s +p−s

∈ {us,−us} with us =
√

1 − γ0b−1. Then, it is a matter of a simple consideration to deduce

that one of the functions, say p−s , has to be a global constant, while the other one, p+
s , is a piecewise

constant assuming only two values {p+
s,1, p

+
s,2}, satisfying the relations

p+
s,1p

+
s,2 = (p−s )2 and

p+
s,1

p+
s,2

=

(

1 − us

1 + us

)2

.

These relations chracterize the dynamic equilibria between the densities of individuals marching to the
left and to the right, in dependence on the parameter values γ0 and b.
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Figure 4: Numerical results with the singular weight w = δ0, b = 1 and γ0 = 0.3: p− converges to
a constant, while p+ becomes a piecewise constant travelling wave profile and u (dashed line) jumps
between the values ±us with us =

√

1 − γ0b−1 ∼= 0.8367.

20



For the large noise case (γ0 > b), we prove that the asymptotic state is again j ≡ 0 and ρ ≡ 1. In
fact, j converges to 0 in the L2-sense exponentially fast as t → ∞. This follows from an application of
the Gronwall lemma to the estimate

1

2

d

dt

∫

Ω

(

̺2 + j2
)

dx = −2

∫

(γ0 + b(−1 + u2))j2 dx

≤ −2(γ0 − b)

∫

j2 dx .

7 The effect of shrinking interaction radius

In biological applications, the weight function w is often chosen as the characteristic function of the
interval [0, σ], where σ > 0 is the interaction radius. It is important to study the dependence of collective
behaviour on the size of σ. In this section, we will consider a theoretical limit σ → 0. Clearly, letting σ → 0
with fixed N leads to a trivial model without any interactions (it corresponds to the choice b = 0). On
the other hand, letting first N → ∞, followed by σ → 0, we obtain the model with w = δ0, as mentioned
in Section 5. Consequently, the limits σ → 0 and N → ∞ do not commute. From the modelling point
of view, it is natural to study the limit N → ∞ with the interaction radius shrinking as N−α for some
α > 0. Indeed, as the space is getting more crowded, the visibility is reduced and every individual can
only take into account its closest neighbours. Actually, taking w = χ[0,N−α] and letting N → ∞, we will
show that a significant limit is obtained with α = 1, leading to a new kinetic model. The results are
summarized in the following Theorem.

Theorem 2 Let w = χ[0,N−α]. Then, the formal limit as N → ∞ of the BBGKY hierarchy (4.10) is

(1) For α > 1:

∂2
t ̺ + 2(γ0 + b) ∂t̺ = ∂2

x̺ . (7.1)

(2) For 0 < α < 1:

∂t̺ + ∂xj = 0 , (7.2)

∂tj + ∂x̺ = −2

(

γ0 + b

(

1 +
j2

̺2

))

j + 4bj . (7.3)

(3) For α = 1:

∂t̺ + ∂xj = 0 , (7.4)

∂t̺ − ∂xj = −2
(

γ0 + b(1 + η)
)

j + 4bj
(

1 − exp(−̺)
)

, (7.5)

with

η =
j2

̺2
(1 − exp(−̺)) +

(

1 −
j2

̺2

)

exp(−̺) [Ei(̺) − γ − ln(̺)] , (7.6)

where Ei(z) =
∫ z
−∞ s−1 exp(−s) ds is the so-called exponential integral function and γ = 0.577 . . . is

Euler’s constant.

21



We see that for 0 < α < 1, we obtained the kinetic model with u = j/ρ (i.e., the same as if one would
first pass to N → ∞ and then σ → 0). If α > 1, we get the model with no interactions (i.e., as if
one would first pass to σ → 0 and then N → ∞) which is described by the telegraph equation for ̺
[19]. In the significant limit with α = 1 we obtained a new model, which is in fact the hydrodynamic
model (4.27)–(4.28) with the function j

̺(1− exp(−̺)) in place of u and with η, given by (7.6), in place of

u2.
Proof: All we need to do is to recalculate the limits N → ∞ in the expressions (4.11) and (4.12) with
w = χ[0,N−α]. Let us fix z ∈ Ω and assume that it is a Lebesgue point of ̺ and j, i.e.,

lim
σ→0

1

σ

∫ σ

0
̺(z − y) dy = ̺(z) , (7.7)

and similarly for j. Moreover, assume that ̺(z) > 0. In the same way as in Lemma 1, we calculate

QN :=
∑

v∈{±1}N−1

∫

ΩN−1

∑N−1
m=1 χ[0,N−α](|z − xm|)vm
∑N−1

m=1 χ[0,N−α](|z − xm|)

N−1
∏

i=1

p(xi, vi) dx

= (N − 1)

∫

ΩN−1

χ[0,N−α](|z − x1|)
∑N−1

m=1 χ[0,N−α](|z − xm|)
dPN−1

̺ (x)

= (N − 1)KN

∫

ΩN−2

1

1 +
∑N−2

m=1 χ[0,N−α](|z − xm|)
dPN−2

̺ (x) ,

where we denoted

IN :=

∫

Ω
χ[0,N−α](y)̺(z − y) dy , KN :=

∫

Ω
χ[0,N−α](y)j(z − y) dy .

Obviously, the sum
∑N−1

m=1 χ[0,N−α](|z − xm|) only takes the values k = 0, . . . , N − 1, and

PN−2
̺

({

x ∈ ΩN−2;

N−2
∑

m=1

χ[0,N−α](|z − xm|) = k

})

=

(

N − 2

k

)

Ik
N (1 − IN )N−2−k .

Therefore,

∫

ΩN−2

1

1 +
∑N−2

m=1 χ[0,N−α](|z − xm|)
dPN−2

̺ (x) =

N−2
∑

k=0

1

k + 1

(

N − 2

k

)

Ik
N (1 − IN )N−2−k

=
1

(N − 1)IN

(

1 − (1 − IN )N−1
)

.

Due to (7.7), we have limN→∞ NαIN = ̺(z) and limN→∞ NαKN = j(z). Therefore,

lim
N→∞

QN = lim
N→∞

KN

IN

(

1 − (1 − IN )N−1
)

=
j(z)

̺(z)
lim

N→∞

(

1 − (1 − IN )N−1
)

,

and

lim
N→∞

(

1 − (1 − IN )N−1
)

=







1 − exp(−̺(z)) for α = 1 ,
1 for 0 < α < 1 ,
0 for α > 1 .
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Using the same technique as above, one calculates that

RN :=
∑

v∈{±1}N−1

∫

ΩN−1

(

∑N−1
m=1 χ[0,N−α](|z − xm|)vm
∑N−1

m=1 χ[0,N−α](|z − xm|)

)2 N−1
∏

i=1

p(xi, vi) dx

=
K2

N

I2
N

(

1 − (1 − IN )N−1
)

+

(

1 −
K2

N

I2
N

)

GN (IN ) ,

with

GN (IN ) =

N−1
∑

k=1

1

k

(

N − 1

k

)

Ik
N (1 − IN )N−1−k .

It is easily shown that GN (IN ) vanishes in the limit N → ∞ whenever α 6= 1, while with α = 1 the law
of rare events ([11]) gives

lim
N→∞

GN (IN ) = exp(−̺(z))

∞
∑

k=1

̺(z)k

k! k
= exp(−̺(z)) [Ei(̺(z)) − γ − ln(̺(z))] ,

We assume that ̺ and j be integrable functions, so that almost every z ∈ Ω is a Lebesgue point for them.

Remark 3 Our analysis can be seen as a first step towards a so-called topological model, where the agent
interactions are based on some connectivity graphs. For instance, one can consider the situation where
every agent interacts only with its nearest neighbour. In this case, we have a different time dependent
weight function wi for every agent, namely wi = χ[0,σi] with σi = minm6=i |xi − xm|. Then, the passage to
the corresponding continuum model is a completely open problem; however, let us observe that





1

N − 1

∑

m6=i

1

|xi − xm|p





−1/p

−−→
p→∞

min
m

|xi − xm| .

Therefore, it would be interesting to consider the discrete system with wi = χ[0,σi],

σi =





1

N − 1

∑

m6=i

1

|xi − xm|p





−1/p

, (7.8)

and study the limit N → ∞ and p → ∞ (possibly with p = N). Moreover, let us observe that “on
average”, |xi − xm| ≈ N−1. Therefore,





1

N − 1

∑

m6=i

1

|xi − xm|p





−1/p

≈ N−1 ,

so we are in the situation of the significant limit α = 1 described above, and we might believe that the new
kinetic model obtained in this limit can have some connection with the limit N → ∞ and p → ∞ of (7.8).
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8 Discussion

We introduced an individual based model with velocity jumps aimed at explaining the experimentally
observed collective motion of locusts marching in a ring shaped arena [2]. The frequency of individual
velocity jumps increases with a local or global loss of group alignment. We showed that our model has the
same predictive power as the model of Czirók and Vicsek, in particular, it exhibits the rapid transition to
highly aligned collective motion as the size of the group grows and the switching of the group direction,
with frequency rapidly decreasing with increasing group size. Moreover, in the limit N → ∞ we obtained
a system of two kinetic equations. We proved existence of its solutions and a partial result about the
long time behaviour. Finally, we studied the effect of shrinking the interaction radius σ in the discrete
model as the number of individuals, N , tends to infinity. We showed that in the significant limit where
σ shrinks as 1/N , one obtains a new kinetic model.

Kinetic approach has previously been used in the literature to understand collective dynamics of
individual based models. Carrillo et al [3] found the double milling phenomena in the kinetic formulation
of the model of self propeled particles with three zones of interactions. The kinetic description of the
Cucker-Smale model was introduced in [14], which can also be be derived from the Boltzmann-type
equation, see [4], or Povzner-type equation, [12]. For the survey of the most recent results see the
review [5].

Several interesting questions remain open, offering space for future investigations. For example, the
kinetic system (4.24)–(4.25) deserves a better analysis, in particular, uniqueness of solutions and more
complete investigation of the long time behaviour. It would also be interesting to know if and how the
solutions corresponding to w = δ0 can be derived as a limit of solutions corresponding to w = χ[0,σ] as
σ → 0. Another interesting direction of future research was formulated in Remark 3.
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