
MACAULAY2 PROBLEMS

DIANE MACLAGAN AND BALÁZS SZENDRŐI

Remember that viewHelp (or help if you do not have your browser
integrated properly) is a very useful command!

A. Solving systems of polynomial equations. In this problem, we
will look at finding all solutions to systems of polynomial equations

f1(x1, . . . , xn) = 0, f2(x1, . . . , xn) = 0, . . . fk(x1, . . . , xn) = 0

in n variables x1, . . . , xn. All the examples we look at will have a finite
number of solutions. To find these, we will create the ideal

I = 〈f1, . . . , fk〉

in the polynomial ring generated by x1, . . . , xn and study it. Note that
solving the system above is equivalent to finding the common zeros
of all polynomials in the ideal I; it is also equivalent to finding the
common zeros of any basis (generating set) of the ideal I.

The fact that there is a finite number of solutions corresponds to the
fact that the dimension of (the solution set of) the ideal I (use dim)
is 0. Seeing the solutions directly will be hard; but finding a suitable
basis (the Gröbner basis) of the ideal I will help us find the solutions
more easily. This basis can be generated using the command gb; use
gens to list generators. At certain points, the command factor might
be useful to factor high-degree polynomials.

(1) Use Macaulay2 to solve the following system of equations.

x+ 2y + z = 13
2x+ y + 2z = 17
x− y + 2z = 11

(a) First treat this as a linear algebra problem: create a 3× 3
matrix, and try to invert it, using the commands matrix

and inverse. What do you find? Check its det. Can you
fix the problem within Macaulay2?

(b) Next, treat this as a problem in polynomial algebra. Create
the correct ideal (note you will have to write the equations
in the form ... = 0), and compute a Gröbner basis. Can
you read off the solutions?
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(2) Find all the solutions to the following system of equations

x2 + y2 = 5
xy = 2

(a) Create the ideal in a polynomial ring; use the ring

R = QQ[x, y, MonomialOrder => Lex]

to get the right basis later.
(b) Check that the dimension of the solution set is 0.
(c) Find the solutions by looking at the Gröbner basis.
(d) This is a small problem that can of course be done by hand.

Try using standard algebra to solve this problem on a piece
of paper and compare with the solution from the method
above.

(3) Using a similar method, find all the solutions to the following
system of equations

x2 + y + z = 1
x+ y2 + z = 1
x+ y + z2 = 1

A final comment: try the following as an alternative. Load the
numerical polynomial solver package by

loadPackage“NumericalAlgebraicGeometry′′

Use complex coefficients for your rings: S=CC[x,y,...]; then list poly-
nomials in a polynomial system F={ .. , .. , ..} ; then type
solveSystem F. Note how for the simpler systems (1)-(2), you get the
solutions right away. What happens for (3)? Do you recognise your
solutions from before?
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B. Basic kinematics of robotic arms. 1

A 2R planar robot is a planar robotic arm with two links and two
rotational joints.

The joints can spin freely (let’s ignore collisions); the links have fixed
lengths L1 and L2; the bottom joint is fixed at (0, 0).

The forward kinematics problem is to determine the location of the
end effector, given the joint angles θ1 and θ2. The inverse kinematics
problem is to determine joint angles that will put the end effector at a
particular point in the plane.

(1) Use trigonometry to write down two (non-polynomial) equa-
tions that determine px and py from L1, L2, θ1 and θ2.

(2) Replace cos θ1 with a new variable c1, and use c2, s1, and s2
similarly, throwing in the two equations

c21 + s21 − 1 = c22 + s22 − 1 = 0,

to get a 4-equation, 4-variable polynomial system.
(3) Let L1 = L2 = 1 and set (px, py) = (1, 1). What solution(s) do

you expect? What do you get?
(4) Can you find a point (px, py) at which there is a single multi-

plicity 2 solution?
(5) What happens if (px, py) falls outside the workspace (the region

of the plane that can be reached by the end effector)?
(6) Can you find a point (px, py) at which there are infinitely solu-

tions?
(7) Write down the system for the 3R planar and/or the 2R spatial

robot and ask yourself similar questions.

1With thanks to Dan Bates
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C. Singularities of affine hypersurfaces. In this problem, we will
look at singularities of a hypersurface

H = {f(x1, . . . , xn) = 0} ⊂ An,

the locus given by the vanishing of a single polynomial equation f in
n variables. The singular locus of the hypersurface H is given by the
set of points on H where the gradient

∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
vanishes. To compute this locus, we need to create an ideal consisting
of f and its partial derivatives, and investigate it. The command diff

will be useful throughout this problem. Use dim to check how big
a solution set you are expecting; note that by convention dim = -1

means that there is no solution.

(1) Some classical hypersurfaces
(a) Determine the set of singularities of

S =
{
x2 + y2 + z2 = 1

}
⊂ A3.

(b) Determine the set of singularities of

C =
{
x2 + y2 = z2

}
⊂ A3.

(c) Determine the set of singularities of

W =
{
x2 − y2z = 0

}
⊂ A3.

(2) Singularities of the space of non-invertible matrices
(a) Create a 3× 3 matrix of variables. You may want to name

your variables
x_{1,2}

If you already have a variable named x, then you will need
to clear it first using x = symbol x.

(b) Compute the determinant of your matrix. Remember that
when the determinant of A is 0, the matrix A is not invert-
ible

(c) Consider the hypersurface H given in the space of matrices
by the equation detA = 0. Treating the determinant as a
polynomial in the matrix entries, compute partial deriva-
tives (the command diff will be useful here).

(d) Compute the ideal of partial derivatives.
(e) Check that this is ideal is the same as the ideal of 2 × 2

minors of A (try minors(2,A))
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(f) Can you generalise this to d = 4 from d = 3? To check
your generalization, the command jacobian ideal f will
be useful to generate the ideal of partials of a polynomial
f succinctly.

D. The Grassmannian. The Grassmannian Gr(d, n) is the projec-
tive variety that parameterises all d-dimensional subspaces of an n-
dimensional vector space.

(1) Create a 2× 4 matrix with generic entries (e.g., xij).
(2) Compute the six 2 × 2 minors of your matrix. The command

gens minors(2,A) will produce a matrix with these entries.
(3) Compute a homomorphism from a polynomial ring in six vari-

ables to your ring that takes the ith generator to the ith minor
on your list.

(4) Take the kernel of your homomorphism. This is the ideal of the
Grassmannian Gr(2, 4). If you already knew what this variety
was, compute the dimension to check that this is correct.

(5) Now write a function that takes as input your choice of d < n
to replace 2 and 4.

(6) This command actually already exists in Macaulay2! Look at
the help for Grassmannian. (This command uses the projective
convention for the Grassmannian, so to see our example you
should type Grassmannian(1,3)). How can you use this to
test that your function is correct?

Where next?

(1) Read the tutorials on the M2 webpage, starting with the first
one.

(2) Have a look at the list of packages written by other people
that are distributed with Macaulay2. Find one that is close
to your research interests, and look at the help. Install it (use
needsPackage or installPackage), and try some commands.

http://www2.macaulay2.com/Macaulay2/GettingStarted/
http://www2.macaulay2.com/Macaulay2/Packages/
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