

Mathematical Institute

Knots and SageMath

Agnese Barbensi

AGP online seminar and workshop

Oxford Mathematics

SageMath: an open source mathematics software

www.sagemath.org/

RSS - Blog - Trac - Wiki - Questions? Online: CoCalc - StapeCell or Download, Source Code v9.1 (2020-05-21) • 🗈 는 • (Language ~							
Home	Tour	Help	Library	Download	Development	Links	
SageMath is a free open-source mathematics software system licensed under the GPL. It builds on top of many existing open-source packages: NumPy, ScIPy, matplotlib, Sympy, Maxima, GAF, FLINT, R and many more. Access their combined power through a common, Python-based language or directly via interfaces or wrappers. Mission: Creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab.							
	Since version 9.0 released in January 2020, SageMath is using Python 3 . For more information, see the Python 3 switch wiki.						
ittps://www.sagenath.an	Sage f	or Unde	rgraduates	Learn h by Gregory I	ow to use SageN Bard (Spanish: S	Math: age para Estudiantes de Pregrado)	

Basic and Advanced Mathematics with SageMath!

Download it at:

sagemath.org/download.html

or use it online at:

sagecell.sagemath.org

cocalc.com

Knots & Links classes on SageMath

https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html

Knots and Links

Knots: embeddings of $S^1 \hookrightarrow S^3$ up to **ambient isotopy**.

Often studied through their **diagrams**.

Links are disjoint unions of knots.

Question: How to tell whether or not two knots are different?

Invariant :

"Knots" \longrightarrow "something algebraic"

such that if two knots have different images, then they are distinct.

Distinguish Knots

Knot theory's main goal: distinguish and classify knots.

- Crossing number of K: minimum number of crossings in a diagram of K
- Knot polynomials: computed using skein relations

Distinguish Knots

Knot theory's main goal: distinguish and classify knots.

- Crossing number of K: minimum number of crossings in a diagram of K
- Knot polynomials: computed using skein relations:

Alexander Polynomial:

• Normalisation on the trivial knot $\Delta_{\bigcirc}(t) = 1$

$$\Delta_{L_+}(t) - \Delta_{L_-}(t) = \\ \left(t^{\frac{1}{2}} - t^{-\frac{1}{2}}\right) \Delta_{L_0}(t)$$

Operation on Knots.

Connected sum:

Take a disjoint diagram of K_1 and K_2 .

Operation on Knots.

Connected sum:

Select an arc from each diagram.

Operation on Knots.

Connected sum:

Remove the arcs and join them as shown.

More on knot invariants

 Integer valued invariants: crossing number, determinant, signature...

 Knot polynomials: Alexander, Jones, Kauffman, HOMFLY...

 Knot homologies: Khovanov, Knot Floer...

Most of these are computable on SageMath


```
sage: K.alexander_polynomial()
-2*t^2 + 8*t - 2*t^2
sage: K.jones_polynomial()
t7 - 3*t^6 + 4*t^5 - 5*t^4 + 6*t^3 - 5*t^2 + 4*t + 1/t - 2
sage: K.determinant()
31
sage: K.signature()
-2
```

As braids (Markov's Theorem)

As braids (Markov's Theorem)

Braid index = 3 Generators: $\times 1 + 4$ $1 \times + 2$ Braid hotation: [1, -2, 4, -2]

スト

As braids (Markov's Theorem)

Braid index = 3Generators: $\times 1 + 4$ $1 \times + 2$ Braid hotation: [1, -2, 1, -2]

Agnese Barbensi Knots and SageMath

As braids (Markov's Theorem)

Brough index = 3 Genericators: $\times 1 + 1$ $1 \times + 2$

Braid hotation: [1, -2, 1, -2]

As braids (Markov's Theorem)

Bround index = 3 Generators: $\times 1 + 1$ $1 \times + 2$ Braid hotation: [1, -2, 1, -2]

As braids (Markov's Theorem)

Braid index = 3 Generators: $\times 1 + 4$ $1 \times + 2$ Braid hotation: [1, -2, 4, -2]

As braids (Markov's Theorem)

Bround index = 3 Generators: $\times 1 + 1$ $1 \times + 2$ Braid hotation: [1, -2, 1, -2]

Using the Oriented Gauss Code

orienteal Gauss code:

Using the Oriented Gauss Code

Let's see it on SageMath...

Real life applications:

 Biology: DNA topology, protein entanglement, clustering in Bio-informatics...

 Physics: vortices, solar flares...

And now a few exercises!

Thanks for the attention!!