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Abstract. We develop a dimension theory for coadmissible ÛD-modules on
rigid analytic spaces and study those which are of minimal dimension, in anal-
ogy to the theory of holonomic D-modules in the algebraic setting. We discuss
a number of pathologies contained in this subcategory (modules of in�nite
length, in�nte-dimensional �bres).
We prove stability results for closed immersions and the duality functor, and
show that all higher direct images of integrable connections restricted to a
Zariski open subspace are coadmissible of minimal dimension. It follows that
the local cohomology sheaves Hi

Z(M) with support in a closed analytic subset
Z of X are also coadmissible of minimal dimension for any integrable connec-
tion M on X.

1. Introduction

Let K be a complete discrete valuation �eld of characteristic zero with valuation
ring R and uniformiser π ∈ R. We allow both the case of mixed characteristic
(e.g. �nite �eld extensions of the p-adic numbers Qp) and equal characteristic (e.g.
C((t))).

In [4], the �rst and the third author introduced the sheaf ÙDX of analytic (in�nite
order) di�erential operators on a smooth rigid analytic K-space X. It was shown
in [4] and in greater generality in [11] that sections over a�noids are Fréchet�Stein
algebras as de�ned by Schneider�Teitelbaum [37], which suggests the notion of
coadmissibility as the natural analogue of coherence in this setting. We denote the

category of coadmissible ÙDX -modules by CX .

In the classical theory of D-modules (on a smooth complex algebraic variety X,
say), one is often particularly interested in those modules which are holonomic.
There are various equivalent ways to de�ne these, one of which is the following:
one can introduce a dimension function d for coherent D-modules, either as the
dimension of the support of the associated characteristic variety, or in terms of
homological algebra by interpreting the homological grade of a module as its codi-
mension. One then shows that any non-zero coherent DX -moduleM satis�es

dimX 6 d(M) 6 2 dimX,

which is known as Bernstein's inequality. A coherent DX -moduleM is said to be
holonomic if d(M) 6 dimX, i.e. M is either zero or of minimal dimension.

Equivalently, holonomic DX -modules can be characterized as those coherent DX -
modulesM satisfying either of the following equivalent properties:
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(∗) for every point i : x → X and any j ∈ Z, the cohomology Hj(i+M) is a
�nite-dimensional vector space over C, where i+ denotes the derived inverse image
of D-modules (see [21, Theorem 3.3.1]).

(∗∗) for any smooth morphism f : X ′ → X and any divisor Z of X ′, the local

cohomology sheaves Hi
Z(f∗M) are coherent DX′ -modules for any i > 0 (see prop-

erty (∗∗) in the introduction of [17]).

The category of holonomic DX -modules plays a crucial role in many parts of alge-
braic geometry, algebraic analysis and geometric representation theory. It contains
all integrable connections on X, and each holonomic module has �nite length.
Moreover, the notion of holonomicity is stable under pullback, pushforward, tensor
product and the duality functor, which takes the form

D :M 7→ E xtdimX
DX

(M,DX)⊗OX
Ω⊗−1

for any holonomic DX -moduleM.
Moreover, the Riemann�Hilbert correspondence asserts an equivalence of categories
between holonomic modules with regular singularities and the category of perverse
sheaves.

In this paper, we begin the study of a subcategory of CX analogous to the category of
holonomic D-modules. While there is currently no satisfactory theory of character-

istic varieties for coadmissible ÙD-modules, we can adopt the homological viewpoint
by slightly generalising the dimension theory for Fréchet�Stein algebras given in
[37], where results were given for Fréchet�Stein algebras de�ned by Banach alge-
bras which are Auslander regular with universally bounded global dimension. We
relax this condition by allowing Banach algebras which are Auslander�Gorenstein
with universally bounded self-injective dimension. This allows us to de�ne the di-

mension of a coadmissible ÙDX -module. We then prove the corresponding Bernstein
inequality.

Theorem A. Let X be a smooth a�noid K-space such that T (X) is a free O(X)-
module.

(i) There is a Fréchet�Stein structure ÙD(X) ∼= lim←−An, where each An is Auslander�
Gorenstein with self-injective dimension bounded by 2 dimX.

(ii) If M is a non-zero coadmissible ÙD(X)-module then

d(M) > dimX,

where d(M) = 2 dimX − j(M) for j(M) the homological grade of M .

Concerning (i), it is worth pointing out that our computation of Ext groups shows
that the An have in fact self-injective dimension exactly dimX for n su�ciently
large, but we won't use this fact.
We also note that Mebkhout�Narvaez-Macarro have already discussed dimensions
of modules over the sheaf D of algebraic (i.e. �nite order) di�erential operators on
a rigid analytic space in [34], and we show that the two theories are compatible in
the obvious way. This rests on the following theorem.

Theorem B. Let X be a smooth a�noid K-space. Then ÙD(X) is a faithfully �at
D(X)-module.
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We call a coadmissible ÙD-moduleM on X which satis�es d(M) 6 dimX weakly
holonomic.
This choice of nomenclature re�ects the fact that the category of weakly holonomic
modules still contains some pathologies which do not appear in the algebraic theory:
we present examples of weakly holonomic modules which are not of �nite length
and have in�nite-dimensional �bres. In particular, the natural analogues of (∗) and
(∗∗) do not provide equivalent characterizations of weak holonomicity.
In [9], Bitoun and the second author already gave an example of an integrable con-
nection on the punctured unit disc such that its direct image on the disc is not even

coadmissible, so weakly holonomic ÙD-modules are not stable under pushforward
either.

Nonetheless, we also produce some positive results. One can de�ne a duality func-
tor as in the classical setting and show that this gives an involution of the category

of weakly holonomic modules. We also show that the ÙD-module analogue of Kashi-
wara's equivalence given in [3] respects weak holonomicity. Concerning the question
of pushforwards along open embeddings, we prove the following.

Theorem C. Let j : U → X be a Zariski open embedding of smooth rigid analytic
K-spaces and let M be an integrable connection on X. Then Rij∗(M|U ) is a

coadmissible, weakly holonomic ÙDX-module for any i > 0.

By `Zariski open embedding', we mean that U is an admissible open subspace of
X whose complement is a closed analytic subset of X.
The proof of Theorem C relies on the rigid analytic analogue of Hironaka's resolu-
tion of embedded singularities as developed by Temkin [39].

As a corollary, we obtain that the local cohomology sheaves Hi
Z(M) are also coad-

missible, weakly holonomic ÙDX -modules, where Z is any closed analytic subset of
X.
In this way, we verify that any integrable connectionM on X satis�es the following
natural analogue of (∗∗):

(∗∗′) for any smooth morphism f : X ′ → X and any divisor Z of X ′, the local

cohomology sheaves Hi
Z(f∗M) are coadmissible for any i > 0.

We mention at this point that Caro has taken property (∗∗) as the point of de-
parture for his development of the study of overcoherent arithmetic D-modules
[17]. It would be very interesting to investigate whether (∗∗′) (maybe together
with some analogue of Caro's overholonomicity condition [18]) yields a su�ciently

rich subcategory of weakly holonomic ÙD-modules which has better �niteness and
stability properties.

We hope that these results bring us closer to the formulation of a theoretical frame-

work which allows for a p-adic Riemann�Hilbert correspondence for ÙDX -modules,
generalizing results by Liu-Zhu [33] for (a suitable category of) integrable connec-
tions and (de Rham) local systems.

Structure of the paper. In section 2, we recall some of the results and terminol-
ogy from [4].
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In section 3, we prove Theorem B.

In section 4, we show that the sections ÙD(X) over a smooth a�noid X are of
the form as claimed in Theorem A.(i). In section 5, we slightly generalise the di-
mension theory from [37] to algebras of this form.

In section 6, we prove Bernstein's inequality, Theorem A.(ii).

In section 7, we show some basic properties of the category of weakly holonomicÙD-modules. Amongst other things, we prove that every integrable connection is
weakly holonomic, and discusss the duality functor.

In section 8, we present examples which have no analogue in the classical theory:

there exist weakly holonomic ÙD-modules which do not have �nite length and have
�bres of in�nite dimension. We also brie�y recall the results from [9], which is con-

cerned with the extension of meromorphic connections to coadmissible ÙD-modules.
Crucially, it also gives an example of an integrable connection whose direct image
is not coadmissible.

In sections 9 and 10, we prove Theorem C by �rst considering the case where the
complement of U is the analyti�cation of a strict normal crossing divisor and then
reducing to that case by invoking Temkin's resolution of embedded singularities
[39] and the results in [12].

Convention. All our rigid analytic spaces will be quasi-separated.
Throughout, smooth rigid analytic spaces will be assumed to be equidimensional for
simplicity. Arguing on each connected component separately, analogues of all our
results can be formulated for arbitrary smooth spaces in a straightforward manner.

Notation. Given an R-module M , we denote by M̂ its π-adic completion and ab-

breviate M̂ ⊗R K to ‘MK .

The �rst and the second author acknowledge support from the EPSRC grant
EP/L005190/1.

2. Basic theory of ÙD-modules
We recall some de�nitions and results from [4].

2.1. Fréchet completed enveloping algebras. Let k be a commutative base
ring and A a commutative k-algebra.
A Lie�Rinehart algebra (or (k,A)-Lie algebra) is an A-module L equipped with a
k-bilinear Lie bracket and an anchor map

ρ : L→ Derk(A)

such that [x, ay] = a[x, y] + ρ(x)(a)y for any a ∈ A, x, y ∈ L.

We say that L is smooth if it is coherent and projective as an A-module.
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For any (k,A)-Lie algebra L, one can form the enveloping algebra UA(L) as in
[35, �2]. This is an associative k-algebra with the property that to give a UA(L)-
module structure on an A-module M is equivalent to giving a Lie algebra action of
L on M such that

x · (a ·m) = (ax) ·m+ ρ(x)(a) ·m and a · (x ·m) = (ax) ·m
for any a ∈ A, x ∈ L, m ∈M .

If A is an a�noid K-algebra, we say that an R-subalgebra A ⊂ A is an a�ne
formal model if A⊗RK = A and A is a topologically �nitely presented R-algebra.

A �nitely generated A-submodule L of a (K,A)-Lie algebra L is called a Lie lattice
if L ⊗R K = L, L is closed under the Lie bracket and ρ(x)(a) ∈ A for any x ∈ L,
a ∈ A. We note that if L is a Lie lattice, so is πnL for any n > 0.

We say that L admits a smooth Lie lattice if there exists an a�ne formal model A
such that L contains a smooth A-Lie lattice L.

De�nition ([4, �6.2]). Let A be an a�noid K-algebra with a�ne formal model
A, and let L be a coherent (K,A)-Lie algebra with A-Lie lattice L. The Fréchet

completed enveloping algebra U̇A(L) is de�ned to be

U̇A(L) = lim←−
n

⁄�UA(πnL)K .

It was shown in [4, �6.2] that this does not depend on the choice of a�ne formal
model and Lie lattice.
The key property of Ŭ(L) is that it is a Fréchet�Stein algebra in the sense of [37]
whenever L is smooth.

De�nition ([37, �3]). A K-Fréchet algebra U is called (left, right, two-sided)
Fréchet�Stein if it is isomorphic to an inverse limit lim←−Un for (left, right, two-

sided) Noetherian K-Banach algebras Un whose connecting maps are �at (on the
right, on the left, on both sides) with dense images.
A left U -module M is called coadmissible if M ∼= lim←−Mn, where Mn is a �nitely
generated Un-module such that the natural morphism Un⊗Un+1 Mn+1 →Mn is an
isomorphism for each n.

For a given Fréchet�Stein algebra U , we denote the category of coadmissible left
U -modules by CU .

Theorem ([11, Theorem 3.5]). Let A be an a�noid K-algebra and let L be a

smooth (K,A)-Lie algebra. Then U̇A(L) is a two-sided Fréchet�Stein algebra.

2.2. Lie algebroids and Fréchet completions.

De�nition. A Lie algebroid on a rigid analytic K-space X is a pair (ρ,L ) where

(i) L is a locally free sheaf of OX -modules of �nite rank on Xrig.
(ii) L is a sheaf of K-Lie algebras, and
(iii) ρ : L → T is an O-linear map of sheaves of Lie algebras such that

[x, ay] = a[x, y] + ρ(x)(a)y

for any a ∈ O, x, y ∈ L .
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Given a Lie algebroid L , there exists a unique sheaf U̇ (L ) on Xrig such that
on each admissible open a�noid subspace Y ⊆ X, we have

U̇ (L )(Y ) = ˇ�UO(Y )(L (Y ))

with the obvious restriction maps to smaller a�noid subdomains (see [4, Theorem
9.3] and the remark after [11, Theorem 4.9]).

If X is a smooth rigid analytic K-space, then its tangent sheaf TX (together with

ρ = id) is a Lie algebroid, and we write ÙDX = ˚�U (TX).

2.3. Localisation and coadmissible modules. Given a Lie algebroid L on an

a�noid K-space X, write ıU = U̇ (L ). We can localise coadmissible modules over

the Fréchet�Stein algebra ıU (X) as follows (see [4, �8.2]):
For any admissible open a�noid subspace Y of X, the functorıU (Y ) “⊗ÙU (X)

− : CÙU (X)
→ ıU (Y )−mod

sends coadmissible ıU (X)-modules to coadmissible ıU (Y )-modules, where each term
is equipped with its canonical Fréchet topology (it was shown in [9, Corollary A.6]

that the completed tensor product “⊗ agrees with the operation Ù⊗ de�ned in [4,
�7.3]).
This gives rise ([4, Theorem 8.2, Theorem 9.5]) to a fully faithful exact functor

Loc : {coadmissible ıU (X)�modules} → {sheaves of ıU �modules on Xrig},

and we call its essential image CÙU , the category of coadmissible ıU -modules.

De�nition ([4, De�nition 9.4]). If X is an arbitrary rigid analytic K-space and

L is a Lie algebroid on X, we say that a sheaf of U̇ (L )-modules M on Xrig is
coadmissible if there exists an admissible covering (Ui) of X by a�noids such that

for each i,M|Ui
∼= LocMi for some coadmissible U̇ (L )(Ui)-module Mi.

If X is smooth, we shorten CÛDX
to CX .

3. Faithfully flat completions of deformable algebras

3.1. Statement of the theorem and preliminaries. Recall that a positively
�ltered R-algebra U is called deformable if grU is �at over R. We de�ne its nth
deformation to be the subring

Un :=
∑
i>0

πinFiU.

Let U be a deformable R-algebra such that grU is a commutative Noetherian R-
algebra and F0U is π-adically separated.
Note that these assumptions make F0U a commutative Noetherian R-algebra, as
it is a quotient of grU . Moreover, FiU is a �nitely generated F0U -module by [4,
Lemma 6.5]

For example, the properties above are satis�ed if U = UA(L) is the enveloping
algebra of a smooth (R,A)-Lie algebra L over an a�ne formal model A of some
a�noid K-algebra A.
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It was shown in [4, Theorem 6.7] that ŨK = lim←−
’Un,K is a two-sided Fréchet�Stein

algebra.
In this section, we prove Theorem B from the introduction by proving the corre-
sponding result for deformable algebras.

Theorem. Let U be a deformable R-algebra such that grU is commutative Noe-
therian R-algebra and F0U is π-adically separated. Then the natural morphism

UK → ŨK is faithfully �at.

By `faithfully �at' we mean that ŨK a faithfully �at UK-module both on the
left and on the right. We present the proof for the right module structure, the
analogous statement for the left module structure can be shown mutatis mutandis.
We note that this result already appears in [36, Proposition 3.6] under slightly
modi�ed assumptions, but the authors do not follow the last step in the proof and
would like to put forward this alternative argument.

Note that �atness follows by the same argument as in [11, Lemma 4.14], so it
remains to show faithfulness.

Suppose that N is a simple UK-module. We wish to show that ŨK ⊗UK
N 6= 0, so

it su�ces to �nd some n such that ’Un,K ⊗UK
N 6= 0.

Let M be a �nitely generated U -submodule of N such that N = MK , and equip
M with a good �ltration F•M (pick a �nite generating set m1, . . . ,mr and set
FiM =

∑r
j=1 FiUmj). We can now form the �nitely generated Un-module

Mn =
∑
i>0

πinFiM ⊆M.

This is equipped with the �ltration

FjMn =

j∑
i=0

πinFiM,

making it a �ltered Un-module.
ClearlyMn⊗RK = N . Moreover, FjMn ⊆ FjM is a �nitely generated F0U -module
for any j, n > 0, as F0U is Noetherian.

Recall that [2, Lemma 3.5] provides us with an isomorphism ξn : grU → grUn
given by multiplication by πnj on the jth graded piece. The lemma below discusses
an analogous morphism for modules.

Lemma. There exists a graded R-linear morphism µn : grM → grMn such that

(i) µn(m+ Fj−1M) = πnjm+ Fj−1Mn for all m ∈ FjM .
(ii) µn(u ·m) = ξn(u) · µn(m) for all u ∈ grU , m ∈ grM .
(iii) µn is surjective.
(iv) ker(µn|grj M ) = (grjM)[πnj ].

Proof. It is immediate from the de�nition of the �ltrations that (i) gives a well-
de�ned R-linear graded morphism µn satisfying (ii).
For (iii), note that πnjFjM +Fj−1Mn = FjMn for any j > 0, so that µn(grjM) =
grjMn.
For (iv), let m ∈ FjM with the property that m ∈ grjM is annihilated by µn.
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This means that πnjm ∈ Fj−1Mn =
∑j−1
i=0 π

inFiM ⊆ Fj−1M . So πnjm = 0, i.e.
m ∈ (grjM)[πnj ]. The reverse inclusion is clear. �

Corollary. Suppose that πn annihilates the π-torsion of grM . Then grMn is
π-torsionfree.

Proof. Let x ∈ grjMn satisfy πx = 0. If j > 1, then surjectivity of µn (Lemma
3.1.(iii)) implies that there exists y ∈ grjM such that µn(y) = x, and hence

µn(πy) = πx = 0.

Therefore y ∈ grM is π-torsion by Lemma 3.1.(iv), implying that πny = 0 by
assumption. As j > 1, it follows that x = πnjy = 0 as well.

As gr0Mn = F0M is also π-torsionfree, we have (grMn)[π] = ⊕j(grjMn)[π] = 0,
as required. �

Since grM is �nitely generated over the Noetherian ring grU , it follows from
the Corollary that grMn is π-torsionfree for su�ciently large n.

3.2. Torsionfree deformations and the proof of Theorem 3.1.

Lemma. Suppose that grMn is π-torsionfree. Then N is (1 + πUn)-torsionfree.

Proof. Let Sn = 1 + πUn. Equipping U with its π-adic �ltration, it follows from
[32, Corollary 2.2] that Sn is an Ore set in U and hence in UK . In particular, the
set of Sn-torsion elements in N is a UK-submodule of N , and by simplicity is either
0 or N itself. Assume therefore that N and hence Mn is Sn-torsion.

We now claim that FjMn = πFjMn for any j > 0. Once we have proved the
claim, �nite generation of FjMn over the Noetherian π-adically complete ring F0U
forces FjMn = 0 by [5, Corollary 10.19], so Mn = 0, which provides us with the
desired contradiction, as Mn ⊗R K = N 6= 0.

Let m ∈ FjMn. As Mn is Sn-torsion, there exists u ∈ Un such that (1−πu)m = 0,
so m = πum.
Since grMn is π-torsionfree, the same is true for FiMn/Fi−1Mn for each i, and thus
Mn/FjMn is also π-torsionfree. In particular, πum ∈ FjMn implies um ∈ FjMn

and thus m ∈ πFjMn, as required. �

Proof of Theorem 3.1. By Corollary 3.1 and Lemma 3.2, there exists t such that

N is Sn-torsionfree for any n > t. Then M̂n 6= 0 by [5, Theorem 10.17]. As Mn is

π-torsionfree, so is M̂n
∼= ”Un ⊗Un

Mn, and hence M̂n ⊗R K ∼= ’Un,K ⊗UK
N 6= 0 for

any n > t. Therefore ŨK ⊗UK
N 6= 0, as required. �

Corollary. Let A be an a�noid K-algebra and let L be a smooth (K,A)-Lie algebra.

Then UA(L)→ U̇A(L) is faithfully �at.

Proof. Flatness was already proven in [11, Lemma 4.14], so it su�ces to show
faithfulness.
If L admits a smooth Lie lattice, this follows directly from Theorem 3.1. In the
general case, note that there exists a �nite a�noid covering (SpAi) of SpA such
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that Ai ⊗A L is free (and in particular admits a smooth Lie lattice) for each i. We
thus obtain the commutative diagram

UA(L) //

��

U̇A(L)

��

⊕UAi
(Ai ⊗A L) // ⊕˛�U(Ai ⊗ L)

where the left vertical arrow is faithfully �at due to the isomorphism U(Ai⊗AL) ∼=
Ai⊗AUA(L) (see [4, Proposition 2.3]). Theorem 3.1 thus implies that ⊕ˇ�U(Ai ⊗A L)
is faithfully �at over UA(L): if N is a non-zero U(L)-module, then there exists some

i such that U(Ai⊗L)⊗U(L)N 6= 0, and hence ˛�U(Ai ⊗ L)⊗U(L)N 6= 0. Therefore, if

N is a U(L)-module such that Ŭ(L)⊗N = 0, it follows from ⊕˛�U(Ai ⊗ L)⊗U(L)N =
0 that N = 0. �

If A is a smooth a�noid K-algebra and L = T (SpA), this now proves Theorem
B from the introduction.

4. Auslander�Gorenstein rings and completed enveloping algebras

4.1. Faithfully �at descent.

De�nition. Let A be a ring.

(i) The grade of an A-module M is

j(M) = min{i : ExtiA(M,A) 6= 0},
and ∞ if no such i exists.

(ii) We say that A satis�es the Auslander condition if for every Noetherian A-
moduleM and any i > 0, we have j(N) > i wheneverN is a (right) submodule

of ExtiA(M,A).
(iii) A two-sided Noetherian ring is called Gorenstein if it has �nite left and right

injective dimension.
(iv) A two-sided Noetherian ring is called Auslander�Gorenstein if it satis�es the

Auslander condition and has �nite left and right injective dimension.

The proof of the following straightforward lemma can be pieced together from
the literature (see for example [31, Theorem 3.3] and [8, Theorem 1.2]) but as far
as we know it has never been written down in this generality in a single place.

Lemma. If S → S′ is a faithfully �at homomorphism of rings with S′ Auslander�
Gorenstein then S is also Auslander�Gorenstein. Moreover the dimension of S is
bounded above by the dimension of S′.

Proof. First we show that S is left Noetherian. Suppose that (In) is an ascending
chain of left ideals in S. For each n ∈ N let Jn be the image of S′⊗S In → S′ so that
(Jn) is an ascending chain of left ideals in S′. Since S′ is left Noetherian the chain
Jn must terminate. Because S → S′ is faithfully �at Jn/Jn−1 ∼= S′⊗S In/In−1 6= 0
whenever In/In−1 6= 0. Thus the chain In must terminate.

By symmetry (or by considering the opposite rings) S is also right Noetherian.
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Next we show that S satis�es the Auslander condition. Let N be a right S-
submodule of ExtiS(M,S) for some �nitely generated left S-module M , and let

j < i. Since S → S′ is �at there is an isomorphism S′⊗SExtjS(N,S) ∼= ExtjS′(N⊗S
S′, S′). The latter is zero since S′ sati�es the Auslander condition and N ⊗S S′
is isomorphic to a submodule of ExtiS(M,S) ⊗S S′ ∼= ExtiS′(S

′ ⊗S M,S′) by the
�atness of S → S′ again. Since S → S′ is faithfully �at we may deduce that
ExtjS(N,S) = 0 as required.

Finally suppose that d = injdimS′S
′. For each cyclic S-module M we can compute

Extd+1(M,S)⊗S S′ ∼= Extd+1(S′ ⊗S M,S′) = 0. Since S → S′ is faithfully �at we

can deduce Extd+1(M,S) = 0 and so, using [23, p55], that injdimSS 6 d. �

4.2. Smooth a�noids and Gorenstein formal models. Recall that Raynaud's
Theorem [15, Theorem 4.1] establishes an equivalence of categories X 7→ Xrig
between the category of quasi-compact admissible formal R-schemes localised by
admissible formal blowing-ups, and the category of quasi-compact rigid analytic
spaces over K. (Recall that all our rigid analytic spaces are assumed to be quasi-
separated.)

Proposition. Suppose that X is a smooth quasi-compact rigid analytic space over
K. Given any quasi-compact formal model X of X over R there is an admissible
formal blowing-up X † → X of formal R-schemes with X † Gorenstein.

Proof. By [20, Theorem 1.4] there is a �nite separable �eld extension K ′ of K
with ring of integers R′, a quasi-compact strictly semi-stable formal R′-scheme X ′,
and a composition of morphisms of quasi-compact admissible formal R-schemes
X ′ → X † → X such that X † → X is an admissible formal blowing-up and X ′ → X †
is �at and surjective. Since being Gorenstein is a local condition and X ′ → X † is
faithfully �at it su�ces by Lemma 4.1 to show that X ′ is Gorenstein. But X ′ is a
regular scheme ([20, Remark 1.1.1]) and so Gorenstein. �

4.3. Completed enveloping algebras over Gorenstein algebras.

Lemma. Suppose that A is a commutative Gorenstein k-algebra for some com-
mutative ring k, and L is a smooth (k,A)-Lie algebra of rank r. Then U(L) is
Auslander�Gorenstein of dimension at most dimA+ r.

Proof. By [35, Theorem 3.1] there is a positive �ltration on U(L) such that grU(L) ∼=
Sym(L) is commutative. By [29, Théorème 4.4, Remarque 4.5] it thus su�ces to
show that Sym(L) is Auslander�Gorenstein of dimension at most dimA+ r.

Since L is a �nitely generated projective (k,A)-module there is a cover of Spec(A)
by basic open subsets D(f1), . . . , D(fm) such that Afi ⊗A L is a free Afi-module of
rank r for each i = 1, . . . ,m. Since Sym(L)→ ⊕mi=1 Sym(Afi⊗AL) is faithfully �at
we can use Lemma 4.1 to reduce to the case that L is free over A, i.e. Sym(L) is
isomorphic to a polynomial ring A[t1, . . . , tr]. Thus we are done by [41, Corollary
1]. �

Theorem. Suppose that A is a smooth K-a�noid algebra over K with a�ne formal
model A and that L is a smooth (R,A)-Lie algebra of rank r. There is an integer

m > 0 such that Ÿ�U(πnL)K is Auslander�Gorenstein of dimension at most dimA+r
for each n > m.
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Proof. First we establish the result when A is Gorenstein with m = 0. In this
case it follows from the Lemma that U(L) is Auslander�Gorenstein of dimension
at most dimA+ r = dimA+ 1 + r. Thus U(L)/πU(L) is Auslander�Gorenstein of
dimension at most dimA+ r by [1, Proposition 1.3 and Proposition 2.1].

Now Ÿ�U(πnL)K is a complete doubly �ltered K-algebra and

Gr(Ÿ�U(πnL)K) ∼= U(L)/πU(L)

by [2, Lemma 3.7]. Thus Ÿ�U(πnL)K is Auslander�Gorenstein of dimension at most
dimA+ r by [10, Theorem 3.9].

In the general case Proposition 4.2 shows that there is an admissible formal blowing-
up X → Spf(A) over R with X Gorenstein. Let {Spf(Ai)} be an a�ne cover of
X . By [4, Proposition 7.6] and the proof of [4, Lemma 7.6(b)] there is a positive
integer m such that each Ai is L-stable and each (Spf Ai)rig is a πnL-accessible
subdomain of X for each n > m. Thus each natural mapŸ�U(πnL)K →

⊕ ¤�U(Ai ⊗A πnL)K

with n > m is faithfully �at by [4, Theorem 4.9(b)]. The result now follows from
Lemma 4.1 and the case A is Gorenstein. �

This proves Theorem A.(i).

5. Dimension theory for coadmissible modules

5.1. Review. We slightly generalise the exposition of [37, �8] which introduced a
dimension theory for Fréchet�Stein algebras with the property that each member
of the de�ning family of Banach algebras is Auslander regular of global dimen-
sion bounded by a universal constant; we relax this last condition to Auslander�
Gorenstein with self-injective dimension bounded by a universal constant.

We suppose throughout this section that U = lim←−Un is a two-sided Fréchet�Stein
algebra.

Lemma ([37, Lemma 8.4]). For any coadmissible left U -module M and any integer

l > 0 the U -module ExtlU (M,U) is coadmissible with

ExtlU (M,U)⊗U Un ∼= ExtlUn
(Un ⊗U M,Un)

for any n ∈ N.

De�nition. We say that U is coadmissibly Auslander�Gorenstein (or c-Auslander�
Gorenstein) of dimension at most d if d is a non-negative integer such that each Un
is Auslander�Gorenstein with self-injective dimension at most d.

It follows easily from the Lemma that if A is c-Auslander�Gorenstein of dimen-
sion at most d then every coadmissible A-moduleM satis�es Auslander's condition;
that is for every integer l > 0 every coadmissible submodule N of ExtlA(M,A) has
grade at least l. It is also an easy consequence that every (non-zero) coadmissible
A-module has grade at most d.

If A is a smooth K-a�noid algebra and L is a (K,A)-Lie algebra that admits
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a smooth lattice of rank r then Ŭ(L) is c-Auslander�Gorenstein of dimension at
most dimA+ r by Theorem 4.3. In particular if DerK(A) admits a smooth lattice

then ÙD(SpA) is c-Auslander�Gorenstein of dimension at most 2 dimA.

De�nition. Suppose that A is a smooth K-a�noid algebra and L is a (K,A)-Lie

algebra that admits a smooth lattice of rank r. Writing U for Ŭ(L), the dimension
of a (non-zero) coadmissible U -module M is de�ned by

dU (M) := dimA+ r − jU (M).

We will sometimes suppress the subscript U and simply write d(M) if this will not
cause confusion.

5.2. Left-right comparison. Let A be an a�noid K-algebra and let L be a
(K,A)-Lie algebra that admits a smooth Lie lattice of rank r. Recall [3, Theo-

rem 3.4] that there is an equivalence of categories between coadmissible left Ŭ(L)-

modules and coadmissible right Ŭ(L)-modules, given by ΩL⊗A− and HomA(ΩL,−),
where

ΩL = HomA

(∧r
L,A

)
.

Lemma. For each coadmissible left Ŭ(L)-moduleM there is a natural isomorphism

Extj
Ū(L)

(ΩL ⊗AM, Ŭ(L)) ∼= HomA(ΩL,Extj
Ū(L)

(M, Ŭ(L)) ∀j > 0.

In particular d(M) = d(ΩL ⊗AM).

Proof. As ΩL is a projective A-module, the left hand side is the jth cohomology

of R Hom
Ū(L)

(ΩL ⊗L
AM, Ŭ(L)), while the right hand side is the jth cohomology of

R HomA(ΩL,R Hom
Ū(L)

(M, Ŭ(L)). The natural isomorphism thus follows directly

from the derived tensor-Hom adjunction [24, Theorem 18.6.4.(vii)].

Because ΩL is an invertible A-module,

Extj
Ū(L)

(M, Ŭ(L)) = 0 if and only if HomA(ΩL,Extj
Ū(L)

(M, Ŭ(L))) = 0

for each j > 0, and hence d(M) = d(ΩL ⊗AM). �

5.3. Dimension theory for U̇ (L ). Let L be a Lie algebroid on a smooth, equidi-
mensional rigidK-analytic spaceX. LetXw(L ) denote the set of a�noid subspaces
Y of X such that L (Y ) admits a smooth Lie lattice. By [4, Lemma 9.3] Xw(L )
is a basis for the topology on X i.e. every admissible open in X has an admissible
cover by objects in Xw(L ).

Proposition. For each t > 0 there is a functor E xt t
Ŭ (L )

(−, U̇ (L )) from coad-

missible left U̇ (L )-modules on X to coadmissible right U̇ (L )-modules on X such
that

E xt t
Ŭ (L )

(M, U̇ (L ))(Y ) = Extt˚�U(L (U))
(M(Y ),˝�U(L (Y )))

for each coadmissible left U̇ (L )-moduleM and each Y ∈ Xw(L ).
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Proof. Let M be a coadmissible U̇ (L )-module and suppose that Z ⊂ Y are in
Xw(L ). Let A be an a�ne formal model in O(Y ) such that L (Y ) admits a
smooth Lie lattice L. By replacing L by πmL for some positive integer m, we may
assume that Z is πnL-accessible for all n > 0 (see [4, Proposition 7.6]).
Let B be an a�ne formal model in O(Z) such that B ⊗A L is a B-Lie lattice in
L (Z) = B ⊗A L (Y ).

For each n > 0, let Un and Vn denote the K-Banach algebras Ÿ�U(πnL)K and¤�U(B ⊗ πnL)K respectively and let U := lim←−Un = ˝�U(L (Y )) and V := lim←−Vn =˝�U(L (Z)). Now, using [4, Theorem 9.4], we see that Mn(Y ) := Un ⊗U M(Y ) is
a �nitely generated left Un-module, Mn(Z) := Vn ⊗V M(Z) is a �nitely gener-
ated left Vn-module and Mn(Z) ∼= Vn ⊗Un Mn(Y ). Morever by [4, Theorem 4.8]
Un → Vn is �at on both sides for all positive integers n. Thus ExttVn

(Mn(Z), Vn) ∼=
ExttUn

(Mn(Y ), Un)⊗Un Vn for each t > 0.

By Lemma 5.1, ExttU (M(Y ), U) is a coadmissible right U -module such that

ExttU (M(Y ), U)⊗U Un ∼= ExttUn
(Mn(Y ), Un)

and ExttV (M(Z), V ) is a coadmissible V -module with ExttV (M(Z), V ) ⊗V Vn ∼=
ExttVn

(Mn(Z), Vn). Thus we can compute

ExttV (M(Z), V )⊗ Vn ∼= ExttVn
(Mn(Z), Vn)

∼= ExttUn
(Mn(Y ), Un)⊗Un Vn

∼= ExttU (M(Y ), U)⊗U Vn
Now we see that ExttV (M(Z), V ) ∼= ExttU (M(Y ), U)Ù⊗UV by (the proof of) [4,
Lemma 7.3]. It follows, using [4, Theorem 8.2, Theorem 8.4] that the presheaf on

Yw that sends Z ∈ Yw to Extt˚�U(L (Z))
(M(Z),˝�U(L (Z))) is a coadmissible sheaf of

U̇ (L )-moudules on Yw. Applying [4, Theorem 9.1, Theorem 9.4] completes the
proof of the Proposition. �

The analogous statement for coadmissible right modules can be proven using the
same argument.

De�nition. Suppose that U is an admissible cover of X by a��noid subspaces in

Xw(L ). For each (non-zero) coadmissible U̇ (L )-moduleM we de�ne the dimen-
sion ofM with respect to U by

dU (M) = sup{d(M(Y )) | Y ∈ U}.

Lemma. Suppose that U and V are two admissible covers of X by a�noid subspaces
in Xw(L ). Then dU (M) = dV(M).

Proof. Since X is quasi-separated, for any pair Y ∈ U and Z ∈ V that does not
intersect trivially we can cover Y ∩Z by a �nite set of a�noid subspaces in Xw(L).
Thus we may reduce to the case that V is a re�nement of U and every element of
U has an admissible cover by elements of V.

Now suppose Y ∈ U is covered by Z1, . . . , Zk ∈ V. Then by the Proposition
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E xtj˚�U (L |Y )
(M|Y , ¸�U (L |Y )) is a coadmissible ¸�U (L |Y )-module for each j > 0.

Since ˝�U(L (Y )) → ⊕ki=1
˛�U(L (Zi)) is c-faithfully �at by [4, Theorem 7.7(b)] it

follows that j(M(Y )) = inf{j(M(Zi))|M(Zi) 6= 0}.
As dimY = dimZi for each i by equidimensionality, the result follows. �

It follows that we may de�ne the dimension of M by d(M) = dU (M) for any
choice U of admissible cover of X by a�noid subspaces in Xw(L ).

6. Bernstein's inequality

6.1. Dimension and pushforward along a closed embedding. Let ι : Y → X
be a closed embedding of smooth rigid analytic K-spaces. In [3], the �rst and the
third author produced a functor

ι+ : CY → CX .
The construction of ι+ rests on the case when ι : Y = SpA/I → SpA = X and
L = T (X) admits an I-standard basis, i.e. there exists an A-basis {x1, . . . , xd} for
L and a generating set {f1, . . . , fr} for I with r 6 d such that xi · fj = δij for any
1 6 i 6 d, 1 6 j 6 r.
Any closed embedding of smooth rigid analytic K-varieties is locally of this form
by [3, Theorem 6.2], and we have

ι+M(X) =M(Y ) Ù⊗ÛD(Y )

Ŭ(L)/IŬ(L)

for any coadmissible right ÙDY -moduleM � the corresponding functor for left mod-
ules is obtained via side-changing operations.
We refer to [3] for details.

We will now show that ι+ respects our dimension function in a natural way, al-
lowing us to reduce many statements about modules on smooth a�noid spaces to
the corresponding statements on polydiscs.

Lemma. Suppose that A is a smooth a�noid K-algebra with a�ne formal model
A, and L is a smooth (R,A)-Lie algebra. Let f ∈ A such that L · f = A, and write
C = CL(f) = {x ∈ L : x · f = 0}. Let I = (fA) ∩ A.
(i) B := A/fA is a smooth a�noid algebra with a�ne formal model B := A/I,

and C/I is a smooth (R,B)-Lie algebra.

(ii) If SpA is connected, then f is a regular central element in ÿ�UA(C)K .

Proof. By assumption, there exists x ∈ L such that x · f = 1. Applying the anchor
map, we also have ∂ ∈ DerK(A) such that ∂ · f = 1, and by [3, Lemma 4.1]

DerK(A) = A∂ ⊕ C,
where C = {ξ ∈ Der(A) : ξ · f = 0}. In particular, it follows from smoothness that
C is a projective A-module.
By the second fundamental exact sequence ([16, Proposition 1.2]), we have

DerK(B) = C/(f),

which is projective, so B is smooth. Moreover, B is easily seen to be an a�ne
formal model.
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In the same vein, applying [3, Lemma 4.1] to L yields

L = Ax⊕ C,

so C is projective over A, and the (R,B)-Lie algebra C/I is also a projective B-
module.

For (ii), note that f is central in ÷U(C)K by de�nition of C. So it su�ces to show

that f ·P 6= 0 for any non-zero P ∈ ÷U(C)K . In particular, this only depends on the

A-module structure of ÷U(C)K . But it follows from [35, Theorem 3.1] that÷U(C)K ∼= ⁄�SymA(C)K
as A-modules. Since C is a projective �nitely generated A-module, it is a direct

summand of a free A-module of �nite rank, L′. By functoriality, ◊�Sym CK embeds

into ÿ�SymL′K , so we are done if we can show that f is regular in A.

To show that f is regular in A, consider the annihilators

AnnA(f) ⊆ AnnA(f2) ⊆ . . .

By Noetherianity of A, this chain of ideals stabilizes, so that

Ann(fr) = Ann(fr+1) = . . .

for some integer r.

As X = SpA is smooth, we can consider the Fréchet�Stein algebra D = ÙD(X). We
claim that AnnA(fr) is a D-submodule of A, from which Ann(f) ⊆ Ann(fr) = {0}
follows because of [3, Proposition 7.4] (note that Ann(fr) 6= A as fr 6= 0 by
reducedness of SpA).
If a ∈ Ann(fr) and ξ ∈ Der(A), then

ξ(a) · fr+1 = ξ(afr+1)− afrξ(f) = 0,

so that ξ(a) ∈ Ann(fr+1) = Ann(fr). By [3, Theorem 7.3], it follows that Ann(fr)
is a D-submodule of A, as required. �

Proposition. Suppose that A is a smooth, connected a�noid algebra with a�ne
formal model A and L is a smooth (R,A)-Lie algebra. Let F = {f1, . . . , fr} be a
subset of A such that L · (f1, . . . , fr) = Ar and write C = CL(F ) = {x ∈ L : x · f =

0 ∀f ∈ F}. If M is a �nitely generated ÷U(C)K/(F )-module then

j’U(L)K
(◊�U(L)K ⊗’U(C)K

M) = j’U(C)K/(F )
(M) + r.

Proof. We �rst introduce some notation. For i = 0, . . . , r, writeAi = A/(f1, . . . , fi),

Ii = (
∑i
j=1 fjA)∩A, and Ai = A/Ii. Let Ci = CL({f1, . . . , fi}) and let Li = Ci/Ii.

By applying the preceeding lemma repeatedly, each Ai is smooth, with a�ne for-
mal model Ai, and Li is a smooth (R,Ai)-Lie algebra. Note also that L0 = L and
Lr = C/(F ).
In fact, [3, Lemma 4.1] gives an explicit description of Li: if x1, . . . , xr ∈ L such
that xifj = δij , then

Li = ⊕rj=i+1Aixj ⊕ C/Ii.
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In particular, note that the natural map

Li → CLi−1(fi)/Ii

is an isomorphism for i = 1, . . . , r, and ÷U(C)K/(F ) ∼= ÿ�U(Lr)K ∼= ¤�U(CLr−1(fr))K/(fr).

It thus su�ces to prove the following claim:

If M is �nitely generated ◊�U(Li)K-module then

jÿ�U(Li−1)K

Ñ⁄�U(Li−1)K ⊗¤�U(CLi−1
(fi))K

M

é
= j÷U(Li)K

(M) + 1.

Write U = ¤�U(CLi−1
(fi))K , V = ⁄�U(Li−1)K . Since by [3, Corollary 4.3] U → V is

faithfully �at, and ExtjU (M,U) ⊗U V ∼= ExtjV (V ⊗U M,V ) we see that jU (M) =
jV (V ⊗U M). Thus it su�ces to show that jU (M) = jU/(fi)(M) + 1. By the
preceeding lemma, fi is a regular central element in U , so we can apply [1, Lemma
1.1] to conclude the proof. �

Corollary. Suppose that I is an ideal in the smooth, connected a�noid K-algebra
A and let L be a (K,A)-Lie algebra which admits an I-standard basis. Write LY

for the (K,A/I)-Lie algebra NL(I)/IL. If M is a (non-zero) coadmissible U̇(LY )-
module then d

Ū(L)
(ι+M) = d

Ŭ(LY )
(M) + dimA− dimA/I.

Proof. By Lemma 5.2, we can consider the case where M is a right coadmissible
module. Let {x1, . . . , xd} be an I-standard basis and let F = {f1, . . . , fr} ⊂ A
be the corresponding generating set. Rescaling the xi and fj if necessary, we can
assume that there exists an a�ne formal model A of A such that L :=

∑
Axi is a

free Lie lattice in L.

Write Un = Ÿ�U(πnL)K . Recall that [3, Lemma 5.8] provides an isomorphism of
Fréchet�Stein algebras

U̇(LY ) ∼= ˛�U(CL(F ))/(F ).

Denote ¤�U(CπnL(F ))K by Vn, so U̇(LY ) ∼= lim←−Vn/(F ) exhibits U̇(LY ) as a Fréchet�
Stein algebra.

Now

j
Ū(L)

(ι+M) = jUn

Ñ
ι+M ⊗

Ū(L)

Un

é
for su�ciently large n by Lemma 5.1, and by de�nition of ι+,

ι+M
⊗
Ū(L)

Un ∼= M
⊗
Ŭ(LY )

Vn
(F )

⊗
Vn/(F )

Un
IUn

.

Therefore Proposition 6.1 implies that

jUn
(ι+M ⊗ Un) = jVn/(F )

(
M ⊗

Ŭ(LY )
Vn/(F )

)
+ r.
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Since dimA− dimA/I = r, it follows that for su�ciently large n,

d
Ū(L)

(ι+M) = 2 dimA− jUn (ι+M ⊗ Un)

= 2 dimA− jVn/(F )(M ⊗ Vn/(F ))− r
= 2r + (2 dimA/I − j

Ŭ(LY )
(M))− r

= d
Ŭ(LY )

(M) + r

as required. �

Theorem. Suppose that ι : Y → X is a closed embedding of smooth, equidimen-

sional K-a�noid spaces. Then for every non-zero coadmissible ÙDY -module M the
dimension of ι+M is given by

d(ι+M) = d(M) + dimX − dimY.

Proof. By [3, Theorem 6.2], there exists an a�noid covering (Xi) of X, with
Xi = SpAi connected such that the (K,Ai)-Lie algebra Li = T (Xi) admits an Ii-
standard basis, where Ii ⊂ Ai is the vanishing ideal of Y ∩Xi � the conditions in the
reference are satis�ed by smoothness of Y . Moreover, TY (Y ∩Xi) ∼= NLi

(Ii)/IiLi
by dualizing [16, Proposition 1.2]. Hence the claim follows from Corollary 6.1. �

6.2. Proof of Bernstein's inequality.

Proposition. Let X = SpK〈x1, . . . , xd〉 be a polydisc. Each non-zero coadmissibleÙDX-module has dimension at least d.

Proof. Let L be the R〈x1, . . . , xd〉-submodule of DerK(K〈x1, . . . , xd〉) spanned by

{∂1, . . . , ∂d}. Then L is a smooth Lie lattice in T (X) and write Dn = Ÿ�U(πnL)K
andD = ÙD(X). ThenD = lim←−Dn is a presentation ofD as a Fréchet�Stein algebra.

Let M be a coadmissible ÙDX -module and write M := M(X), a coadmissible D-
module, and Mn = Dn ⊗D M . Since X ∈ Xw(T (X)) it su�ces to show that

jD(M) 6 d. Since ExtjD(M,D)⊗D Dn
∼= ExtjDn

(Mn, Dn) by Lemma 5.1 it su�ces
to show that jDn

(Mn) 6 d whenever Mn 6= 0. This follows from [2, Corollary 7.4,
Theorem 3.3]. �

Theorem. Suppose that X is a smooth rigid analytic space over K. Then every

non-zero coadmissible ÙDX-module has dimension at least dimX.

Proof. Let M be a non-zero coadmissible ÙDX -module. Since dimM is de�ned
locally we may assume that X is a�noid and T (X) admits a smooth Lie lat-
tice. Now every K-a�noid can be viewed as a closed analytic subset of a polydisc
Y = SpK〈x1, . . . , xN 〉 for N su�ciently large. Let ι : X → Y denote the closed
embedding. By Theorem 6.1, d(ι+M) = d(M) + N − dimX. Thus it su�ces to
show that d(ι+M) > N , and the result follows from the Proposition. �

This �nishes the proof of Theorem A.(ii).
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7. Weakly holonomic ÙD-modules
7.1. De�nition and basic properties.

De�nition. A coadmissible ÙDX -module M on a smooth rigid analytic K-variety
X is called weakly holonomic if d(M) 6 dimX.

We denote the full subcategory of CX consisting of weakly holonomic ÙDX -modules
by Cwh

X .

Proposition. Let

0→M1 →M2 →M3 → 0

be a short exact sequence of coadmissible ÙDX-modules. Then M2 is weakly holo-
nomic if and only if bothM1 andM3 are weakly holonomic.

Proof. As the dimension can be calculated locally, we can assume that X = SpA is
a smooth, connected a�noid K-space with T (X) admitting a smooth Lie lattice.
Choosing an a�ne formal model A and a smooth (R,A)-Lie lattice L in T (X), we

can write ÙD(X) = lim←−
Ÿ�UA(πnL)K , where

Ÿ�UA(πnL)K is Auslander�Gorenstein of
dimension at most 2 dimA for su�ciently large n by Theorem 4.3. As before, we

abbreviate D = ÙD(X) and Dn = Ÿ�U(πnL)K
If 0→M1 →M2 →M3 → 0 is a short exact sequence of coadmissible D-modules,
there exists an integer m such that

jD(Mi) = jDn
(Dn ⊗D Mi) for i = 1, 2, 3, n > m

by Lemma 5.1, so the result follows from [30, Proposition 4.5.(ii)] applied to

0→ Dn ⊗M1 → Dn ⊗M2 → Dn ⊗M3 → 0,

which is exact by �atness of Dn over D. �

It follows immediately from the above that Cwh
X is an abelian subcategory of CX .

Lemma. Let ι : Y → X be a closed embedding of smooth rigid analytic K-varieties.
Then Kashiwara's equivalence ([3, Theorem A]) restricts to an equivalence between

Cwh
Y and the category of weakly holonomic ÙDX-modules supported on Y .

Proof. This is a direct consequence of Lemma 6.1. �

7.2. Extensions. Let X be a smooth rigid analytic K-variety and let DX de-
note the sheaf of algebraic (i.e. �nite order) di�erential operators on X. In
[34], Mebkhout�Narvaez-Macarro developed a dimension theory on the category
coh(DX) of coherent DX -modules by setting d(LocM) = 2 dimX−jD(X)(M) when-
everM is a �nitely generated D(X)-module on a smooth a�noid K-variety X with
free tangent sheaf. They also prove a version of Bernstein's inequality and de�ne
modules of minimal dimension as the analogue of holonomicity.

Recall from [11, Lemma 4.14] that there is an exact extension functor

EX : coh(DX)→ CX
M 7→ ÙDX ⊗DX

M.

It follows from Theorem 3.1 that EX is also faithful.
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Proposition. Let M be a coherent D-module on a smooth, equidimensional rigid
analytic K-space X. Then

d(M) = d(EXM).

In particular, EX sends modules of minimal dimension to weakly holonomic ÙD-
modules.

Proof. Without loss of generality, X = SpA is a smooth a�noid with free tangent

sheaf. Write D = D(X) and ÙD = ÙD(X). If M is a �nitely generated D-module,

then faithful �atness of ÙD over D (Theorem 3.1) implies that for any j,

ExtjÛD(ÙD ⊗D M, ÙD) ∼= ExtjD(M,D)⊗D ÙD = 0 if and only if ExtjD(M,D) = 0.

In particular, jD(M) = jÛD(ÙD ⊗D M), and the result follows. �

Corollary. LetM be an integrable connection on a smooth rigid analytic K-space

X. ThenM is a weakly holonomic ÙDX-module.

Proof. Any integrable connection is a coherent DX -module of minimal dimension,
so we are done by applying [3, Proposition 6.2]. �

7.3. Duality.

Lemma. Let X be a smooth rigid analytic K-space of dimension d. The functor

H omOX
(ΩX ,E xtdÛDX

(−, ÙDX)) : CX → CopX sends weakly holonomic ÙDX-modules to

weakly holonomic ÙDX-modules.

Proof. As X is equidimensional, we can assume that X is a�noid with T (X) ad-
mitting a smooth Lie lattice. Let M = LocM be a non-zero weakly holonomicÙDX -module, so that j(M) = d.

By Auslander's condition, Extd(M, ÙD(X)) has grade > d as a right ÙDX(X)-module.
Thus Proposition 5.3 implies that

E xtd
D̂X

(M, D̃X) ∼= Loc Extd(M, ÙDX(X))

is a coadmissible right ÙDX -module of dimension d, and the result follows from
Lemma 5.2. �

Similarly, Auslander's condition in conjunction with Bernstein's inequality forces

E xt i(M, ÙD) = 0 for anyM∈ Cwh
X , i 6= d.

We de�ne the duality functor D on Cwh
X by D = H omO(ΩX ,E xtdÛDX

(−, ÙDX)).

Proposition. There is a natural isomorphism of functors D2 ∼= id.

Proof. Let X be a smooth a�noid of dimension d with T (X) admitting a smooth

Lie lattice L. Write D = ÙD(X) and Dn = Ÿ�U(πnL)K , so that D = lim←−Dn. By
Theorem 4.3, we can assume that Dn is Auslander�Gorenstein of dimension at
most 2d for each n > 0.
Let M be a coadmissible D-module of grade d. By Lemma 5.2 and [3, Theorem
3.4], we have

HomA(Ω,ExtdD(HomA(Ω,ExtdD(M,D)), D)) ∼= ExtdD(ExtdD(M,D), D),
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and now

Extd(Extd(M,D), D) ∼= lim←−
Ä
Dn ⊗D ExtdD(ExtdD(M,D), D)

ä
∼= lim←−ExtdDn

(ExtdD(M,D)⊗D Dn, Dn)

∼= lim←−ExtdDn
(ExtdDn

(Dn ⊗D M,Dn), Dn)

by repeatedly applying Lemma 5.1.

Note that ExtiDn
(Dn ⊗D M,Dn) = 0 for any i 6= d by Lemma 5.1, so

Extd(Extd(Dn ⊗M,Dn), Dn) ∼= Dn ⊗M
by [22, Theorem 4]1, and hence

Extd(Extd(M,D), D) ∼= lim←−(Dn ⊗D M) ∼= M

by coadmissibility of M .
Thus D2(LocM) ∼= LocM as required. �

8. Examples

8.1. In�nite length and in�nite-dimensional �bres. We present an example

of a weakly holonomic ÙD-module on the unit disc which is not of �nite length and
has in�nite-dimensional �bres.

Let θn(t) =
∏n
m=0(1− πmt), and consider the power series

θ(t) = lim
n→∞

θn(t) =
∞∏
m=0

(1− πmt).

Note that θ(t) ∈ K̄[t] = lim←−K〈π
nt〉. We also note that for any n > 0, (1− πmt) is

a unit in K〈πnt〉 for any m > n. Thus θ(t) = unθn(t), where un is a unit in K〈πnt〉.

Let X = SpK〈x〉 be the unit disc over K, and write ∂ ∈ T (X) for the deriva-

tion d/dx. Let D = ÙD(X) and set

M = D/Dθ(∂).

This is a coadmissible ÙD(X)-module, as it is �nitely presented.

Let A = R〈x〉, L = A · ∂ ⊂ T (X), and let Dn = Ÿ�UA(πnL)K . By the consid-
erations above,

Dn ⊗D M ∼= Dn/Dnθn(∂),

which is �nitely generated over K〈x〉. In particular, d(M) = 1.

But now note that for every n > 0, M surjects onto D/Dθn(∂), which is a di-
rect sum of n+ 1 integrable connections of rank 1. In particular, M can not be of
�nite length as a D-module.

By the same argument, the �bre at zero M/xM cannot be a �nite-dimensional

1In the reference, this is stated as a canonical isomorphism rather than a natural one, but
it is clear that this is the natural morphism M → RHom(RHom(M,R), R) which becomes an
isomorphism on this particular class of modules.
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K-vector space. In particular, weakly holonomic ÙD-modules need not have �nite-
dimensional �bres, and weak holonomicity is generally not stable under pullback.

8.2. Pushforward along an open embedding. We now recall from [9] that
weak holonomicity is generally not stable under pushforward either.
For this, recall from [25, De�nition 13.1.1] that the type of λ ∈ K is the radius of
convergence of the formal power series∑

i>0,i6=λ

xi

λ− i
.

Let X = SpA be an a�noid K-space with free tangent sheaf, let f ∈ A be non-
constant and consider j : U = {f 6= 0} → X. We call a left D(X)[f−1]-module N
a meromorphic connection on X with singularities along Z = X \ U if N is free of
�nite rank over A[f−1].
Given m ∈ N , consider the ideal I(m) ⊆ K[s] consisting of all polynomials b(s)
such that there exists some P (s) ∈ D(X)[s] satisfying

P (s)f−sm = b(s)f−s−1m ∀s ∈ Z.

By [34, Théorème 3.1.1], I(m) is non-zero, and we call its monic generator the
b-function of m.

Theorem ([9, Theorems 1.2, 1.3]). (i) Let N be a meromorphic connection on
X with singularities along Z. Suppose that N is generated as an A[f−1]-
module by m1, . . . ,mr such that all the roots of the associated b-functions
b1, . . . , br in an algebraic closure of K are of positive type. Then N localizes
to an integrable connectionM on U such that j∗M∈ CX .

(ii) Let X = SpK〈x〉 and j : U → X for U = X \ {0}. Set Mλ = OUxλ for
λ ∈ K. Then j∗Mλ ∈ CX if and only if λ is of positive type. In particular,
there exist integrable connectionsM on U such that j∗M is not coadmissible.

9. Zariski open embeddings: The case of an algebraic snc divisor

Let j : U → X be an embedding of a Zariski open subspace U in a smooth
rigid analytic K-space X. We show that at least in the case of the structure sheaf,
pathologies as in Theorem 8.2.(ii) do not occur.

As the question is local, we can (and will) assume from now on that X is a smooth
a�noid with free tangent sheaf. We will �rst consider the case where Z = X \U is
the analyti�cation of a strict normal crossing divisor. In section 9, we will reduce
the general case to this set-up by passing to a suitable resolution of singularities.

9.1. Relative analyti�cation. We recall some results from [38] regarding relative
analyti�cation. This was already considered by Köpf in [28], but we have decided
to refer to a source that is more readily available.
If A is an a�noid K-algebra, there is a relative analyti�cation functor X 7→ Xan

from schemes of �nite type over SpecA (`A-schemes' for short) to rigid analytic
K-varieties. The construction of Xan is a straightforward generalization of the
analyti�cation procedure for A = K.
There is a natural morphism

ηX : Xan → X
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of locally G-ringed spaces, satisfying the usual universal property: any morphism
Y → X of locally G-ringed spaces, where Y is a rigid analytic K-variety, factors
uniquely through ηX ([38, De�nition 1.1.1]).

Proposition. Let A and B be a�noid K-algebras.

(i) If X is both an A-scheme and a B-scheme, then the analyti�cation of X rela-
tive to A is isomorphic to the analyti�cation of X relative to B. In particular,
we can speak of `the' analyti�cation of X.

(ii) The analyti�cation of SpecA is SpA.
(iii) If Z is a closed subscheme of an A-scheme X given by the vanishing ideal

I, then Z := η−1(Z) is the closed analytic subset of Xan de�ned by η∗I.
Moreover, Z ∼= Zan.

(iv) If Y is an open subscheme of an A-scheme X, then Yan can be identi�ed with
η−1(Y), a Zariski open subspace of Xan.

(v) If Xi, X are A-schemes such that the Xi form a covering of X, then the Xan
i

form an admissible covering of Xan.
(vi) If X→ S,Y → S are morphisms of A-schemes, then (X×SY)an ∼= Xan×San

Yan.

Proof. (i) is clear from the universal property, (ii) is [38, Example 1.3.2.(1)]. (iii) is
[38, Corollary 2.1.3]. Concerning (iv), it follows easily from the universal property
that Yan ∼= η−1(Y), which is an admissible open subspace of Xan by continuity
of η. By (iii), it is then even Zariski open. (v) is a consequence of (iv) and the
fact that η is a morphism of locally G-ringed spaces. (vi) follows again from the
universal property. �

9.2. Algebraic snc divisors.

De�nition. A closed subscheme Z of a locally Noetherian regular scheme X is
called a strict normal crossing (snc) divisor if

(i) Z is de�ned as the vanishing of an invertible ideal sheaf I.
(ii) for each x ∈ Z, there exists a regular set of local parameters x1, . . . , xd ∈ OX,x

such that the ideal Ix ⊆ OX,x is generated by
∏r
i=1 xi for some 1 6 r 6 d.

De�nition. A closed analytic subset Z of a rigid analytic K-variety X is called
an algebraic snc divisor if there exists an a�noid K-algebra B, a regular scheme
X that is also a B-scheme with Xan ∼= X, and an snc divisor Z of X such that
Zan = Z as in Proposition 9.1.(iii).

We now wish to lift the snc condition from the stalk level to a condition on the
level of admissible coverings.

Note that if X = SpA is a smooth a�noid, then X = SpecA is a Noetherian
regular scheme by [14, Proposition 7.3.2/8].

Lemma. Let X = SpA be a smooth a�noid K-space, and let Z ⊆ SpecA =
X be an snc divisor. Then there exists an admissible covering of X by a�noid
subdomains Xi = SpAi with the following property: for each i with Zan ∩Xi 6= ∅,
there exist xi1, . . . , xid ∈ Ai such that

(i) the elements dxi1, . . . ,dxid form a free generating set of Ω1(Xi), and
(ii) the subvariety Zan ∩ Xi is given as the vanishing set of

∏r
j=1 xij for some

1 6 r 6 d.
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Proof. Without loss of generality, we can assume that X (and hence X) is con-
nected.
Let x ∈ Z be a closed point in SpecA, and let x1, . . . , xd ∈ OX,x be a regular set
of local parameters as in De�nition 9.2. By de�nition, there exists some Zariski
open a�ne subscheme Ux = SpecB(x) ⊂ X containing x such that x1, . . . , xd are
de�ned on Ux, and Z ∩ Ux = {

∏r
j=1 xj = 0}.

By smoothness, Ω1(X) is a �nitely generated projective A-module, so there ex-
ists f1, . . . , fn ∈ A such that

Afk ⊗A Ω1(X)

is a free Afk -module for each k, with free generating set sk1, . . . , skd.
Fix k such that x ∈ SpecAfk . Then B(x)fk ⊗A Ω1(X) is freely generated by
sk1, . . . , skd, so there exist M = (mij) ∈ Matd×d(B(x)fk) such that

dxi =
∑
j

mijskj .

As x ∈ X is closed, it corresponds to a unique point in X = SpA, which we
also denote by x. As the xi form a regular system of local parameters in OX,x,
they also de�ne a regular system of local parameters in the local ring OX,x by
[13, Propositions 4.1/1, 4.1/2], so that {dxi} form a free generating set in Ω1

X,x =

OX,x ⊗A Ω1(X). Thus M becomes invertible as a matrix over OX,x and hence
over OX,x, as OX,x → OX,x is injective by [13, Proposition 4.1/2]. Therefore x is
contained in a Zariski open a�ne subscheme SpecC(x) of X with the property that

(i) x1, . . . , xd ∈ C(x), and dxi form a free generating set of C(x)⊗A Ω1(X).
(ii) Z ∩ SpecC(x) = {

∏r
j=1 xj = 0} for some 1 6 r 6 d.

As the SpecC(x) for varying x ∈ Z together with X \ Z form a Zariski covering of
X, it follows from Proposition 9.1.(v) that their analyti�cations form an admissible
covering of X, and any re�nement of this covering by a�noid subdomains has the
desired property. �

Proposition. Let Z be an algebraic snc divisor of a smooth rigid analytic K-variety
X. Then there exists an admissible covering of X by a�noids Xi = SpAi with the
following property: for each i with Z ∩ Xi 6= ∅, there exist xi1, . . . , xid ∈ Ai such
that

(i) the elements dxi1, . . . ,dxid form a free generating set of Ω1(Xi), and
(ii) the subvariety Z ∩ Xi is given as the vanishing set of

∏r
j=1 xij for some

1 6 r 6 d.

Proof. By the above Lemma, it is su�cient to show that X admits an admissible
covering by a�noid subspaces Yi = SpBi such that Z ∩ Yi is obtained as the ana-
lyti�cation of an snc divisor on SpecBi.

Let B be an a�noid K-algebra, X a B-scheme with snc divisor Z such that
Xan ∼= X, Zan ∼= Z. Let (Ui) be an a�ne covering of X such that Z ∩ Ui is
given by the vanishing of a single element fi ∈ Bi, where Ui = SpecBi.

By Proposition 9.1.(v), (Uan
i )i is an admissible covering of X. Recall from [38,

Construction 1.2.1] that the analyti�cation Uan
i is constructed as the union of

SpBi,n for various Banach completions Bi,n of Bi. Thus by de�nition, (SpBi,n)i,n
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is also an admissible covering of X.
There are natural morphisms of schemes

φi,n : SpecBi,n → SpecBi = Ui ⊆ X.

Now SpecBi,n is a regular Noetherian scheme by [14, Proposition 7.3.2/8]. Let Zi,n
denote the vanishing set of φ]i,n(fi) ∈ Bi,n. Then Zi,n is an snc divisor, as for any
x ∈ Zi,n, a regular set of local parameters in OUi,φi,n(x) gives a regular set of local
parameters of OSpecBi,n,x by [38, Claim 1.2.6].

Since Zan
i,n = {fi = 0} ⊂ SpBi,n by Proposition 9.1.(iii), it follows that Zan

i,n =
Zan ∩ SpBi,n = Z ∩ SpBi,n, as required. �

9.3. Proposition. Let X be a smooth rigid analytic K-variety. Let Z be an alge-
braic snc divisor on X, and let j : U → X be its complement. Then j∗(M|U ) is a

coadmissible ÙDX -module for any integrable connectionM on X.

Proof. By Proposition 9.2, we can assume that X ∼= SpA is a smooth a�noid with
free tangent sheaf, and also that there exist elements x1, . . . , xd ∈ A such that {dxi}
form a free generating set in Ω1

X and Z = {
∏r
i=1 xi = 0} for some 1 6 r 6 d.

We denote by {∂i} the derivations forming the basis in T (X) dual to {dxi}, so that

∂i(xj) = δij , [∂i, ∂j ] = 0

for all i, j. We write f =
∏r
i=1 xi.

Let M = M(X), which we can assume to be a free A-module of �nite rank, and
let m ∈ M . We will now show that all roots of the b-function of m, viewed as an
element in M [f−1], are integers, so that we can apply Theorem 8.2.(i).

We write ∂
[k]
i =

∂k
i

k! for any non-negative integer k. By Noetherianity, there exists

some natural number n such that ∂
[n]
i ·m is contained in the A-submodule generated

by m, ∂i ·m, . . . , ∂[n−1]i ·m, so that there exists a monic polynomial
∑
ai,jx

j ∈ A[x]
of degree n satisfying

n∑
j=0

ai,j∂
[j]
i ·m = 0.

Now in D(X)[f−1], one obtains as usual (see e.g. [7, equation 2.0.2])

∂
[j]
i f

s =

j∑
k=0

∂
[j−k]
i (fs)∂

[k]
i

=

j∑
k=0

Ç
s

j − k

å
xk−ji fs∂

[k]
i ∀s ∈ Z,

which can be veri�ed by straightforward induction on j.
By writing m = fsf−sm, we thus have in M [f−1] the following equations for any
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integer s:

0 = xn−1i f−s
n∑
j=0

ai,j∂
[j]
i ·m

=
n∑
j=0

xn−ji ai,j
Ä
xj−1i f−s∂

[j]
i ·m

ä
=

n∑
j=0

xn−ji ai,j

(
j∑

k=0

Ç
s

j − k

å
xk−1i ∂

[k]
i · f

−sm

)

=
n∑
k=0

n∑
j=k

Ç
s

j − k

å
xn−j+k−1i ai,j∂

[k]
i · f

−sm.

As ai,n = 1, we obtainÇ
s

n

å
x−1i f−sm = −

∑′
Ç

s

j − k

å
xn−j+k−1i ai,j∂

[k]
i · f

−sm,

where
∑′ denotes the sum over all pairs (j, k), 0 6 k 6 j 6 n, (j, k) 6= (n, 0).

Setting Pi(s) = −
∑′ ( s

j−k
)
xn−j+k−1i ai,j∂

[k]
i ∈ D(X)[s], we note that Pi(s) is con-

tained in the subring A[∂i, s] and hence commutes with xj for any j 6= i. We thus
conclude from the above that

Pi(s) · x−11 . . . x−1i−1f
−sm =

Ç
s

n

å
x−11 . . . x−1i f−sm

for any 1 6 i 6 r, and by induction(
r∏
i=1

Pi(s)

)
· f−sm =

Ç
s

n

år
f−s−1m.

In particular,
(
s
n

)r ∈ I(m). Thus the b-function of m is a factor of
(
s
n

)r
, and all

its roots are integers. As integers are of positive type by [25, Proposition 13.1.5],
applying Theorem 8.2.(i) proves the result. �

10. Zariski open embeddings: The general case

10.1. Cohomology on hyperplane complements. We introduce the following
notation: if X = SpA and f ∈ A is non-constant, we denote by Xf the admissible
open subspace given by the non-vanishing of f . Note that O(Xf ) 6= Af , but rather

O(Xf ) = lim←−A〈π
nf−1〉.

The following is a partial generalisation of [26, Satz 2.4.2].

Proposition. Let X = SpA be smooth and let f ∈ A be non-constant. If M is a

coadmissible ÙD-module on Xf then Hi(Xf ,M) = 0 for every i > 0.

Proof. Let A ⊂ A be an a�ne formal model and let L ⊂ T (X) be an A-Lie lattice.
Then after rescaling f if necessary, we can assume without loss of generality that
f ∈ A, so that Um := X(πmf−1) is πnL-accessible for any n > m.

We write D = ÙD(Xf ), Dn = ÿ�U(Ln)K , where Ln is the image of A〈πnf−1〉 ⊗A πnL
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inside T (Un). Let Dn be the sheaf of algebras on the site of Ln-admissible sub-

spaces of Un given by O“⊗O(Un)Dn. As the maps Dn+1 → Dn+1(Un)→ Dn are �at
by [11, Theorem 4.10] and [4, Theorem 6.6], D = lim←−Dn exhibits D as a Fréchet�

Stein algebra, and ifM is a coadmissible ÙDXf
-module thenM(Xf ) = lim←−Mn for

Mn = Dn ⊗ÛD(Un)
M(Un) makesM(Xf ) a coadmissible D-module.

Let Mn be the sheaf LocMn on the site of Ln-admissible subspaces of Un, a
coherent Dn-module (see [4, �5.1]). Let U = (Ui) and let Un = {U1, . . . , Un}. Note
that by [4, Proposition 9.5]

Hi(Xf ,M) ∼= Ȟi(U,M)

for any i.
Consider the complexes C(n)• = Č•(Un,Mn) with natural morphisms of complexes
C(n+ 1)• → C(n)• induced by restriction. By [11, Theorem 4.16],

Ȟi(Un,Mn) = 0 ∀ i > 0, ∀n,

and Ȟ0(Un+1,Mn+1) = Mn+1 → Ȟ0(Un,Mn) = Mn is a continuous morphism of
Banach spaces with dense image for each n by [37, �3, Theorem A].

Thus by [19, Proposition 13.2.3, Remarques 13.2.4],

Hi(lim←−C(n)•) ∼= lim←−Hi(C(n)•)

for each i.
It hence remains to show that lim←−C(n)• ∼= Č•(U,M). But

lim←−
n

C(n)• = lim←−
m,n
m>n

Č•(Un,Mm) ∼= lim←−
n

Č•(Un,M) ∼= Č•(U,M),

as required. �

Corollary. Let X be a smooth a�noid K-space and let j : U → X be a Zariski
open embedding. Let U = (Ui) be an admissible covering of U with the following
property: for each i, there exists a smooth morphism of a�noids Vi = SpAi → X
�tting into a commutative diagram

Ui //

  

Vi

��
X

which identi�es Ui with (Vi)fi for some non-constant fi ∈ Ai.
IfM is a coadmissible ÙD-module on U then Rij∗M(X) ∼= Ȟi(U,M) for any i > 0.

Proof. Note that Vi1 ×X · · · ×X Vir is a smooth a�noid such that Ui1 ∩ · · · ∩ Uir
can be identi�ed with (Vi1 ×X · · ·×X Vir )fi1 ...fir , so it follows from the Proposition
that for i > 1,

Hi(Ui1 ∩ · · · ∩ Uir ,M) = 0

for any i1, . . . , ir. Thus the result follows from [40, Tag 03F7]. �
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10.2. Completed tensor products and sections of ÙD. In this subsection, we
use some basic results from [9] about completed tensor products to describe sections

of ÙD over Zariski open subspaces.

Lemma. Let X = SpA be an a�noid K-space with free tangent sheaf. Then the

functor −“⊗AÙD(X) is strict exact on Fréchet A-modules.

Proof. As a left A-module, ÙD(X) is isomorphic to O(X × Ad,an), where d is the
rank of TX . The result now follows from [27, Propositions 1.2.2 and 1.2.6.(2)]. �

Proposition. Let X = SpA be an a�noid K-space with free tangent sheaf, and
let U be a Zariski open subspace. Then the natural morphism

O(U)“⊗AÙD(X)→ ÙD(U)

is an isomorphism of locally convex O(U)-modules.

Proof. First let U = Xf for some f ∈ A. Let A be an a�ne formal model, and
let L be an A-Lie lattice in T (X). Then [4, �3.3, Theorem 3.5] gives rise to
sheaves of K-algebras Dn on the site of πnL-admissible a�noid subdomains of
X such that for any πnL-admissible a�noid subdomain Y = SpB ⊂ X, we haveÙD(Y ) ∼= lim←−m>n

Dm(Y ) and Dn(Y ) ∼= B“⊗ADn(X). Without loss of generality,

f ∈ A, so that Un := X(πnf−1) is πnL-admissible. NowÙD(U) ∼= lim←−
ÙD(Un) ∼= lim←−Dn(Un) ∼= lim←−

(
O(Un)“⊗ADn(X)

)
,

so that the result follows from [9, Lemma A.2.(iv)].

If U is the complement of V (f1, . . . , fr), we consider the Cech complex Č•((Xfi),O).

Applying −“⊗AÙD(X) and invoking the Lemma then �nishes the proof in general. �

We also emphasize that by [9, Corollary A.6] the coadmissible tensor product Ù⊗
de�ned in [4, section 7.3] agrees with the completed tensor product “⊗ with respect
to the canonical Fréchet structures on coadmissible modules.

10.3. An algebraic analogue. In order to make the arguments below more acces-
sible, we recall in some detail the following basic property of coherent D-modules
on algebraic varieties.

Proposition. Let k be an algebraically closed �eld of characteristic zero, and con-
sider a diagram

U
j′ //

j

  

X ′

ρ

��

ι // Pn ×X

pr
zz

X

of smooth algebraic varieties over k, where j and j′ are open embeddings, ι is a
closed embedding, and pr is the natural projection. Assume further that j′ is a�ne.
If M is a coherent DU -module such that j′∗M is a coherent DX′-module, then
Rij∗M is a coherent DX-module for every i > 0.

Proof. For any morphism f : Y ′ → Y of smooth algebraic varieties over k, one can
de�ne ([21, p.40]) the D-module pushforward functor

f+ : Db(DY ′)→ Db(DY ).
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For right modules, this takes the form

M 7→ Rf∗(M⊗L
DY ′
DY ′→Y ),

where DY ′→Y is the transfer bimodule f∗DY . For left modules, we compose the
above with suitable side-changing operations.

By [21, Proposition 1.5.21, Example 1.5.22] and the assumption on j′, we have

Rj∗M = j+M = pr+ι+j
′
+M = pr+ι+j

′
∗M.

Write P = Pn ×X.
Now ι+ preserves coherence by Kashiwara's equivalence ([21, Theorem 1.6.1]), and
pr+ sends Db

c(DP ) to Db
c(DX) by [21, Theorem 2.5.1]. This immediately proves the

proposition. �

More explicitly, ifM is a coherent right DU -module, we can write

Rj∗M = Rpr∗(ι+j
′
∗M⊗L

DP
DP→X),

where DP→X is the (DP ,pr−1DX)-bimodule pr∗DX = UOP
(pr∗TX), the enveloping

sheaf of the Lie algebroid pr∗TX .

To prove the general case of Theorem C, we will use an embedded resolution of
singularities (X ′, U) → (X,U) to reduce to the case of an algebraic snc divisor,
and an analogue of the above Proposition in order to descend from X ′ to X again.

While a theory of general ÙD-module pushforwards has not been established yet, it
turns out that we can make all computations explicitly in our situation.

10.4. Pushforward of the structure sheaf on a Zariski open subspace. Let
j : U → X be an arbitrary Zariski open embedding of smooth rigid analytic K-
spaces. As always, we can assume that X = SpA is a�noid with free tangent sheaf.
Writing Z = SpB for the complement of U with its reduced subvariety structure,
we obtain a closed embedding SpecB → SpecA of schemes over Q. We recall the
following result from [39].

Theorem ([39, Theorem 1.1.11]). Let X be a quasi-excellent Noetherian scheme
over Q, and let Z be a closed subscheme of X. Then there exists a regular scheme
X′ and a morphism of schemes ρ : X′ → X which is a sequence of blow-ups with
centres contained in Z ∪Xsing such that Z×X X′ is an snc divisor in X′.

Let X = SpecA, Z = SpecB. By [6, Satz 3.3.3], X is an excellent Noetherian
scheme, so we can apply Theorem 10.4. As X is also regular by [14, Proposition
7.3.2/8], the centres of the blow-ups in the Theorem are contained in Z. In particu-
lar, the Theorem provides us with a morphism ρ : X′ → X which is an isomorphism
away from Z, so that we have the following commutative diagram

U
j′ //

j   

X′

ρ

��
X,

where j : U → X is the complement of Z inside X, and j′ realizes U as the
complement of an snc divisor in X′. Finally, we note that ρ is projective, as it is a
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sequence of blow-ups, so that we obtain a factorization of ρ as a closed immersion
and a projection:

U
j′ //

j   

X′
ι //

��

Pn ×X

pr
{{

X

By construction, all schemes in this diagram are A-schemes, and applying ana-
lyti�cation, we obtain the commutative diagram of rigid analytic K-spaces

(∗) U
j′ //

j   

X ′
ι //

ρ

��

Pn,an ×X

pr
yy

X

where

(i) j and j′ are Zariski open embeddings by Proposition 9.1.(iv), and (U)an =
(X \ Z)an = X \ Z = U by Proposition 9.1.(iii).

(ii) X ′ = X′an is a smooth rigid analytic K-space by [38, Corollary 1.3.5] and [16,
Lemma 2.8].

(iii) X ′ \ U is an algebraic snc divisor in X′ by construction.
(iv) ι is a closed immersion of rigid analytic spaces by Proposition 9.1.(iii).
(v) (Pn ×X)an ∼= Pn,an × (X)an = Pn,an ×X by Proposition 9.1.(ii) and (vi).

We are now in a position to discuss the rigid analytic analogue of Proposition 10.3.

Proposition. LetM be a coadmissible ÙD-module on U . If j′∗M is a coadmissibleÙDX′-module, then Rij∗M is a coadmissible ÙDX-module for every i > 0.

Proof. We prove the proposition for right coadmissible ÙD-modules. The left module
analogue follows by applying the sidechanging operators.

We write P = Pn,an×X. By [3, �5.4], there exists a right coadmissible ÙDP -module
ι+(j′∗M) such that the following holds: for each admissible open a�noid V of P
with the property that X ′ ∩ V has a free tangent sheaf, we have

ι+(j′∗M)(V ) = (j′∗M)(X ′ ∩ V ) “⊗ÛD(X′∩V )

Ç
O(X ′ ∩ V ) “⊗

O(V )

ÙD(V )

å
.

We now note that pr∗TX is a Lie algebroid on P which is free as an OP -module,
and is naturally a direct summand of TP . This makes˛�U (pr∗TX) ∼= OP “⊗

pr−1OX

pr−1ÙDX
a (ÙDP ,pr−1ÙDX)-bimodule.

We can thus form the right coadmissible ˛�U (pr∗TX)-module

N := ι+(j′∗M)Ù⊗ÛDP

˛�U (pr∗TX).

By [12, Theorem 6.11], Ripr∗N is coadmissible over pr∗
˛�U (pr∗TX) ∼= ÙDX for every

i > 0. We now show that Ripr∗N is naturally isomorphic to Rij∗M.
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Let V = (Vi) be a �nite a�noid covering of P where Vi = Wi × Yi, Wi an admis-
sible open a�noid subspace of Pn,an, Yi an a�noid subdomain of X, and X ′ ∩ Vi
has a free tangent sheaf. Re�ning this covering, we can moreover assume that the
complement of U ∩ Vi inside X ′ ∩ Vi is cut out by a single equation for each i.
By comparing the Cech complex Č•(V,N ) to Č•(U∩V,M) and invoking Corollary
10.1, it su�ces to show that we have natural isomorphisms

N (V ) ∼=M(V ∩ U)

where V is any intersection of the Vi.

Let W be an admissible open a�noid subspace of Pn,an, Y = SpC an a�noid
subdomain of X such that X ′ ∩ (W × Y ) has a free tangent sheaf, and write
V = W × Y .
Now

N (V ) = ι+(j′∗M)(V ) “⊗ÛD(V )

˛�U (pr∗TX)(V ),

and this is isomorphic to

(j′∗M)(X ′ ∩ V ) “⊗ÛD(X′∩V )

Ç
O(X ′ ∩ V ) “⊗

O(V )

ÙD(V )

å “⊗ÛD(V )

Å
O(V )“⊗

C

ÙD(Y )

ã
.

By associativity of the completed tensor product [9, Lemma A.3], this can be sim-
pli�ed to

(j′∗M)(X ′ ∩ V ) “⊗ÛD(X′∩V )

(O(X ′ ∩ V )“⊗
C

ÙD(Y )),

which in turn can be written as(
M(U ∩ V ) “⊗ÛDU (U∩V )

(O(U ∩ V ) “⊗
O(X′∩V )

ÙD(X ′ ∩ V )

) “⊗ÛD(X′∩V )

Å
O(X ′ ∩ V )“⊗

C

ÙD(Y )

ã
,

since ÙD(U ∩ V ) ∼= O(U ∩ V ) “⊗
O(X′∩V )

ÙDX′(X ′ ∩ V ) by Proposition 10.2.

We thus obtain

N (V ) ∼=M(U ∩ V ) “⊗ÛDU (U∩V )

Å
O(U ∩ V )“⊗

C

ÙDX(Y )

ã
∼=M(U ∩ V ) “⊗ÛD(U∩V )

Ç
O(U ∩ V ) “⊗

O(U∩Y )
(O(U ∩ Y )“⊗

C

ÙD(Y ))

å
∼=M(U ∩ V ) “⊗ÛD(U∩V )

Ç
O(U ∩ V ) “⊗

O(U∩Y )

ÙD(U ∩ Y )

å
∼=M(U ∩ V ) “⊗ÛD(U∩V )

ÙD(U ∩ V )

∼=M(U ∩ V ),

by invoking once more Proposition 10.2, and [9, Proposition 2.11.(ii)]. �

Corollary. Let j : U → X be a Zariski open embedding of smooth rigid analytic
K-spaces, and let M be an integrable connection on X. Then Rij∗(M|U ) is a

coadmissible D̃X-module for every i > 0.
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Proof. Without loss of generality, we can assume thatX is a�noid with free tangent
sheaf. We therefore can consider the diagram (∗).
By Proposition 9.3, j′∗(M|U ) is a coadmissible ÙDX′-module. Now apply Theorem
10.4. �

10.5. Weak holonomicity.

Lemma. Let X = SpA be a smooth a�noid K-space, and let U = Xf for f ∈ A
non-constant. LetM be an integrable connection on X. Then j∗(M|U ) is a weakly

holonomic ÙDX-module, where j : U → X is the natural embedding.

Proof. Without loss of generality, we can assume that TX is free as an OX -module.

By Corollary 10.4, j∗(M|U ) is a coadmissible D̃X -module, and it remains to show

that the dimension ofM(U) as a ÙDX(X)-module is dimX. We write M =M(X).
By [34, Théorème 3.2.1], M [f−1] is a D(X)-module of minimal dimension, so that

d(ÙD(X)⊗D(X) M [f−1]) = dimX

by Proposition 7.2. But by [9, Proposition 2.14], the natural morphism

θ : ÙD(X)⊗D(X) M [f−1]→M(U)

is a surjection of coadmissible ÙD(X)-modules, so dÛD(X)
(M(U)) = dimX by Propo-

sition 7.1. �

We can now give a proof of Theorem C.

Theorem. Let j : U → X be a Zariski open embedding of smooth rigid analytic
K-spaces, and let M be an integrable connection on X. Then Rij∗(M|U ) is a

coadmissible, weakly holonomic ÙDX-module for each i > 0.

Proof. Without loss of generality, X = SpA is a�noid with free tangent sheaf.
There are �nitely many elements f1, . . . , fr ∈ A such that U = X \ V (f1, . . . , fr).
Note that the Xfi form an admissible covering of U , which we denote by V.

By Corollary 10.1, Rij∗(M|U )(X) ∼= Ȟi(V,M|U ). By Lemma 10.5, Č•(V,M|U ) is

a complex of coadmissible ÙDX(X)-modules of minimal dimension, so Rij∗(M|U )(X)

is a coadmissible ÙDX(X)-module of minimal dimension by Proposition 7.1. �

10.6. Local cohomology. Let X be a smooth rigid analytic K-space and let Z
be a closed analytic subset. The local cohomology sheaf functor Hi

Z(−) is then, as
usual, the ith derived functor of H0

Z(−), which assigns to a coherent OX -module
its maximal subsheaf with support in Z (see [27, De�nition 2.1.3]).

Theorem. Let Z be a closed analytic subset of a smooth rigid analytic K-space X.
Let M be an integrable connection on X. Then Hi

Z(M) is a coadmissible, weakly

holonomic ÙDX-module for each i > 0.

Proof. Suppose that X is a�noid with free tangent sheaf. Let j : U → X be the
complement of Z. As in [27, Proposition 2.1.4], we can consider the exact sequence

0→ H0
Z(M)→M→ j∗(M|U )→ H1

Z(M)→ 0,

as well as the isomorphism Hi
Z(M) ∼= Ri−1j∗(M|U ) for any i > 2. Thus the result

follows immediately from Theorem 10.5 for i > 2, and from the fact that Cwh
X is an

abelian category for i = 0, 1. �
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