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Abstract

We study the prime ideal structure of the Iwasawa algebra ΛG of an almost simple
compact p-adic Lie group G. When the Lie algebra of G contains a copy of the two-
dimensional non-abelian Lie algebra, we show that the prime ideal structure of ΛG is
somewhat restricted. We also provide a potential example of a prime c-ideal of ΛG in the
case when the Lie algebra of G is sl2(Qp).

1. Introduction

Let p be a prime and let G be a compact p-adic Lie group. The Iwasawa algebra of G

ΛG = Zp[[G]] := lim
←−N/oGZp[G/N ]

is of interest in number theory and arithmetic geometry, particularly when G is an open
subgroup of GL2(Zp). When G is torsion free pro-p, ΛG is also a concrete example of
a complete local (noncommutative in general) Noetherian integral domain with good
homological properties ([10]).

Recently, J. Coates, P. Schneider and R. Sujatha ([5]) developed a structure theory for
finitely generated modules over ΛG. One of the main features of this theory is the notion
of a prime c-ideal, this being a nonzero prime ideal of ΛG which is reflexive as a right
(and left) ΛG-module. This raises interest in the prime ideal structure of ΛG in general.

If H is a closed normal subgroup of G such that G/H is torsion free pro-p, the kernel
of the natural map ΛG � ΛG/H is an obvious example of a prime ideal of ΛG. Let
ΩG = Fp[[G]] := lim

←−N/oGFp[G/N ] denote the Fp version of Iwasawa algebras. Since

ΩG
∼= ΛG/pΛG has no zero divisors when G is a uniform pro-p group ([6],7.26), we see

that pΛG is also an example of a prime ideal in this case. In fact, ΩG has no zero divisors
whenever G is torsion free pro-p, see [3].

Suppose G is almost simple so that any infinite closed normal subgroup of G is open.
If G is torsion free pro-p, the above discussion produces two prime ideals of ΩG, namely
the zero ideal and the maximal ideal. This prompts the following question:

Question. Are these the only prime ideals of ΩG?

In [7], M. Harris claimed that the two-sided annihilator of the induced module Zp⊗ΛH

ΛG for ΛG is nonzero, whenever H is a suitably large subgroup of G. If true, this would
provide an concrete example of a nontrivial two-sided ideal of ΛG (and of ΩG). Unfor-
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tunately, this interesting paper contains a gap and the author would like to thank J.
Ellenberg for pointing this out to him.

We are unable to answer this question at present. However, we show that the two-sided
ideal structure of ΩG is somewhat restricted. More precisely, we prove

Theorem A. Let G be an almost simple pro-p group of finite rank. Suppose that the
Lie algebra of G contains a copy of the two-dimensional nonabelian Lie algebra and that
I is a two-sided ideal of ΩG. Then

K(ΩG/I) 6= 1.

Here K denotes the Krull (-Gabriel-Rentschler) dimension of modules for ΩG, studied
in greater detail in [1]. Recall that a module M is said to be 1-critical if M is not Artinian
but every proper factor of M is Artinian.

Theorem B. Let G be a compact p-valued p-adic Lie group with Lie algebra sl2(Qp).
Let M be a finitely generated ΛG-module such that M/pM is 1-critical and let I =
AnnΛG

(M). Then if I is nonzero, I is a prime c-ideal of ΛG.

This applies in particular when G = ker(SL2(Zp) → SL2(Fp)) and M = Zp ⊗ΛB
ΛG

is the induced module from a Borel subgroup B of G. Thus if I is nonzero in this case,
it is an explicit example of a prime c-ideal in ΛG distinct from pΛG.

2. Endomorphism rings of 1-critical modules

In this section we obtain some information about endomorphism rings of 1-critical
modules for ΩG. When G is pro-p, ΩG is local with unique simple module isomorphic
to Fp. One can therefore think of the 1-critical modules as a substitute for the simple
modules for ΩG and as such their endomorphism rings are natural to consider.

Theorem 2·1. Let H be an almost simple pro-p group of finite rank. Suppose that the
Lie algebra of H contains a copy of the two-dimensional nonabelian Lie algebra. Let M

be a finitely generated 1-critical ΩH-module and let R = EndΩH
(M). Then R is a finite

field extension of Fp. Moreover, if M is cyclic over ΩH , R ∼= Fp.

We begin with a very useful primality result. Recall that a two-sided ideal I of a (not
necessarily commutative) ring R is said to be prime if whenever A,B are two-sided ideals
of R strictly containing I, AB also strictly contains I.

Recall also that a ring R is called semi-local if R/J is Artinian, where J is the Jacobson
radical of R.

Proposition 2·2. Let R be a semi-local Noetherian ring. Suppose M is a finitely
generated 1-critical R-module. Then the global annihilator I = AnnR(M) of M is prime.

Proof. Let S = {AnnR(T ) : 0 6= T /M}. Since R is right Noetherian, S has a maximal
element Y = AnnR(N) say, for some nonzero submodule N of M . It’s clear that as
MI = 0, I ⊆ Y .

We claim that Y is prime. If this is false, we can find ideals A and B of R such that
Y ( A and Y ( B but AB ⊆ Y . Now NA 6= 0 since Y = AnnR(N) and Y ( A; thus
AnnR(NA) ∈ S. But NAB = 0 so Y ( B ⊆ AnnR(NA), contradicting the maximality
of Y .
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Now, N is a nonzero submodule of the 1-critical module M , so M/N is Artinian and
MJn ⊆ N for some integer n. Hence MJnY = 0 and JnY ⊆ I.

Since R is left Noetherian, Y/I is a finitely generated left R/Jn-module, which is an
Artinian ring because R is semi-local (and since J is finitely generated as a left ideal).
Hence Y/I has finite length as a left R-module.

Since R is right Noetherian, Y/I must be Artinian as a right R-module by Theorem
4.1.6 of [9], so Y Jm ⊆ I for some integer m. It follows that MY Jm ⊆ MI = 0 and so
MY is Artinian, being a finitely generated right module over the Artinian ring R/Jm.
Because M is 1-critical, MY = 0 and so Y = I is prime.

Note that the condition that R is semi-local cannot be removed from the statement of
this result, as Theorem 4.2 of [4] shows.

The main step comes next.

Proposition 2·3. Let H be as in Theorem 2·1 an let G = H×Z where Z = 〈θ〉 ∼= Zp.
Write z = θ − 1 ∈ ΩG. Let M be a finitely generated 1-critical ΩG-module. Then either
(i) M.z = 0, or
(ii) M ∼= Fp ⊗ΩH

ΩG.

Proof. Since G is pro-p of finite rank, ΩG is Noetherian and local with unique maximal
ideal JG, say.

Note that as θ ∈ Z(G), z acts by ΩG-module endomorphisms on M .
As M is 1-critical, any non-zero endomorphism of M must be an injection ([9], 6.2.3).

Assume that M.z 6= 0; then z acts injectively on M .
Let A = Fp[[z]] ⊆ Z(ΩG). Now, as M is 1-critical and M.z 6= 0, M/M.z is finite

dimensional over Fp. Because z acts injectively on M , M.zn/M.zn+1 ∼= M/M.z for all
n > 1, which means that the graded module of M with respect to the z-adic filtration is
finitely generated over gr A ∼= Fp[t].

As M is a finitely generated module over ΩG, M is complete with respect to the
JG-adic filtration; in particular, ∩∞n=0M.Jn

G = 0. Hence ∩∞n=0M.zn = 0, so the z-adic
filtration on M is separated.

Because A is complete with respect to the z-adic filtration, M is finitely generated over
A, by Theorem 5.7 of Chapter I of [8]. Also, z acts injectively on M , so A ↪→ EndA(M).
These facts mean that EndA(M) is finitely generated as a module over A, a commutative
subring. It follows from Corollary 13.1.13(iii) of [9] that EndA(M) is a PI ring.

Now, let b be the two-dimensional nonabelian Lie algebra over Qp and let L(H) denote
the Lie algebra of H. By assumption on H, b ↪→ L(H), so we can find a closed subgroup
B of H with Lie algebra b. By passing to a subgroup of finite index if necessary, we can
write B = X o Y where X, Y ∼= Zp. This is clearly a uniform pro-p group.

Because the centre of b is trivial, so is the centre of B. It follows that Z(ΩB) = Ω{1} =
Fp, by Corollary A of [2]. Hence ΩB .S−1 ∼= ΩB , where S = Z(ΩB)− {0}.

Let P = AnnΩG
(M) and suppose that P ∩ΩB = 0. Then ΩB ↪→ EndA(M). It follows

that ΩB is a prime PI-ring. By Posner’s Theorem ([9], 13.6.5), ΩB .S−1 ∼= ΩB is a central
simple algebra. This contradicts the fact that JB is a non-trivial two-sided ideal of ΩB .
Hence P ∩ ΩB 6= 0.

Now, by a result of Venjakob (Theorem 7.1 of [11]), the only nonzero prime ideals of
ΩB are x.ΩB and JB where ΩX

∼= Fp[[x]]. The nonzero two-sided ideal P ∩ ΩB of ΩB

contains a product of nonzero prime ideals as ΩB is Noetherian. Since x ∈ JB , we see
that xpk ∈ P for some k > 1 and hence (1 + P ) ∩X 6= 1.
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But (1 + P ) ∩H is then an infinite normal subgroup of H and hence must be open in
H, since H is almost simple. This forces Jm

H ⊆ P for some m > 1.
Let Q = ker(ΩG � A). Then it’s easy to see that Q = JH .ΩG = ΩG.JH , so Qm =

(JH .ΩG)m ⊆ P . By Theorem 2·2, P is prime, so Q ⊆ P .
Hence A ∼= Fp ⊗ΩH

ΩG � ΩG/P � M ; since A is itself a 1-critical ΩG-module, we
must have A ∼= M , so (ii) holds.

Proof of Theorem 2·1 Let G and z ∈ ΩG be as in Proposition 2·3; it’s easy to see that
ΩG

∼= ΩH [[z]].
Let ϕ ∈ HomΩH

(M,MJ), where J = JH . Then we can make M into an ΩG-module
by setting

m.
∞∑

n=0

rnzn =
∞∑

n=0

ϕn(m).rn.

The right hand side of this expression makes sense because ϕ(M) ⊆ MJ , so ϕn(M) ⊆
MJn for all n. It’s clear that this defines an action of ΩG on M which extends the action
of ΩH and such that z acts as ϕ. It’s easy to check that M must be 1-critical as an
ΩG-module.

By Proposition 2·3, either M.z = 0 (so ϕ = 0), or M ∼= Fp ⊗ΩH
ΩG, in which case

M.JH = 0. As M is finitely generated over ΩH , the latter case forces M to be finite
dimensional over Fp, contradicting the 1-criticality of M . Hence ϕ = 0, and therefore
HomΩH

(M,MJ) = 0.
Now, as MJ is a characteristic ΩH -submodule of M , we have the exact sequence

0 → HomΩH
(M,MJ) → HomΩH

(M,M) → HomΩH
(M/MJ,M/MJ)

which shows that R embeds into EndFp
(M/MJ), which is finite dimensional over Fp.

Note that if M is cyclic, R ∼= Fp because M/MJ ∼= Fp.
Now, as M is critical, any nonzero endomorphism of M is an injection. This means

that R is a domain, and is hence a finite division ring. By Wedderburn’s Theorem, R is
a finite field extension of Fp.

3. Main results

We now have enough information to give a proof of Theorem A.

Proof of Theorem A Let R = ΩG and let I be a two-sided ideal of R with K(R/I) =
1. Pick a 1-critical quotient M = R/L of R/I for some right ideal L of R and let
P = AnnR(M). Clearly, I ⊆ P .

Let ¯denote the natural projection of R onto R/P . Note that R̄ is a prime ring, by
Proposition 2·2. Since R̄ � M and K(M) = 1, R̄ is infinite dimensional over Fp.

Let Q be the quotient ring of R̄; by Goldie’s Theorem ([9], 2.3.6) we know that Q is
simple Artinian, because R̄ is prime Noetherian. Say Q ∼= Mn(D) for some division ring
D and integer n > 1. Here D = EndQ(V ) where V is the unique simple Q-module. In
what follows, we use the fact that Q is a flat R̄-module.

Suppose L̄Q < R̄Q, i.e. MQ 6= 0. Since M is finitely generated over R̄, MQ is finitely
generated over Q and is hence isomorphic to a direct sum of k copies of V for some
integer k > 0. Hence EndQ(MQ) ∼= Mk(D).

Let N be the torsion submodule of M with respect to CR̄(0) (the set of regular elements
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of R̄), so that M/N is torsion free with respect to CR̄(0) and (M/N)Q ∼= MQ. Now if
N 6= 0, M/N is finite dimensional over Fp (because M is 1-critical) and so EndR(M/N)
must also be finite dimensional over Fp; if N = 0, EndR(M/N) is finite dimensional over
Fp by Theorem 2·1.

As M/N is finitely generated over R̄, torsion free with respect to CR̄(0) and as R̄ is
prime Goldie, M/N is torsionless, by Theorem 3.4.7 of [9]. Hence by Theorem 3.4.6 of [9],
EndR(M/N) is a right order in EndQ((M/N)Q) = EndQ(MQ) ∼= Mk(D), so Mk(D)
and hence Q ∼= Mn(D) must be finite dimensional over Fp.

This is impossible as R̄ ↪→ Q with R̄ infinite dimensional over Fp. So in fact MQ = 0
and hence L̄ must contain a regular element x̄ of R̄. Now we get a chain

R̄ > x̄R̄ > x̄2R̄ > . . . > 0̄

of right ideals of R̄ with each quotient isomorphic to R̄/x̄R̄, because x̄ is regular in R̄.
Hence

K(R/I) > K(R̄) > K(R̄/x̄R̄) + 1 > K(R/L) + 1 = 2,

a contradiction.

To prove Theorem B, we first prove an analogue of Proposition 2·2 for ΛG. First, an
elementary Lemma.

Lemma 3·1. Let G be a compact p-adic Lie group. Let M be a finitely generated p-
torsion free ΛG-module and let I = AnnΛG

(M). Then:
(i) ΛG/I is p-torsion free,
(ii) If M has finite rank over Zp, so does ΛG/I.

Proof. (i) If px ∈ I, MxΛG.p = 0. Because M is p-torsion free, this forces Mx = 0 and
hence x ∈ I. (ii) Say M ∼= Zd

p for some integer d. The action of ΛG on M gives rise to
a Zp-module homomorphism ΛG → EndZp

(M) ∼= Md(Zp) with kernel precisely I. Since
Md(Zp) also has finite rank over Zp, the result follows.

Proposition 3·2. Let G be a pro-p group of finite rank and let M be a finitely
generated ΛG-module such that M/pM is 1-critical. Then the global annihilator I =
AnnΛG

(M) is prime.

Proof. Since G is pro-p of finite rank, ΛG is Noetherian and local with unique maximal
ideal J , say.

Let Y = AnnΛG
(N) be a maximal element of the set {AnnΛG

(L) : 0 6= L 6 M} for
some nonzero submodule N of M . The same proof as the one used in Proposition 2·2
shows that Y is a prime ideal containing I.

Let T/N be the p-torsion part of M/N , so pnT ⊆ N for some integer n and M/T is
p-torsion free. If 0 6= x ∈ N , we can write x = pky with y /∈ pM , because the J-adic
filtration on M is separated and p ∈ J . Then pk(y + T ) = 0 so y ∈ T − pM as M/T is
p-torsion free, which means that pM is strictly contained in pM + T .

Since M/pM is 1-critical, this forces M/(pM + T ) ∼= (M/T )/p(M/T ) to be finite
dimensional over Fp, and hence M/T must have finite rank over Zp.

Let U = AnnΛG
(M/T ). By Lemma 3·1 (ii), ΛG/U has finite rank over Zp. Now

(M/T ).U = 0 so MU ⊆ T . Hence MUpn ⊆ Tpn ⊆ N and so MUpnY ⊆ NY = 0. This
means that UpnY = pnUY ⊆ I. As ΛG/I is p-torsion free by Lemma 3·1(i), UY ⊆ I.

Because ΛG is left Noetherian, Y/I is hence a finitely generated left ΛG/U -module and
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hence must have finite rank over Zp. Moreover, ΛG/I is p-torsion free and hence so is
Y/I.

Let V = AnnΛG
(Y/I), where Y/I is viewed as a right ΛG-module. We have (Y/I)V = 0

so Y V ⊆ I, i.e. MY V ⊆ MI = 0. Hence MY is a finitely generated module over the
ring ΛG/V (which has finite rank over Zp by Lemma 3·1(ii)), and so MY also has finite
rank over Zp.

Now, the natural map MY → M → M/pM has kernel MY ∩ pM ⊇ pMY and
MY/pMY is finite dimensional over Fp because MY is free of finite rank over Zp. Since
M/pM is 1-critical, this map must be 0 and so MY ⊆ pM . An obvious induction
argument shows that MY ⊆ pnM for all integers n > 0, whence MY = 0.

Hence Y ⊆ I, but I ⊆ Y so Y = I is prime.

We will assume for the remainder of this paper that G is a compact p-valued
p-adic Lie group.

The following basic Lemma is fundamental to everything that follows.

Lemma 3·3. Equip ΛG with the filtration constructed in Proposition 7.2 of [5]. Let M

be a finitely generated ΛG-module equipped with the filtration deduced from ΛG, and let
gr M denote the associated graded module. Then

K(M) 6 K(gr M).

Proof. The filtration on ΛG was observed to be Zariskian in Lemma 4.1 of [5], so the
result follows from Theorem 7.1.3 of Chapter I of [8].

We recall that a finitely generated ΛG module M is said to be pseudo-null if

HomΛG
(L, S/ΛG) = 0

for any submodule L of M ; here S denotes the skew-field of fractions of ΛG. It is shown
in Theorem 4.10 (3) of Chapter III of [8] that M is pseudo-null if and only if the graded
module gr M for the commutative ring gr ΛG satisfies

K(gr M) 6 K(gr ΛG)− 2.

Since gr ΛG is a polynomial ring in dimG + 1 variables over Fp, we have

Lemma 3·4. Let M be a finitely generated ΛG-module such that K(M) > dim G. Then
M is not pseudo-null.

The following Lemma is due to Peter Schneider and we are grateful to him for allowing
us to include it here.

Lemma 3·5. Suppose that M is a finitely generated bounded ΛG-module which is not
pseudo-null and whose annihilator ideal P is prime; then P is a prime c-ideal.

Proof. Let M0 denote the maximal pseudo-null submodule of M , so that M 6= M0. By
Lemma 4.3(i) of [5], the annihilator ideal I of M/M0 is a nonzero proper reflexive ideal
in ΛG.

As such it is a nontrivial product of prime c-ideals P1, . . . , Pr under the product on
the set of fractional c-ideals defined in section 4 of [5].

Since obviously P ⊆ I we have P ⊆ P1 · . . . · Pr ⊆ P1 ∩ . . . ∩ Pr. But the Pi are of
height one, hence P = Pi = I is a prime c-ideal.
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We can now give a proof of Theorem B.

Proof of Theorem B Note first that sl2(Qp) is a simple Lie algebra containing a copy
of the two-dimensional nonabelian Lie algebra b, so Theorem A applies.

Any compact p-valued p-adic Lie group is automatically pro-p of finite rank, so I is
prime by Proposition 3·2. It remains to show that I is a c-ideal.

By assumption, I 6= 0, so ΛG/I is bounded. By Lemma 3·5 applied to ΛG/I, we see
that it’s sufficient to prove that ΛG/I is not pseudo-null.

Now, ΛG/I is p-torsion free by Lemma 3·1 (ii), so p+ I is a regular element of the ring
ΛG/I. It follows that

K(ΛG/I) > K(ΛG/(I + pΛG)) = K(ΩG/Q),

where Q is the image of I in ΩG.
Since M is finitely generated, (ΩG/Q)k surjects onto M/pM for some integer k. Since

K(M/pM) = 1, Q is a two-sided ideal of ΩG such that K(ΩG/Q) > 1.
By Theorem A, K(ΩG/Q) > 2, so K(ΛG/I) > 3 = dimG. By Lemma 3·4, ΛG/I is not

pseudo-null, as required.
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