MINIMIZERS AND THE EULER-LAGRANGE EQUATIONS

J.M. Ball
Department of Mathematics
Heriot-Watt University
Edinburgh EH14 4AS
Scotland

To appear in Proceedings of ISIMM Conference,

†Research supported by a U.K. Science & Engineering Research Council Senior Fellowship.
Consider the problem of minimizing an integral of the form
\[I(u) = \int_{\Omega} f(x, u(x), \nabla u(x)) \, dx \]
subject to given boundary conditions, where \(\Omega \subset \mathbb{R}^m \) is a bounded open set and the competing functions \(u : \Omega \to \mathbb{R}^m \). Frequently it is possible to use the direct method of the calculus of variations to establish the existence of a minimizer \(u \) in an appropriate Sobolev space \(W^{1,p}(\Omega; \mathbb{R}^m) \).

Then formally we expect that \(u \) satisfies the weak form of the Euler-Lagrange equations
\[\int_{\Omega} \left(-\frac{\partial f}{\partial u} \varphi \right) dx + \int_{\partial \Omega} g \varphi \, ds = 0 \quad \text{for all } \varphi \in C^0_0(\Omega; \mathbb{R}^m), \tag{1} \]
but a search of the literature reveals that in general the theorems guaranteeing this make stronger growth assumptions on \(f \) than are necessary to prove existence. That this is not just a technical difficulty can be seen from one-dimensional examples due to Niezg and myself that are announced in [6]. One of these examples concerns the problem of minimizing
\[I(u) = \int_{-1}^{1} \left((x-u)^2 (u')^2 + \varepsilon (u')^2 \right) \, dx \tag{2} \]
subject to \(u(-1)=k, u(1)=k \), where \(\varepsilon \geq 14 \) is an integer, \(\varepsilon > 0 \) and \(0 < k < 1 \). (Here \(m=n=1 \) and the prime denotes \(\frac{d}{dx} \).) Note that the integrand \(f(x,u,u') \) in (2) is smooth and regular (i.e., \(f_u, f_{uu}' > 0 \)) so that the Euler-Lagrange equation can be reduced to the form \(u'' = g(x,u,u') \). Given \(k \), let \(\varepsilon > 0 \) be sufficiently small. Then I attains an absolute minimum on the set \(\mathcal{A} = \{ v \in W^{1,1}(-1,1) : v(-1) = v(1) = \pm k \} \) and any minimizer \(u \) satisfies \(u(0)=0 \), \(u'(0)=\pm \epsilon \). Furthermore \(f_u \notin L_{1,0}^{1,1}(-1,1) \) and hence (1) does not hold. Also, we have that
\[\inf_{v \in W^{1,1}(-1,1)} I(v) > I(u) \quad \text{(the Lavrentiev phenomenon).} \tag{3} \]

I will now sketch the most important part of the proof, which establishes (3), that \(u(0)=0 \), and that if \(0 \leq \mu < 1 \) then \(|u(x)| \geq k|x|^{2/3} \)

\[\dagger \text{ Research supported by a U.K. Science \\& Engineering Research Council Senior Fellowship.} \]
for all \(t \in [-1, 1] \), provided \(\epsilon > 0 \) is sufficiently small. The argument is an adaptation of Mania [9] (cf. Cesari [8, p. 514]). Further details can be found in Ball and Hizel [7]. Let \(v \) be any element of \(\mathcal{V} \). Then \(v(x_0) = 0 \) for some \(x_0 \in (-1, 1) \) and by symmetry we can suppose that \(x_0 \geq 0 \). Suppose further either that \(x_0 \neq 0 \) or \(x_0 = 0 \) and \(0 < v(0) < \mu k_2^{2/3} \) for some \(k \in (0, 1) \). Let \(u < v \). In either case there exists an interval \((x_1, x_2) \), \(0 < x_1 < x_2 < 1 \), on which \(\mu k_2^{2/3} < v(x) \leq \mu k_2^{2/3} \) and such that \(v(x_1) = \mu k_2^{2/3}, \ v(x_2) = \mu k_2^{2/3} \). On this interval \((x^4 - v^4)^2 > x^8 (1 - v(k) \))^2 \), and hence
\[
I(v) \geq \left(1 - v(k) \right)^2 \int_{x_1}^{x_2} \frac{x^8 (v')^2}{x^8 (v')^2} dx.
\]
Putting \(y = x^2 \), where \(\theta = 2r - 9 \frac{x^2}{2r - 1} \), we get, using Jensen's inequality
\[
\int_{x_1}^{x_2} x^8 (v')^2 \frac{dx}{x^8 (v')^2} = \theta \int_0^\theta x^8 (v')^2 \frac{dy}{v'} = \frac{1}{2r - 1} (x_2^8 - x_1^8)^{2r - 1} = \frac{1}{2r - 1} (x_2^8 - x_1^8)^{2r - 1} = h(x_1, x_2).
\]
It is easily verified that if \(r \geq 14 \) then \(h(x_1, x_2) > 0 \), and it follows that \(I(v) \geq \eta > 0 \) for all \(v \) as above, \(\eta \) being independent of \(\epsilon \). Now let \(\tilde{v}(x) = \frac{|x|}{2} \text{sign } x \) for \(|x| \leq k/2 \), \(\tilde{v}(x) = k \) for \(x > k/2 \), \(\tilde{v}(x) = -k \) for \(x < -k/2 \). Then \(\tilde{v} \in \mathcal{V} \) and
\[
I(\tilde{v}) = 2\epsilon \int_{0}^{k/\sqrt{2}} (x^2 - 1/3)^2 dx,
\]
which is less than \(\eta \) if \(\epsilon \) is sufficiently small. Thus \(u(0) = 0, |u(x)| \leq \mu k|x|^{2/3} \) for any minimizer \(u \), and (3) holds. As far as we are aware the examples in [6, 7] are the first in which the singular set in Tonelli's partial regularity theorem [10, p. 359] has been shown to be nonempty.

I now turn to nonlinear elassticities, which in fact motivated the work in [6, 7]. Consider a simple mixed boundary value problem in which it is required to minimize
\[
I(u) = \int_{\Omega} W(\nabla u(x)) dx
\]
on the set \(\mathcal{W} = \{ u \in W^{1,1}(\Omega; \mathbb{R}^n) : I(u) < \infty, u|_{\partial \Omega} = u_0 \} \) in the sense of trace). Here \(\Omega \subset \mathbb{R}^n \) is a strongly Lipschitz bounded open set, \(\partial \Omega \subset \partial \Omega \) has positive \(n-1 \) dimensional measure, and \(W : H^1(\Omega; \mathbb{R}^n) \) is the stored-energy function of a homogeneous material. We suppose that \(W \in C^1(\mathbb{R}^n) \), where \(N_\mathbb{R}^n = \{ A \in \mathbb{R}^n : \det A > 0 \} \), that \(W(A) = \infty \) if \(\det A \leq 0 \), \(W(A) = \infty \) as \(\det A \to 0^+ \), and that for some \(\epsilon_0 > 0 \)
\[
\frac{2W(\nabla u(x))}{\epsilon} \leq \text{const. } (W(A) + 1)
\]
for all \(A \in \mathcal{W} \) with \(|A - 1| < \epsilon_0 \). Let \(u \in \mathcal{W} \) be \(C^1 \) with \(\nabla u \) uniformly bounded and \(u \vert_{\partial \Omega} = u_0 \) \(u(x) = u(x) \). Then it is not hard to show that \(u \in \mathcal{W} \) and that
\[
\frac{d}{d\epsilon} I(u\epsilon) \bigg|_{\epsilon = 0} = \int_{\Omega} \frac{2W(\nabla u\epsilon)}{\epsilon} \nabla u\epsilon \cdot \nabla u\epsilon \bigg|_{\Omega \times (0, 1)} dx = 0.
\]
Under further hypotheses (c.f. [2]) \(u \) is invertible and (5) can then be recognized as a weak form of the Cauchy equilibrium equations
\[
\frac{3}{\mu} \Gamma_1 = 0,
\]
where \(\Gamma_1 \) is the Cauchy stress tensor. If instead we define for \(\epsilon > 0 \),
\[
u(x) = u(z) , x = z + \epsilon v(z),
\]
and make an analogous hypothesis to (4), we obtain the weak form of the equation
\[
\int_{\Omega} \frac{2W(\nabla u\epsilon)}{\epsilon} \nabla u\epsilon \cdot \nabla u\epsilon \bigg|_{\Omega \times (0, 1)} dx = 0.
\]
Details of these results will appear in [3]. To obtain the weak form
\[
\int_{\Omega} \frac{2W(\nabla \psi)}{\epsilon} \nabla \psi \cdot \nabla \psi \bigg|_{\Omega \times (0, 1)} dx = 0
\]
on of the equilibrium equations one would need to show that \(I(u\epsilon) \) is differentiable with respect to \(\epsilon \), with the obvious derivative, for a large class of variations \(u\epsilon(x) = u(x) + \epsilon v(x) \), and it is not clear how to do this under any realistic hypotheses on \(W \). The one-dimensional examples suggest that infinite values of \(\nu_0(x) \) or \(\nu_0(x)^{-1} \) may occur in minimizers; this could be the source of the difficulty, and may also be relevant to the onset of fracture.

Finally I remark that the Laverentz phenomenon severely restricts the class of numerical methods capable of detecting singular minimizers; see [4].

References