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Abstract. Some outstanding open problems of nonlinear elasticity are de-
scribed. The problems range from questions of existence, uniqueness, regu-

larity and stability of solutions in statics and dynamics to issues such as the

modelling of fracture and self-contact, the status of elasticity with respect
to atomistic models, the understanding of microstructure induced by phase

transformations, and the passage from three-dimensional elasticity to models
of rods and shells. Refinements are presented of the author’s earlier work [25]

on showing that local minimizers of the elastic energy satisfy certain weak

forms of the equilibrium equations.

Dedicated to Jerry Marsden on the occasion of his 60th birthday

1. Introduction.

In this paper I highlight some outstanding open problems in nonlinear (some-
times called finite) elasticity theory. While many of these will be well known to
experts on analytic aspects of elasticity, I hope that the compilation will be of use
both to those new to the field and to researchers in solid mechanics having different
perspectives. Of course the selection of problems is a personal one, and indeed rep-
resents a list of those problems I would like most to be able to solve but cannot. In
particular it concentrates on general open problems, or ones that illustrate general
difficulties, rather than those related to very specific experimental situations, which
is not to imply that the latter are not important or instructive. I have not included
any open problems connected with the numerical computation of solutions, since I
recently discussed some of these in [32].

The only new results of the paper are in connection with the problem of show-
ing that local minimizers of the total elastic energy satisfy the weak form of the
equilibrium equations. As I pointed out in [25], there are hypotheses under which
some forms of the equilibrium equations can be proved to hold, and in Section 2.4
I take the opportunity to present some refinements of this old work.

The paper is essentially self-contained, and can be read by those having no
knowledge of elasticity theory. For those seeking further background on the subject
I have written a short introduction [29] to some of the issues, intended for research
students, which I hope is a quick and easy read. For more serious study in the spirit
of this paper, the reader is referred to the books of Antman [14], Ciarlet [81, 82, 83],
Marsden & Hughes [182] and Šilhavý [255]. Other excellent but older books and
survey articles are Antman [13], Ericksen [113], Gurtin [139], and Truesdell & Noll
[252]. Valuable additional perspectives can be found in the books of Green & Zerna
[136], Green & Adkins [135] and Ogden [200].

It is an honour to dedicate this article to Jerry Marsden, both as a friend and in
recognition of his important contributions to elasticity, and thus to help celebrate
his many talents as a mathematician, thinker and writer.
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2. Elastostatics

2.1. The stored-energy function and equilibrium solutions. Consider an
elastic body occupying in a reference configuration the bounded domain Ω ⊂ R3.
We suppose that Ω has a Lipschitz boundary ∂Ω = ∂Ω1∪∂Ω2∪N , where ∂Ω1, ∂Ω2

are disjoint relatively open subsets of ∂Ω and N has two-dimensional Hausdorff
measure H2(N) = 0 (i.e. N has zero area). Deformations of the body are described
by mappings

y : Ω → R3,

where y(x) = (y1(x), y2(x), y3(x)) denotes the deformed position of the material
point x = (x1, x2, x3). We assume that y belongs to the Sobolev spaceW 1,1(Ω;R3),
so that in particular the deformation gradient Dy(x) is well defined for a.e. x ∈ Ω.
For each such x we can identify Dy(x) with the 3× 3 matrix (∂yi/∂xj).

We require the deformation y to satisfy the boundary condition

y|∂Ω1 = ȳ(·),(2.1)

where ȳ : ∂Ω1 → R3 is a given boundary displacement.
We suppose for simplicity that the body is homogeneous, i.e. the material re-

sponse is the same at each point. In this case the total elastic energy corresponding
to the deformation y is given by

I(y) =
∫

Ω

W (Dy(x)) dx,(2.2)

where W = W (A) is the stored-energy function of the material. We suppose that
W : M3×3

+ → R is C1 and bounded below, so that without loss of generality
W ≥ 0. (Here and below, Mm×n denotes the space of real m × n matrices, and
Mn×n

+ denotes the space of those A ∈Mn×n with detA > 0.) The Piola-Kirchhoff
stress tensor is given by

TR(A) = DAW (A).(2.3)

By formally computing

d

dτ
I(y + τϕ)|τ=0 = 0,

we obtain the weak form of the Euler-Lagrange equation for I, that is∫
Ω

DAW (Dy) ·Dϕdx = 0(2.4)

for all smooth ϕ with ϕ|∂Ω1 = 0. This can be shown (cf. Antman & Osborn [16]) to
be equivalent to the balance of forces on arbitary subbodies. If y, ∂Ω1 and ∂Ω2 are
sufficiently regular then (2.4) is equivalent to the pointwise form of the equilibrium
equations

divDAW (Dy) = 0 in Ω,(2.5)

together with the natural boundary condition of zero applied traction

DAW (Dy)n = 0 on ∂Ω2,(2.6)

where n = n(x) denotes the unit outward normal to ∂Ω at x. (More generally,
we could have prescribed nonzero tractions of various types on ∂Ω2, as well as
including the potential energy of body forces such as gravity in the expression for
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the energy (2.2), but for simplicity we have not done this, since the main difficulties
we address are already present without these additions.)

To avoid interpenetration of matter, it is natural to require that y : Ω → R3 be
invertible. To try to ensure that deformations have this property, we suppose that

W (A) →∞ as detA → 0 + .(2.7)

So as to also prevent orientation reversal we define W (A) = ∞ if detA ≤ 0. Then
W : M3×3 → [0,∞] is continuous. Clearly if I(y) <∞ then

detDy(x) > 0 for a.e. x ∈ Ω.(2.8)

Since y is not assumed to be C1, (2.8) does not imply even local invertibility. For
studies of local and global invertibility in the context of elasticity, or relevant to
it, see Ball [21], Bauman & Phillips [48], Ciarlet & Nečas [84], Fonseca & Gangbo
[121], Giaquinta, Modica & Souček [131], Meisters & Olech [183], Weinstein [259]
and Šverák [237].

For any elastic material, the stored-energy function W is frame-indifferent, i.e.

W (RA) = W (A) for all R ∈ SO(3),A ∈M3×3.(2.9)

In addition, if the material has a nontrivial isotropy group S, W satisfies the ma-
terial symmetry condition

W (AQ) = W (A) for all Q ∈ S,A ∈M3×3.

The case S = SO(3) corresponds to an isotropic material.
For incompressible materials the deformation y is required to satisfy the con-

straint
detDy(x) = 1 a.e. x ∈ Ω.

All of the problems and results contained in this article have corresponding incom-
pressible versions, some of which we cite in the references. However, in general we
do not state these explicitly.

2.2. Existence of equilibrium solutions. There are two traditional routes to
proving the existence of equilibrium solutions. The first, pioneered by Stoppelli
[232], [233] and described in the book of Valent [253], is to use the implicit function
theorem in a suitable Banach space X to prove the existence of an equilibrium
solution close to a given one, when the data of the problem are slightly perturbed.
In order to make this work, it is necessary to use spaces X of sufficiently smooth
mappings, for example subspaces of W 2,p(Ω;R3) for p > 3 or C2+α(Ω;R3), so as
to control the nonlinear dependence on Dy. In addition, the linearized elasticity
operator at the given solution should be invertible as a map from X to a suitable
target space Y . While this method automatically delivers smooth solutions, it
is by its nature restricted to small perturbations (for example, small boundary
displacements from a stress-free state), and because of the regularity properties
required for the linearized operator it in general only applies to situations when
∂Ω1 and ∂Ω2 do not meet, for example when one of them is empty. In particular,
mixed boundary conditions typically encountered in applications, for example (2.1)
with ∂Ω1 comprising the two end-faces of a cylindrical rod, are in general not
allowed, at least with the techniques as currently developed (see Section 2.7).

The second route is to prove the existence of a global minimizer of I via the
direct method of the calculus of variations. In principle such a minimizer should
satisfy the equilibrium equations, at least in weak form, but this turns out to be
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a subtle matter (see Sections 2.3, 2.4). More generally we could ask for conditions
ensuring that there exist some kind of local minimizer.

Let
A = {y ∈W 1,1(Ω;R3) : I(y) <∞,y|∂Ω1 = ȳ},

where the boundary condition is understood in the sense of trace. In the definition
of A we could include the requirement that y be invertible; this can be done in
various ways, one of which is discussed in Section 2.5.

Definition 2.1. Let 1 ≤ p ≤ ∞. The deformation y ∈ A is a W 1,p local minimizer
of I if there exists ε > 0 such that I(z) ≥ I(y) for any z ∈ A with ‖z−y‖W 1,p ≤ ε.

The problem of proving the existence of local, but not global, minimizers is
discussed later (see Problem 9). A typical result on global minimization is the
following.

Theorem 2.1. Suppose that W satisfies the hypotheses
(H1) W is polyconvex, i.e. W (A) = g(A, cof A,detA) for all A ∈ M3×3 for

some convex g,
(H2) W (A) ≥ c0(|A|2 + |cof A|3/2)− c1 for all A ∈M3×3,

where c0 > 0.
Then if A is nonempty, there exists a global minimizer y∗ of I in A.

Here and below we take | · | to be the Euclidean norm on M3×3 with corresponding
inner product A ·B = tr (AT B). Theorem 2.1 is a refinement by Müller, Qi & Yan
[190] of the result in Ball [19]. For the problem to be nontrivial we need that
H2(∂Ω1) > 0.

The hypothesis (H1) is known to be too strong for the following reason. Let
f : Mm×n → R ∪ {+∞} be Borel measurable and bounded below. We recall f is
said to be quasiconvex at A ∈Mm×n if the inequality∫

Ω

f(A +Dϕ(x)) dx ≥
∫

Ω

f(A) dx(2.10)

holds for any ϕ ∈ C∞0 (Ω;Rm), and is quasiconvex if it is quasiconvex at every
A ∈Mm×n. Here Ω ⊂ Rn is any bounded open set whose boundary ∂Ω has zero n-
dimensional Lebesgue measure. A standard scaling argument (see, for example, Ball
& Murat [44]) shows that contrary to appearances these definitions do not depend
on Ω. Results of Morrey [187] and Acerbi & Fusco [3] imply that if f : Mm×n → R
is quasiconvex and satisfies the growth condition

C1|A|p − C0 ≤ f(A) ≤ C2(|A|p + 1) for all A ∈Mm×n,(2.11)

where p > 1 and where C0 and C1 > 0, C2 > 0 are constants, then

F(y) =
∫

Ω

f(Dy) dx(2.12)

attains a global minimum on

A = {y ∈W 1,1(Ω;Rm) : y|∂Ω1 = ȳ}.

Here we assume that Ω has Lipschitz boundary ∂Ω, that ∂Ω1 ⊂ ∂Ω is Hn−1 mea-
surable and that ȳ : ∂Ω1 → Rm is given such that A is nonempty. As shown by
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Ball & Murat [44], quasiconvexity of f is necessary for the existence of a global
minimizer for all perturbed functionals of the form

F1(y) =
∫

Ω

[f(Dy(x)) + h(x,y(x)] dx

with h(·, ·) ≥ 0 continuous. These results strongly suggest that (H1) should be
replaced by the requirement that W be quasiconvex, a weaker condition than poly-
convexity. For example, it is easily seen that a larger class of W for which Theorem
2.1 holds consists of those of the form W = W1 + f , where W1 satisfies (H1) and
(H2), and where f : M3×3 → R is quasiconvex and satisfies (2.11). That this really
is a larger class can be seen by taking f = KF for a large K > 0, where F is
quasiconvex but not polyconvex. Such F exist satisfying F (RAQ) = F (A) for all
R,Q ∈SO(3), A ∈M3×3, and can be constructed by the method of Šverák [238]1.
More generally we could take f to satisfy

f(A) ≥ C1|A|p − C0(2.13)

for some p > 1, C1 > 0, C0 and to be the supremum of a nondecreasing sequence
of continuous quasiconvex functions fk : M3×3 → [0,∞), each satisfying a growth
condition

0 ≤ fk(A) ≤ αk|A|p − βk

for constants αk > 0, βk. (Kristensen [163] has shown that a function f satisfying
(2.13) is the supremum of such a sequence if and only if f is closed W 1,p quasiconvex
in the sense of Pedregal [205], namely that Jensen’s inequality 〈ν, f〉 ≥ f(ν̄) holds
for all homogeneous W 1,p gradient Young measures2 ν.)

However, as they stand none of the existence theorems for minimizers of integrals
of general quasiconvex functions apply to elasticity, since they all assume growth
conditions such as (2.11) which are not consistent with the condition (2.7). (The
same applies to other results, such as the relaxation theorem of Dacorogna [88].) In
particular, it is not clear whether or not a quasiconvex W satisfying our hypotheses
can be written as the supremum of everywhere finite continuous quasiconvex func-
tions. This is not true in general for quasiconvex functions f : Mm×n → [0,∞]; for
example we can take m = n = 2, f(A) = 0 if A ∈ {A1,A2,A3,A4} and f(A) = ∞
otherwise, where the Ai are diagonal matrices in a Tartar configuration (see Tartar
[250]), for example A1 = diag (−2, 1), A2 = diag (1, 2), A3 = diag (2,−1) and A4 =
diag (−1,−2). Then f is quasiconvex, since any y with Dy ∈ {A1,A2,A3,A4} a.e.
has constant gradient (this following, for example, from the general result of Chleb́ık

1For example we can take F = Hqc to be the quasiconvexification of

H(A) = min(|U(A)− 1|p, |U(A)− λ1|p),

where λ > 1 and U(A) = (AT A)1/2. The quasiconvexification Hqc of H is defined to be the

supremum of all quasiconvex functions ψ ≤ H.
2See Young [262], Tartar [248], Ball [27] for the definition and properties of the Young measure

(νx)x∈Ω corresponding to a sequence of mappings z(j) : Ω → Rs satisfying a suitable bound, say

‖z(j)‖L1 ≤ M <∞, where Ω ⊂ Rn is open (or measurable). For each x ∈ Ω, νx is a probability

measure on Rs giving the limiting distribution of values of z(j)(p) as j → ∞ and p → x. If

f : Rs → R is continuous, then the weak limit of f(z(j)) in L1(E), where E ⊂ Ω is measurable,

is given by the function x 7→ 〈νx, f〉, whenever the weak limit exists. In particular, if z(j) ⇀ z
in L1(E), then z(x) = ν̄x for x ∈ E, where µ̄ denotes the centre of mass of a measure µ. Such
a Young measure is homogeneous if ν = νx is independent of x. If 1 < p ≤ ∞, a W 1,p gradient
Young measure is a Young measure (νx)x∈Ω corresponding to a sequence z(j) = Dy(j) of gradients

bounded in Lp(Ω;Mm×n), where we identify Mm×n with Rmn.
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& Kirchheim [77]). But the argument of Tartar shows that if f were the supremum
of continuous quasiconvex functions fk : M2×2 → [0,∞) we would have f(0) = 0,
a contradiction.

A further reason for preferring quasiconvexity to polyconvexity is that, unlike
quasiconvexity, polyconvexity is not closed with respect to periodic homogenization
(Braides [55]).

Problem 1. Prove the existence of energy minimizers for elastostatics for quasi-
convex stored-energy functions satisfying (2.7).

A principal difficulty here is that there is no known useful characterization of qua-
siconvexity. If W is quasiconvex then W is rank-one convex, that is the map
t 7→ W (A + ta ⊗ n) is convex for each A ∈ Mm×n and a ∈ Rm,n ∈ Rn. For 40
years it seemed possible that in fact rank-one convexity was equivalent to quasicon-
vexity, until Šverák [239] found his well-known counterexample for the dimensions
n ≥ 2, m ≥ 3. Then Kristensen [164] used Šverák’s example to show that for the
same dimensions there is no local characterization of quasiconvexity. In the absence
of a characterization leading to a new proof technique, one is forced to make direct
use of the definition (2.10), which leads to serious problems of approximation by
piecewise affine functions when (2.7) holds.

In Ball [19] it was shown how the hypotheses (H1), (H2) can be satisfied for
a class of isotropic materials including models of natural rubbers, via theorems
exploiting the representation

W (A) = Φ(v1, v2, v3)(2.14)

of the stored-energy function W of an isotropic material, where Φ is a symmetric
function of the singular values vi = vi(A), that is of the eigenvalues of (AT A)1/2

(for a different proof of such theorems see Le Dret [103]). However it is not obvious
how to verify (H1) when the material is not isotropic, for example when it has cubic
symmetry.

Problem 2. Are there ways of verifying polyconvexity and quasiconvexity for a
useful class of anisotropic stored-energy functions?

To illustrate the difficulty in verifying (H1), in the isotropic case it is much more
convenient to use the representation (2.14) rather than the equivalent representation
W (A) = h(I1, I2, I3) in terms of the principal invariants Ij = Ij(A). Perhaps it
is significant that the function Φ in (2.14) has the same regularity as W , while h
is less regular (see Ball [24], Sylvester [244], Šilhavý [256]). At any rate the more
symmetric form (2.14) lends itself more easily to discussing convexity properties.
For non-isotropic materials suitable representations do not seem to be available; for
example, in the case of cubic symmetry it does not seem to be convenient to use
the usual integrity basis (given, for example, in Green & Adkins [135]).

2.3. Regularity and the classification of singularities. The main open ques-
tion concerning regularity is to decide when global, or local, minimizers of I are
smooth. A special case is

Problem 3. When is the minimizer y∗ in Theorem 2.1 smooth?

Here smooth means C∞ in Ω, and C∞ up to the boundary (except in the neigh-
bourhood of points x0 ∈ ∂Ω1 ∩ ∂Ω2 where singularities can be expected). Clearly
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additional hypotheses on W are needed for this to be true. One might assume, for
example, that W : M3×3

+ → R is C∞, and that (H1) is strengthened by assuming
W to be strictly polyconvex (i.e. that g is strictly convex). Also for regularity up to
the boundary we would need to assume both smoothness of the boundary (except
perhaps at ∂Ω1 ∩ ∂Ω2) and that ȳ is smooth. The precise nature of these extra
hypotheses is to be determined. Problem 3 is unsolved even in the simplest special
cases. In fact the only situation in which smoothness of y∗ seems to have been
proved is for the pure displacement problem (∂Ω2 empty) with small boundary
displacements from a stress-free state. For this case Zhang [263], following work
of Sivaloganathan [225], gave hypotheses under which the smooth solution to the
equilibrium equations delivered by the implicit function theorem was in fact the
unique global minimizer y∗ of I given by Theorem 2.1.

An even more ambitious target would be to somehow classify possible singulari-
ties in minimizers of I given by (2.2) for generic stored-energy functions W . If at
the same time one could associate with each such singularity a condition on W that
prevented it, one would also, by imposing all such conditions simultaneously, pos-
sess a set of hypotheses implying regularity. In fact it is possible to go a little way
down this road. Consider first the kind of singularity frequently observed at phase
boundaries in elastic crystals, in which the deformation gradient Dy is piecewise
constant, with values A,B on either side of a plane {x · n = k}. It was shown in
Ball [20] that, under the natural assumption that there is some matrix A0 that is
a local minimizer of W (·), every such deformation y that is locally a weak solution
of the Euler-Lagrange equation is trivial, that is A = B, if and only if W is strictly
rank-one convex (i.e. the map t 7→ W (A + ta ⊗ n) is strictly convex for every A
and all nonzero a,n). Thus strict rank-one convexity is exactly what is needed to
eliminate this particular kind of singularity.

Another physically occuring singularity is that of cavitation. For radial cavitation
the deformation has the form y : B(0, 1) → R3, where B(0, 1) is the unit ball in
R3, and

y(x) = r(|x|) x
|x|
.

Thus if r(0) > 0, y is discontinuous at x = 0, where a hole of radius r(0) is formed.
If (H1) holds, then since polyconvexity implies quasiconvexity, the minimizer of I
among smooth (W 1,3 is enough, see below) y satisfying y(x) = λx for |x| = 1 (i.e.
r(1) = λ) is given by the homogeneous deformation

ỹλ(x) ≡ λx.

However, it was shown in Ball [23] that for a class of stored-energy functions W
satisfying (H1) and the growth condition in (H2) but with 2 ≤ p < 3, q < 3

2 , I
attains a minimum among radial deformations satisfying the boundary condition
y(x) = λx for |x| = 1, and that for λ > 0 sufficiently large the minimizer ȳ satisfies
r(0) > 0. Furthermore ȳ satisfies the weak form of the Euler-Lagrange equation
(2.4). As a specific example we can take

W (A) = |A|2 + h(detA),(2.15)

for h : (0,∞) → R smooth with h′′ > 0, limδ→∞
h(δ)

δ = limδ→0+ h(δ) = ∞. Cavita-
tion is a common failure mechanism in polymers; for interesting pictures of almost
radial cavitation of roughly spherical rubber particles imbedded in a matrix of
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Nylon-6 see Lazzeri & Bucknall [166]. In [190] Müller, Qi & Yan show that if (H2)
holds then no deformation with finite energy can exhibit cavitation. A somewhat
stronger condition, which by the Sobolev embedding theorem obviously prevents
not only cavitation but any other discontinuity in y, is that W (A) ≥ c0|A|p−c1 for
all A, where c0 > 0 and p > 3. In fact even if p = 3 any finite-energy deformation
is continuous on account of (2.8) and the result of Vodop’yanov, Gol’dshtein and
Reshetnyak [254].

There is an extensive literature on cavitation in elasticity; a sample of the more
mathematical developments can be found in the papers of Antman & Negrón-
Marrero [15], James & Spector [147], Müller & Spector [191], Polignone & Horgan
[212, 213], Sivaloganathan [224, 226, 227], Sivaloganathan & Spector [230, 229, 228],
Pericack-Spector & Spector [209], Stringfellow & Abeyaratne [234], and Stuart
[235, 236].

An interesting feature of cavitation is that it provides a realistic example of the
Lavrentiev phenomenon, whereby the infimum of the energy is different in different
function spaces. Here it takes the form

inf
A1
I < inf

A3
I = I(ỹλ),

where Ap = {y ∈ W 1,p(B(0, 1);R3) : y|∂B(0,1) = λx}. More generally, there is
a theory of minimization for elasticity with W polyconvex in function spaces not
allowing cavitation due to Giaquinta, Modica & Souček [133, 131, 132] (see also
the less technically demanding approach of Müller [188]). Thus the same W can
have different minimizers in different function spaces; if we enlarge the space to
allow not only cavitation but crack formation (see Section 2.8), then we can have
different minimizers in at least three different spaces.

In the case of cavitation there is a change of topology of the deformed configu-
ration associated with the Lavrentiev phenomenon, but one-dimensional examples
in Ball & Mizel [43] for integrals of the form

I(y) =
∫ b

a

f(x, y(x), yx(x)) dx

show that the phenomenon can occur when the minimizer y is continuous with
unbounded gradient. This leads to the question:

Problem 4. Can the Lavrentiev phenomenon occur for elastostatics under growth
conditions on the stored-energy function ensuring that all finite-energy deformations
are continuous?

Of course if y∗ is smooth then the Lavrentiev phenomenon cannot hold under the
hypotheses of Theorem 2.1. Some interesting recent progress on Problem 4 is due to
Foss, Hrusa & Mizel [122, 181], who provide examples of the Lavrentiev phenomenon
in two dimensions for a homogeneous isotropic polyconvex stored-energy functionW
satisfying the corresponding growth conditionW (A) ≥ c0|A|p−c1 for all A ∈M2×2

+

for some p > 2 and (2.7). In these examples the reference configuration is given by
a sector of a disk described in polar coordinates by Ωα = {(r, θ) : 0 < r < 1, 0 < θ <
α}, and the boundary conditions are of the ‘container’ type that the origin is fixed,
that y(Ωα) ⊂ Ωβ , and that y(1, θ) = (1, β

αθ), where 0 < β < 3
4α. Whether such

examples can be constructed for mixed boundary conditions of the type (2.1), even
in two dimensions, or be associated with singularities in the interior of Ω, remains
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open. The Lavrentiev phenomenon has important implications for the numerical
computation of minimizers (see Ball [32] and the references therein).

There are striking examples of variational problems of the form (2.12) for which
the global minimizer is not smooth. The first such example was found by Nečas
[197], who showed that if m = n2 with n sufficiently large then there exists a strictly
convex f = f(Dy) whose corresponding integral

F(y) =
∫

B(0,1)

f(Dy) dx(2.16)

has as global minimizer

y∗ij(x) =
xixj

|x|
, x ∈ B(0, 1)

subject to its own (smooth) boundary values on ∂B(0, 1). Here y∗ is Lipschitz but
not C1. Then Hao, Leonardi & Nečas, [141] modified the example to work for n ≥ 5
with minimizer

y∗ij =
xixj

|x|
− 1
n
|x|δij .(2.17)

By a more sophisticated method, Šverák & Yan [241] showed that there exists a
convex f such that (2.17) gives a minimizer for n = 3. In fact, working in the
five-dimensional space of 3 × 3 traceless symmetric matrices we thus obtain an
example with n = 3, m = 5. Šverák & Yan also obtained a similar example for
the case n = 4, m = 3. Note that the above maps y∗ are one-homogeneous, i.e.
y∗(sx) = sy∗(x) for all s ≥ 0. In contrast Phillips [210] has shown that when
n = 2 any one-homogeneous weak solution y to a strongly elliptic system of the
form div A(Dy) = 0 is linear.

Even if y∗ is not smooth everywhere, we can ask for smoothness outside a closed
set of Lebesgue measure zero. That such a result is true is strongly suggested by the
classical partial regularity theorem of Evans [116], which (with the incorporation
of a weakening of the growth condition due to Acerbi & Fusco [4]) states that any
global minimizer has this property for a class of integrals of the form (2.16) with f
satisfying (2.11) and the strong quasiconvexity condition that for some p ≥ 2∫

Ω

[f(A +Dϕ)− f(A)] dx ≥ γ

∫
Ω

[|Dϕ|2 + |Dϕ|p] dx,

for all A ∈ Mm×n, all ϕ ∈ C∞0 (Ω;Rm). Recently, Kristensen & Taheri [165] have
proved the same result but for W 1,p local minimizers. However, it is not known
how to extend these theorems to the case of elasticity when (2.7) holds (see Ball
[31] for a brief discussion).

In proving regularity or partial regularity, it is not sufficient to just use the fact
(if it is a fact, see below) that y∗ satisfies the weak form of the Euler-Lagrange
equation. This follows from the example of Müller & Šverák [193] of a Lipschitz
mapping y : Ω → R2, with Ω ⊂ R2 a bounded domain, that is nowhere C1 and
solves the weak form of the Euler-Lagrange equation for an integral

I(y) =
∫

Ω

F (Dy) dx

with F strictly quasiconvex. As shown by Kristensen & Taheri [165] y can even be
a W 1,∞ local minimizer.
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There seems to be little indication from experiment that natural rubbers have
equilibrium solutions with singularities other than those involving cavitation or
other forms of fracture. Thus it seems a reasonable conjecture that minimizers are
smooth for models of natural rubber for which the stored-energy function satisfies
growth conditions prohibiting discontinuities for deformations of finite energy. In
view of the above and other counterexamples for elliptic systems, if minimizers are
smooth it must be for special reasons applying to elasticity. Three plausible such
reasons are: (a) the fact that the integrand W (Dy) does not depend explicitly on
y (though dependence on x is allowed), (b) the fact that the dimensions m = n = 3
are low, (c) the frame-indifference of W (see (2.9)). A fourth possible reason is (d)
invertibility of y, which we discuss now.

That invertibility could have an effect on regularity was first shown by Bauman,
Owen & Phillips [45], who gave an example of an essentially two-to-one equilibrium
solution in a ball for two-dimensional elasticity, with stored-energy function of the
form (2.15), that is C1 but not smooth, and is such that detDy vanishes at the cen-
tre of the ball. An instructive example (resulting from discussions with X. Yan and
J. Bevan) is that of minimizing the two-dimensional energy for an incompressible
material

I(y) =
∫

B

|Dy|2 dx,

where B = B(0, 1) is the unit disc in R2, and y : B → R2, in the set of admissible
mappings

A = {y ∈W 1,2(B;R2) : detDy = 1 a.e. ,y|∂B = ȳ},(2.18)

where in polar coordinates ȳ : (r, θ) 7→ ( 1√
2
r, 2θ). Then there exists a global

minimizer y∗ of I in A. (Note that A is nonempty since ȳ ∈ A.) But since by
degree theory there are no C1 maps y satisfying the boundary condition (2.18), it
is immediate that y∗ is not C1.

For interesting maximum principles satisfied by smooth equilibrium solutions
in two-dimensional elasticity, with stored-energy function of the form (2.15), see
Bauman, Owen & Phillips [46, 47].

2.4. Satisfaction of the Euler-Lagrange equation and uniform positivity
of the Jacobian. Here we return to the computation formally leading to the
weak form (2.4) of the Euler-Lagrange equation, under the assumption (2.7). If
y∗ ∈W 1,∞(Ω;R3) is a W 1,∞ local minimizer of I in

A = {y ∈W 1,1(Ω;R3) : y|∂Ω1 = ȳ},

and if (2.8) holds in the stronger form that for some ε > 0

detDy∗(x) ≥ ε for a.e. x ∈ Ω,(2.19)

then it is easily seen that y∗ satisfies (2.4). In fact we can then pass to the limit
τ → 0 using bounded convergence in the difference quotient∫

Ω

1
τ

[W (Dy∗ + τDϕ)−W (Dy∗)] dx,(2.20)

since by (2.19) we have det(Dy∗(x) + τDϕ(x)) ≥ ε/2 for a.e. x ∈ Ω. However, if
only (2.7) is assumed, or if y∗ is not assumed in advance to be in W 1,∞(Ω;R3),
then it is not obvious how to pass to the limit.
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Problem 5. Prove or disprove that, under reasonable growth conditions on W ,
global or suitably defined local minimizers of I satisfy the weak form (2.4) of the
Euler-Lagrange equation.

Problem 6. Prove or disprove that, under reasonable growth conditions on W ,
global or suitably defined local minimizers of I satisfy (2.19).

If W (A) → ∞ as |A| → ∞ and if y∗ 6∈ W 1,∞, or if (2.19) does not hold, then
W (Dy∗) is essentially unbounded. This is at first sight inconsistent with y∗ being
a minimizer, but we know from the one-dimensional examples in Ball & Mizel [43]
and from the example of cavitation that it can pay to have the integrand infinite
somewhere so that it is smaller somewhere else. In general, it is not possible to
estimate the integrand in the difference quotient (2.20) in terms of W (Dy∗), the
only relevant quantity that is obviously integrable. This difficulty was pointed out
by Antman [12], who was the first to address the issue of satisfaction of the Euler-
Lagrange equation for one-dimensional problems of elasticity when (2.7) holds; in
this context a device essentially due to Tonelli [251] can be used to prove that
the Euler-Lagrange equation holds (see also Ball [22]) without any supplementary
growth conditions on W .

It is perhaps worth making the simple observation that a smooth deformation
y may satisfy I(y) < ∞ and detDy(x) > 0 a.e. without (2.19) holding. As an
example we may take Ω = B(0, 1) and

y(x) = |x|2x,

with W (A) = − log detA + g(A), where g : M3×3 → R is smooth.
For a class of strongly elliptic stored-energy functions of the form W (A) =

g(A) + h(detA), where g : M3×3 → R and h : (0,∞) → [0,∞) are smooth with
h(δ) → ∞ as δ → 0+ at a polynomial rate, Bauman, Owen & Phillips [45] show
that if y ∈ C1,β satisfies the energy-momentum weak form of the Euler-Lagrange
equation in (2.22) below, then in fact y is a smooth solution of the Euler-Lagrange
equation (2.5) and the strict positivity condition (2.19) holds.

As was pointed out in Ball [25], it is possible to derive different first-order nec-
essary conditions for a minimizer when (2.7) holds. (Later Giaquinta, Modica &
Souček [133] derived the same first-order conditions in their framework of Cartesian
currents, under somewhat stronger hypotheses.) We give here improved versions of
these results.

We consider the following conditions that may be satisfied by W :

(C1) |DAW (A)AT | ≤ K(W (A) + 1) for all A ∈M3×3
+ ,

where K > 0 is a constant, and

(C2) |ATDAW (A)| ≤ K(W (A) + 1) for all A ∈M3×3
+ ,

where K > 0 is a constant.
As usual, | · | denotes the Euclidean norm on M3×3, for which the inequalities

|A · B| ≤ |A| · |B| and |AB| ≤ |A| · |B| hold. But of course the conditions are
independent of the norm used up to a possible change in the constant K.

Proposition 2.2. Let W satisfy (C2). Then W satisfies (C1).
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Proof. Since W is frame-indifferent the matrix DAW (A)AT is symmetric (this is
equivalent to the symmetry of the Cauchy stress tensor – see (2.27) below). Hence

|DAW (A)AT |2 = [DAW (A)AT ] · [A(DAW (A))T ]

= [ATDAW (A)] · [ATDAW (A)]T

≤ |ATDAW (A)|2,

from which the result follows. �

Example 2.1. Let

W (A) = (AT A)11 +
1

detA
.

Then W satisfies (C1) and (2.9), but not (C2).

Theorem 2.3. For some 1 ≤ p < ∞ let y ∈ A ∩W 1,p(Ω;R3) be a W 1,p local
minimizer of I in A.
(i) Let W satisfy (C1). Then∫

Ω

[DAW (Dy)DyT ] ·Dϕ(y) dx = 0(2.21)

for all ϕ ∈ C1(R3;R3) such that ϕ and Dϕ are uniformly bounded and satisfy
ϕ(y)|∂Ω1 = 0 in the sense of trace.

(ii) Let W satisfy (C2). Then∫
Ω

[W (Dy)1−DyTDAW (Dy)] ·Dϕdx = 0(2.22)

for all ϕ ∈ C1
0 (Ω;R3).

We use the following simple lemma.

Lemma 2.4. (a) If W satisfies (C1) then there exists γ > 0 such that if C ∈M3×3
+

and |C− 1| < γ then

|DAW (CA)AT | ≤ 3K(W (A) + 1) for all A ∈M3×3
+ .

(b) If W satisfies (C2) then there exists γ > 0 such that if C ∈M3×3
+ and |C−1| < γ

then

|ATDAW (AC)| ≤ 3K(W (A) + 1) for all A ∈M3×3
+ .(2.23)

Proof. We prove (a); the proof of (b) is similar. We first show that there exists
γ > 0 such that if |C− 1| < γ then

W (CA) + 1 ≤ 3
2
(W (A) + 1) for all A ∈M3×3

+ .(2.24)

For t ∈ [0, 1] let C(t) = tC + (1 − t)1. Choose γ ∈ (0, 1
6K ) sufficiently small so

that |C − 1| < γ implies that |C(t)−1| ≤ 2 for all t ∈ [0, 1]. This is possible since
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|1| =
√

3 < 2. For |C− 1| < γ we have that

W (CA)−W (A) =
∫ 1

0

d

dt
W (C(t)A) dt

=
∫ 1

0

DAW (C(t)A) · [(C− 1)A] dt

=
∫ 1

0

DAW (C(t)A)(C(t)A)T · ((C− 1)C(t)−1) dt

≤ K

∫ 1

0

[W (C(t)A) + 1] · |C− 1| · |C(t)−1| dt

≤ 2Kγ
∫ 1

0

(W (C(t)A) + 1) dt.

Let θ(A) = sup|C−1|<γ W (CA). Then

W (CA)−W (A) ≤ θ(A)−W (A) ≤ 2Kγ(θ(A) + 1),

from which (2.24) follows.
Finally, if |C− 1| < γ we have from (C1) and (2.24) that

|DAW (CA)AT | = |DAW (CA)(CA)T C−T |
≤ K(W (CA) + 1)|C−T |
≤ 3K(W (A) + 1),

as required. �

Proof of Theorem 2.3. (i) Given ϕ as in the theorem, define for |τ | sufficiently small

yτ (x) := y(x) + τϕ(y(x)).

Then yτ ∈ A and

Dyτ (x) = (1 + τDϕ(y(x)))Dy(x) a.e. x ∈ Ω.

In particular detDyτ (x) > 0 for a.e. x ∈ Ω and limτ→0 ‖yτ − y‖W 1,p = 0. Hence
I(yτ ) ≥ I(y) for |τ | sufficiently small. But

1
τ

(I(yτ )− I(y)) =
1
τ

∫
Ω

∫ 1

0

d

ds
W ((1 + sτDϕ(y(x)))Dy(x)) ds dx

=
∫

Ω

∫ 1

0

DW ((1 + sτDϕ(y(x)))Dy(x)) · [Dϕ(y(x))Dy(x)] ds dx.

Since by Lemma 2.4(a) the integrand is bounded by the integrable function

3K(W (Dy(x)) + 1) sup
z∈R3

|Dϕ(z)|,

we may pass to the limit τ → 0 using dominated convergence to obtain (2.21).

(ii) This follows in a similar way to (i) from Lemma 2.4 (b). Since most of the
details have already been written down in Bauman, Owen & Phillips [46] we just
sketch the idea. Let ϕ ∈ C1

0 (Ω;R3). For sufficiently small τ > 0 the mapping θτ

defined by

θτ (z) := z + τϕ(z)
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belongs to C1(Ω;R3), satisfies detDθτ (z) > 0, and coincides with the identity on
∂Ω. Standard arguments from degree theory imply that θτ is a diffeomorphism of
Ω to itself. Thus the ‘inner variation’

yτ (x) := y(zτ ), x = zτ + τϕ(zτ )

defines a mapping yτ ∈ A, and

Dyτ (x) = Dy(zτ )[1 + τDϕ(zτ )]−1 a.e. x ∈ Ω.

Since y ∈ W 1,p it follows easily that ‖yτ − y‖W 1,p → 0 as τ → 0. Changing
variables we obtain

I(yτ ) =
∫

Ω

W (Dy(z)[1 + τDϕ(z)]−1) det(1 + τDϕ(z)) dz,

from which (2.22) follows using (2.23) and dominated convergence. �

In order to give an interpretation of Theorem 2.3 (i), let us make the following

Invertibility Hypothesis. y is a homeomorphism of Ω onto Ω′ := y(Ω), Ω′ is a
bounded domain, and the change of variables formula∫

Ω

f(y(x)) detDy(x) dx =
∫

Ω′
f(z) dz(2.25)

holds whenever f : R3 → R is measurable, provided that one of the integrals in
(2.25) exists.

Sufficient conditions for this hypothesis to hold are given in [21] and Šverák [237].

Theorem 2.5. Assume that the hypotheses of Theorem 2.3 (i) and the Invertibility
Hypothesis hold. Then ∫

Ω′
σ(z) ·Dϕ(z) dz = 0(2.26)

for all ϕ ∈ C1(R3;R3) such that ϕ|y(∂Ω1) = 0, where the Cauchy stress tensor σ is
defined by

σ(z) := T(y−1(z)), z ∈ Ω′

and

T(x) = (detDy(x))−1DAW (Dy(x))Dy(x)T .(2.27)

Proof. Since by assumption y(Ω̄) is bounded, we can assume that ϕ and Dϕ are
uniformly bounded. Thus (2.26) follows immediately from (2.21), (2.25) and (2.27).

�

Thus Theorem 2.3 (i) asserts that y satisfies the spatial (Eulerian) form of the
equilibrium equations. Theorem 2.3 (ii), on the other hand, involves the so-called
energy-momentum tensor W (A)1−ATDAW (A), and is a multi-dimensional ver-
sion of the Du Bois Reymond or Erdmann equation of the one-dimensional calculus
of variations.

The hypotheses (C1) and (C2) imply that W has polynomial growth. More
precisely, we have

Proposition 2.6. Suppose W satisfies (C1) or (C2). Then for some s > 0

W (A) ≤M(|A|s + |A−1|s) for all A ∈M3×3
+ .
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Proof. Let V ∈M3×3 be symmetric. For t ≥ 0∣∣∣∣ ddtW (etV)
∣∣∣∣ = |(DAW (etV)etV) ·V|

= |(etVDAW (etV)) ·V|
≤ K(W (etV) + 1)|V|.(2.28)

From this it follows that

W (eV) + 1 ≤ (W (1) + 1)eK|V|.(2.29)

Now set V = lnU, where U = UT > 0, and denote by vi the eigenvalues of U.
Since

| lnU| =
( 3∑

i=1

(ln vi)2
)1/2

≤
3∑

i=1

| ln vi|,

it follows that

eK| lnU| ≤ (vK
1 + v−K

1 )(vK
2 + v−K

2 )(vK
3 + v−K

3 )

≤ 3−3
( 3∑

i=1

vK
i +

3∑
i=1

v−K
i

)1/3

≤ C
( 3∑

i=1

v3K
i +

3∑
i=1

v−3K
i

)3

≤ C1[|U|3K + |U−1|3K ],

where C > 0, C1 > 0 are constants. From (2.29) we thus obtain

W (U) ≤M(|U|3K + |U−1|3K),

where M = C1(W (1) + 1). The result now follows from the polar decomposition
A = RU of an arbitrary A ∈M3×3

+ , where R ∈ SO(3), U = UT > 0. �

It is easily seen that if W is isotropic then both (C1) and (C2) are equivalent to
the condition that

|(v1Φ,1, v2Φ,2, v3Φ,3)| ≤ K(Φ(v1, v2, v3) + 1)

for all vi > 0 and some K > 0, where Φ is given by (2.14) and Φ,i = ∂Φ/∂vi. In
particular, both (C1) and (C2) hold for the class of Ogden materials ([198, 199]),
for which Φ has the form

Φ(v1, v2, v3) =
M∑
i=1

aiϕ(αi) +
N∑

i=1

biψ(βi) + h(v1v2v3)

where ϕ(α) = vα
1 +vα

2 +vα
3 , ψ(β) = (v2v3)β +(v3v1)β +(v1v2)β , ai > 0, bi > 0, αi 6=

0, βi 6= 0, and where h : (0,∞) → [0,∞) is convex, with h(δ) → ∞ as δ → 0,
provided that |δh′(δ)| ≤ K1(h(δ) + 1) for all δ > 0.
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2.5. Regularity and self-contact. An interesting approach to the problem of in-
vertibility (i.e. non-interpenetration of matter) in mixed boundary-value problems
is due to Ciarlet & Nečas [84]. They proposed minimizing

I(y) =
∫

Ω

W (Dy) dx

subject to the boundary condition (2.1) and the global constraint∫
Ω

detDy(x) dx ≤ volume (y(Ω)),

and they gave hypotheses under which the minimum was attained, these hypotheses
being weakened by Qi [217]. They further showed that any minimizer is one-to-one
almost everywhere, and that assuming sufficient regularity of the free boundary
y(∂Ω2) the tangential components of the normal stress vector vanish there. Con-
sequently they identified the above constrained boundary-value problem as cor-
responding to the case of smooth (i.e. frictionless) self-contact. A related but
somwhat different formulation has recently been proposed by Pantz [202]; see also
Giaquinta, Modica & Souček [131].

Problem 7. Justify the Ciarlet-Nečas minimization problem, or an appropriate
modification of it, as a model of smooth self-contact.

The problem here is to construct suitable variations in the neighbourhood of a
region of self-contact of a minimizer to establish that in some sense the tangential
stress components vanish there. This is non-trivial because in principle the two
parts of the boundary in contact with one another could be wildly deformed and
interlocked in a very complex configuration. If such a result could be obtained, a
more ambitious target would be to establish the regularity properties of the free
boundary in both the self-contacting and non self-contacting regions.

2.6. Uniqueness of solutions. For mixed boundary-value problems of elasticity
nonuniqueness of equilibrium solutions is common-place, the most familiar examples
being those associated with buckling of rods, plates and shells. Buckling can occur
even for pure zero-traction boundary conditions, such as in the eversion of part of a
spherical shell. For the pure zero-traction problem one can even have nonuniqueness
among homogeneous dilatations (see Ball [23]). Nonuniqueness of these types is
expected to hold, and to some extent can be proved rigorously, when the stored-
energy function satisfies favourable hypotheses such as strict polyconvexity (though
see Section 2.7). For stored-energy functions corresponding to elastic crystals, for
which there are many minimum energy configurations with a continuum of different
sets of phase boundaries, the extent of non-uniqueness is of course much greater.

For pure displacement boundary conditions, with a strictly polyconvex (or strictly
quasiconvex) stored-energy function satisfying favourable growth conditions, the
situation as regards uniqueness is less clear. In the paper [153] Fritz John proved
uniqueness for smooth deformations with uniformly small strains (but possibly large
rotations). In the same paper he gave a heuristic counter-example to uniqueness
for the case of an annular two-dimensional body, and this has been made rigorous
by Post & Sivaloganathan [214] (see Section 2.7), who also proved nonuniquenesss
for an analogous three-dimensional problem with Ω a torus. But what if Ω is home-
omorphic to a ball? In this case we have already seen that cavitation provides one
counterexample to uniqueness, though the cavitating solution is discontinuous.
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Problem 8. Prove or disprove the uniqueness of sufficiently smooth equilibrium so-
lutions to pure displacement boundary-value problems for homogeneous bodies when
the stored-energy function W is strictly polyconvex and Ω is homeomorphic to a
ball.

The answer to this problem probably depends on both the geometry of Ω and the
boundary conditions. For example, suppose that Ω is a ball, and that the boundary
conditions correspond to severely squeezing the ball until it has a dumb-bell shape
consisting of two roughly ball-shaped regions connected by a narrow passage. In this
case one might expect, though it is not obvious how to prove it, that there might be
equilibrium solutions in which material from one half of Ω is pulled through into the
other half, but prevented from returning by the constriction. On the other hand,
an elegant result of Knops & Stuart [159] implies uniqueness for the case when the
boundary displacements are linear and Ω is star-shaped (see also Taheri [247]).

2.7. Structure of the solution set.

Problem 9. Devise general methods for proving the existence of local minimizers
of I that are not global minimizers, and of other weak solutions of the equilibrium
equations.

For the existence of local minimizers there are two natural approaches. First
we could try to use the direct method of the calculus of variations in a suitable
subset of A. For example, under the hypotheses of Theorem 2.1 suppose that we
want to prove the existence of a local minimizer with respect to some metric d
on A. Assume that d is such that if z(j) ∈ A with z(j) ⇀ z in W 1,1(Ω;R3) and
sup I(z(j)) <∞ then d(z(j), z) → 0.

Let U ⊂ A be open with respect to d, with closure Ū and boundary ∂U . By the
direct method, I attains a minimum ŷ on Ū . Suppose now that we can prove that

inf
∂U

I > inf
U
I > inf

A
I.

Then ŷ ∈ U and is a local, but not global, minimizer with respect to d. I believe that
it should be possible to implement this method in some realistic examples, but have
not seen it done. The only results on local minimizers in nonlinear elasticity using
the direct method that I am aware of are due to Post & Sivaloganathan [214], who
prove the existence of local but not global minimizers for certain two-dimensional
problems (see Section 2.6) for which the domain Ω has nontrivial topology by
global minimization in a weakly closed homotopy class, and to Taheri [246], who
generalizes the results in [214] to a wider class of domains.

The second approach is to find by some method a sufficiently smooth solution
ŷ to the equilibrium equations and attempt to show directly that it is a local
minimizer. For local minimizers in W 1,∞(Ω;R3) (weak local minimizers) this can
be done in principle by checking positivity of the second variation. However for
local minimizers in W 1,p(Ω;R3) with 1 ≤ p < ∞, or in Lq(Ω;R3), 1 ≤ q ≤ ∞,
the task is made much more difficult by the absence of a known generalization
to higher dimensions of the Weierstrass fundamental sufficiency theorem of the
one-dimensional calculus of variations (for a discussion see [31]). Sometimes it
is possible to circumvent the lack of such a theory. For example, in a dead-load
traction problem arising from the bi-axial load experiments of Chu & James [78, 79]
on CuAlNi single crystals, it is proved in Ball & James [38], Ball, Chu & James [34]
(see also Ball, Chu & James [35]) that certain ŷ with Dŷ = A = constant are local
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(but not global) minimizers in L1(Ω;R3), by an argument exploiting the geometric
incompatibility of A with deformation gradients having lower energy.

How can one prove the existence of equilibrium solutions that are not local
minimizers? In exceptional cases one may know an equilibrium solution explicitly
(for example a trivial solution) and be able to show that it does not satisfy some
necessary condition for a local minimizer. If we can also prove the existence of a
global minimizer then we have at least two equilibrium solutions. This can be done,
for example, for the case of some mixed boundary-value problems when the stored-
energy function is polyconvex but not quasiconvex at the boundary (see Ball &
Marsden [42]). Another approach would be to try to use Morse theory or mountain-
pass methods, but it is not clear how to do this so that, for example, appropriate
conditions of Palais-Smale type can be verified; for results in an interesting model
problem see Zhang [264].

More generally, one can ask for a description of how the set of equilibrium so-
lutions varies as a function of relevant parameters such as boundary displacements
or loads. For the pure traction problem near a stress-free state an interesting study
of this type is that of Chillingworth, Marsden & Wan [75, 76] and Wan & Marsden
[257].

Problem 10. Develop local and global bifurcation theories for nonlinear elastostat-
ics that apply to mixed displacement-traction boundary conditions.

As an illustration, the most well-known bifurcation problem in elasticity is that of
buckling of a thin rod. Although this problem has been treated from the perspective
of rod theory in hundreds of papers since the time of Euler [115], there is no rigorous
three-dimensional theory that justifies the usual picture of buckling, for example the
existence of critical buckling loads or displacements, with corresponding branches
of bifurcating buckled solutions. There are at least two difficulties in providing
such a theory. The first is that unless the problem is formulated in a somewhat
unrealistic way, there is no sufficiently explicit trivial compressed solution about
which to linearize the equilibrium equations. For example, suppose that in a stress-
free reference configuration a homogeneous isotropic elastic rod occupies the region
Ω = (0, L) × D, where D ⊂ R2 is the cross-section. A natural boundary-value
problem to consider, corresponding to clamped ends, consists of the equilibrium
equations (2.4) and the boundary conditions (2.1), (2.6), with the choices ∂Ω1 =
{0, L} ×D, ∂Ω2 = (0, L)× ∂D, and

ȳ(0,x′) = (0,x′), ȳ(L,x′) = (λL,x′), x′ ∈ D,(2.30)

where λ > 0. For λ 6= 1 the homogeneous deformation y(x1,x′) = (λx1,x′) does not
in general satisfy the zero traction condition (2.6). For example, for the compressive
case λ < 1 the rod will typically want to bulge, leading to boundary layers near
x1 = 0 and x1 = L. In order to have a homogeneously deformed trivial solution

y(x) = (λx1, µx2, µx3),

one can replace (2.30) by the conditions

y1(0,x′) = 0, y1(L,x′) = λL, x′ ∈ D,

corresponding to the less realistic case of frictionless end-faces constrained to lie in
the planes {0} ×R2 and {λL} ×R2. To prevent sliding of the end-faces one could
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add the further constraint that∫
D

y2 dx′ =
∫

D

y3 dx′ = 0 at x1 = 0, L.

In this case the natural boundary conditions at x1 = 0, L for the variational problem
are that the stress vector t across the end-faces has constant transverse components
t2, t3 which are equal at x1 = 0, L. If we try to prescribe compressive loads at
x1 = 0, L rather than displacements we encounter other difficulties (see [30] for a
discussion of one of these).

The second more serious difficulty has already been mentioned, namely the lack
of regularity of solutions to the linearized equilibrium equations as one approaches
points of ∂Ω1 ∩ ∂Ω2, or points of discontinuity of the applied traction in a pure
traction formulation of the problem, which prohibits use of the implicit function
theorem in natural spaces. Perhaps it might be possible to work in spaces with
suitable weights in the neighbourhood of ∂Ω1 ∩ ∂Ω2. But it seems odd that fine
details of what goes on near ∂Ω1 ∩ ∂Ω2 should have a significant bearing on the
buckling phenomenon, so perhaps there is a different approach to be discovered
that circumvents this difficulty.

Once a local bifurcation picture has been established, the next thing to under-
stand is what happens to bifurcating solutions for large parameter values. For the
case when ∂Ω1∩∂Ω2 is empty global results have recently been obtained by Healey
& Rosakis [143], Healey & Simpson [144] and Healey [142].

2.8. Energy minimization and fracture. Many of the problems described above
have generalizations to variational models of fracture. Since typical fracture prob-
lems are described by deformations that have jump discontinuities across two-
dimensional crack surfaces, fracture cannot in general be modelled in the context
of Sobolev spaces. A generalization of the energy functional (2.2) to deformations
allowing for fracture is

I(y) =
∫

Ω

W (Dy) dx +
∫

Sy

g(y+ − y−, νy) dH2,(2.31)

where y belongs to the class SBV(Ω) of mappings of special bounded variation, i.e.
those whose gradient is a bounded measure having no Cantor part. In (2.31) Sy

denotes the set of jump points of y, νy the measure theoretic normal to Sy, and
y± the traces of y on either side of Sy. The second integral represents the surface
energy of cracks, as postulated in the Griffith theory of fracture (see, for example,
[74]), the simplest case g = constant corresponding to a contribution to the energy
proportional to the total crack surface areaH(Sy). Despite much deep work on such
models (see, for example, Acerbi, Fonseca & Fusco [2], Ambrosio [5, 6], Ambrosio &
Braides [7], Ambrosio, Fusco & Pallara [8, 9], Ambrosio & Pallara [10], Braides [56],
Braides & Coscia [57, 58], Braides, Dal Maso & Garroni [62], Buttazzo [72]), and
their apparent potential for making an impact on understanding fracture, there have
been only isolated attempts to discover their implications for practical problems of
fracture mechanics (see, for example, Francfort & Marigo [123], Bourdin, Francfort
& Marigo [54]).

Problem 11. Clarify the status of models based on the energy functional (2.31)
with respect to classical fracture mechanics and to nonlinear elastostatics.
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Two key issues are fracture initiation and stability, which are both related to the
study of local minimizers for the functional (2.31). A technical obstacle in such a
study is the lack of a general method of calculating a general variation of I about a
given y in the direction of nearby deformations having possibly very different sets
of jump points. An understanding of local minimizers would also clarify the status
of the nonlinear elastostatics model based on (2.2) with respect to that based on
(2.31), and thereby demystify the apparent sensitivity of the elastostatics model to
growth behaviour for very large strains.

3. Dynamics

3.1. Continuum thermomechanics. We recall briefly the elements of continuum
thermomechanics. The basic balance laws are the balance of linear momentum

d

dt

∫
E

ρRyt dx =
∫

∂E

tR dS +
∫

E

b dx,(3.1)

the balance of angular momentum
d

dt

∫
E

ρRx ∧ yt dx =
∫

∂E

x ∧ tR dS +
∫

E

x ∧ b dx,(3.2)

and the balance of energy

d

dt

∫
E

(
1
2
ρR|yt|2 + U

)
dx =

∫
E

b · yt dx +
∫

∂E

tR · yt dS

+
∫

E

r dx−
∫

∂E

qR · n dS.(3.3)

Here y = y(x, t) denotes the deformation, tR the Piola-Kirchhoff stress vector,
ρR > 0 the (constant) density in the reference configuration, b the body force, U
the internal energy, qR the heat flux vector and r the heat supply. The balance laws
are assumed to hold for all Lipschitz domains E ⊂ Ω, and the unit outward normal
to ∂E is denoted by n. In addition to the balance laws, thermomechanical processes
are required to obey the Second Law of Thermodynamics, which we assume to hold
in the form of the Clausius-Duhem inequality

d

dt

∫
E

η dx ≥ −
∫

∂E

qR · n
θ

dS +
∫

E

r

θ
dx(3.4)

for all E, where η is the entropy and θ the temperature. Standard arguments now
show that tR = TRn, where TR is the Piola-Kirchhoff stress tensor, and that for
sufficiently smooth processes (3.1), (3.3), (3.4) reduce to the pointwise forms

ρRytt − div TR − b = 0,(3.5)
d

dt

(
1
2
|yt|2 + U

)
− b · yt − div (ytTR) + div qR − r = 0(3.6)

ηt + div
(qR

θ

)
− r

θ
≥ 0,(3.7)

and that (3.2) is equivalent to the symmetry of the Cauchy stress tensor

T = (detDy)−1TR(Dy)T .

Eliminating r from (3.6), (3.7), using (3.5) and denoting by

ψ = U − θη(3.8)
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the Helmholtz free energy, we obtain that for sufficiently smooth processes

−ψt − θtη + TR ·Dyt −
qR · grad θ

θ
≥ 0.(3.9)

Adopting the prescription of Coleman & Noll [87], we assume that given an arbitrary
deformation y = y(x, t) and temperature field θ = θ(x, t) we can choose a body
force b = b(x, t) and heat supply r = r(x, t) to balance (3.5), (3.6), so that (3.9)
becomes an identity to be satisfied by the constitutive equations. For the case
of a thermoelastic material, for which TR, η, ψ,qR are assumed to be functions of
Dy, θ, grad θ, this leads to the relations

ψ = ψ(Dy, θ), TR = DAψ, η = −Dθψ,(3.10)

and then (3.9) reduces to the inequality

−qR · grad θ
θ

≥ 0.(3.11)

(Note that, although this inequality must be satisfied by the constitutive equation
for qR, for processes involving shocks (3.11) is not equivalent to (3.7), since the
cancellations in the argument used to obtain (3.9) are no longer valid.) For ther-
moelastic materials the balance of angular momentum is satisfied identically as a
consequence of the requirement that TR is frame-indifferent, i.e.

TR(RA, θ) = RTR(A, θ) for all R ∈ SO(3),

which is equivalent to the condition that

ψ(RA, θ) = ψ(A, θ) for all R ∈ SO(3).(3.12)

The condition of material symmetry becomes

ψ(AQ, θ) = ψ(A, θ) for all Q ∈ S,(3.13)

where S is the isotropy group. The equations of isothermal thermoelasticity are
obtained from (3.5), (3.10) by assuming that θ(x, t) = θ0 = constant. Thus the
balance of linear momentum becomes

ρRytt − divDAW (Dy)− b = 0,(3.14)

where W (A) = ψ(A, θ0). As regards the entropy inequality, we again adopt the
Coleman & Noll point of view, choosing r to balance (3.6). (Here we follow Dafer-
mos [93], who gives a similar reduction for isentropic thermoelasticity.) Since, from
(3.11), qR = 0 when grad θ = 0, (3.7) becomes

(1

2
ρR|yt|2 + ψ)t − b · yt − div (ytTR) ≤ 0.(3.15)

For the more general case of a thermoviscoelastic material (of strain-rate type),
TR, η, ψ,qR are assumed to be functions of Dy, Dyt, θ, grad θ. By the same method
we find that

ψ = ψ(Dy, θ), η = −Dθψ,

and that

S ·Dyt −
qR · grad θ

θ
≥ 0,

where

TR = DAψ + S(Dy, Dyt, θ, grad θ).
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In the isothermal case we obtain the equation of motion

ρRytt − divDAW (Dy)− div S(Dy, Dyt)− b = 0,(3.16)

where W = ψ(Dy, θ0), S(Dy, Dyt) = S(Dy, Dyt, θ0, 0), together with the energy
inequality (3.15). The frame-indifference of S takes the form

S(Dy, Dyt) = Dy Σ(U,Ut),(3.17)

for some matrix-valued function Σ, where U = (DyTDy)1/2.

3.2. Existence of solutions.

Problem 12. Prove the global existence and uniqueness of solutions to initial-
boundary value problems for properly formulated dynamic theories of nonlinear elas-
ticity.

To discuss this problem let us begin with isothermal thermoelasticity. The gov-
erning equations are (3.14). These equations need to be supplemented by boundary
conditions such as (2.1), (2.6) and by the initial conditions

y(x, 0) = y0(x), yt(x, 0) = y1(x).(3.18)

If the body force is conservative, so that

b = −grad yh(x,y),(3.19)

then (3.14) formally comprises a Hamiltonian system, and could be alternatively
obtained by applying Hamilton’s principle to the functional∫ T

0

∫
Ω

(
1
2
ρR|yt|2 −W (Dy)− h(x,y)

)
dx dt.

In particular, solutions formally satisfy the balance of energy

E(y,yt) = E(y0,y1), t ≥ 0,(3.20)

where

E(y,v) =
∫

Ω

(
1
2
ρR|v|2 +W (Dy) + h(x,y)

)
dx.

However, weak solutions of the quasilinear wave equation (3.14) do not in general
satisfy (3.20), since singularities such as shock waves can dissipate energy. Corre-
spondingly, although equality holds in the dissipation inequality (3.15) for smooth
solutions, in general it does not do so for weak solutions. Interpreted in the sense
of distributions or measures, (3.15) acts as an admissibility criterion for weak solu-
tions.

In one dimension (3.14) takes the form

ρRytt − σ(yx)x − b = 0,(3.21)

where σ(yx) = W ′(yx), which setting u1 = ρRyt, u2 = yx is equivalent to the system
of two conservation laws

ut − f(u)x = g,(3.22)

where

f(u) =
(
σ(u2)
ρ−1

R u1

)
, g =

(
b
0

)
.

This system is strictly hyperbolic if σ′ = W ′′ > 0, so that W is strictly convex.
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Two approaches have been employed to study (3.22), the Glimm scheme [134]
and variants of it such as front-tracking (introduced by Dafermos [91]), and the
method of compensated compactness as pioneered by Tartar [248], [249] and DiPerna
[101], [102].

The Glimm scheme and variants apply to strictly hyperbolic systems of the form
(3.22) with u ∈ Rn, f : Rn → Rn,g ∈ Rn. They involve a semi-explicit con-
struction of the solutions in terms of approximation of the initial data by piecewise
constant functions, together with an analysis of wave interactions. They are re-
stricted to initial data having small total variation, and thus, via total variation
estimates on the solution, to solutions of small total variation. Glimm’s original
work assumed that the system was ‘genuinely nonlinear’, but this restriction was
removed by Liu [175]. Thanks to work of Bressan [63, 64], Bressan & Colombo [66],
Bressan, Crasta & Piccoli [67], Bressan & Goatin [69], Bressan & Le Floch [68],
Bressan & Lewicka [70], Bressan, Liu & Yang [71] and Liu & Yang [177, 176, 178],
the solutions obtained in these ways are now known to be unique in appropriate
function classes. For genuinely nonlinear systems of two conservation laws, such
as (3.21) with W ′′ > 0,W ′′′ 6= 0, more is known (see Dafermos [93, Chapter XI]).
Most of this work is for solutions on the whole real line; for a treatment of (3.21)
with displacement boundary conditions see Liu [174].

The method of compensated compactness, on the other hand, has up to now
been restricted to systems of at most two conservation laws, such as (3.21). Starting
from a sequence of approximate solutions obtained from the method of vanishing
viscosity (or by a variational time-discretization scheme, see Demoulini, Stuart &
Tsavaras [99]), it uses information coming from the existence of a suitable family of
‘entropies’ (quantities for which there is a corresponding conservation law satisfied
by smooth solutions) to pass to the limit using weak convergence. However, there
is no corresponding uniqueness theorem. These results are described in the books
of Bressan [65], Dafermos [93], and Serre [222]. In a recent development, Bianchini
& Bressan [52] have made a breakthrough by obtaining for the first time total
variation estimates directly from the vanishing viscosity method.

For the three-dimensional equations (3.14) very little is known. Hughes, Kato &
Marsden [146] proved that if W satisfies the strong ellipticity condition

D2W (A)(a⊗ n,a⊗ n) ≥ µ|a|2|n|2 for all A ∈M3×3
+ ,a,n ∈ R3,(3.23)

where µ > 0, then for smooth initial data (3.18) defined on the whole of R3 with
detDy0 > 0, there exists a unique smooth solution on a small time interval [0, T ),
T > 0. This result was extended to pure displacement boundary conditions by Kato
[155]. For related results see Dafermos & Hrusa [94], and Dafermos [93, Chapter
V]. There seem to be no short-time existence results known for mixed displacement-
traction boundary conditions. Interesting results concerning large time existence
for sufficiently smooth and small initial data on the whole of R3 have been obtained
by John [154]. For corresponding results for incompressible elasticity see Hrusa &
Renardy [145], Ebin & Saxton [107], Ebin & Simanca [108, 109] and Ebin [105, 106].

In the variables A = Dy,p = ρRyt, (3.14) becomes the system

At = D, Dij = ρ−1
R vi,j ,(3.24)

pt = divDAW (Dy) + b,(3.25)
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which is hyperbolic if

D2W (A)(a⊗ n,a⊗ n) > 0 for all A ∈M3×3
+ and nonzero a,n ∈ R3.

There is no theory of weak solutions for such multi-dimensional systems. In par-
ticular, it is unclear what conditions on W are natural for existence, and whether
these conditions will be the same as those guaranteeing existence for elastostatics,
namely quasiconvexity or polyconvexity. The system (3.24), (3.25) is special in the
sense that there is an involution

Aij,k −Aik,j = 0

which is satisfied by all weak solutions. Exploiting this in the context of a general
system having involutions, Dafermos [92], [93] proves a theorem implying that if
W is quasiconvex and satisfies (3.23) then any Lipschitz solution A,p of (3.24),
(3.25) on R3× [0, T ], T > 0, is unique within the class of weak solutions admissible
with respect to the entropy W , of uniformly small local oscillation, and satisfying
the same initial data as A,p. An unpublished idea of LeFloch, found indepen-
dently by Qin [218], leads to the observation that for polyconvex W the hypothesis
of uniformly small oscillation can be removed. These results are interesting be-
cause they so far represent the only use of quasiconvexity and polyconvexity in the
context of dynamics. See Šverák [240] for an idea of how quasiconvexity (in an
augmented space) might be used to prove existence by passage to the limit using
weak convergence, in the spirit of compensated compactness. For the full system of
three-dimensional nonlinear thermoelasticity (3.5)–(3.7), which has the additional
conservation law (3.6), the state of knowledge (or rather lack of it) is similar. For
these systems an additional difficulty is that of ensuring invertibility of solutions,
and in particular the condition detDy(x, t) > 0.

For a thermoviscoelastic material, one can hope that a sufficiently well-behaved
viscous part S of the stress will guarantee existence without any convexity condi-
tions on W . Indeed, in the one-dimensional isothermal case, for which the equation
of motion takes the form

ρRytt − σ(yx, yxt)x − b = 0,(3.26)

for which Dafermos [90] and Antman & Seidman [17] have proved existence and
uniqueness for a general class of σ. The special case of the equation

ρRytt − σ(yx)x − yxxt = 0.(3.27)

has been treated in numerous papers (see, for example, Greenberg, MacCamy &
Mizel [137], Andrews [11], Pego [207]). For corresponding results for thermovis-
coelasticity see Racke & Zheng [219].

For the isothermal case in three dimensions it is natural to consider in place of
(3.27) the equation

ρRytt − divDAW (Dy)−∆yt = 0,

for which a theory of existence is available (see Rybka [221], Friesecke & Dolzmann
[125]). However the corresponding viscous stress S = Dyt is not of the form
(3.17), and so is not frame-indifferent. The only existence theory for weak or
strong solutions of (3.16) with S frame-indifferent appears to be that of Potier-
Ferry [215, 216], who, for pure displacement boundary conditions, established global
existence and uniqueness of solutions for initial data close to a smooth equilibrium
having strictly positive second variation. Potier-Ferry assumed that the linearized
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elasticity operator at the equilibrium is strongly elliptic, and that a corresponding
positivity condition holds for the linearized viscous stress. He uses methods of
Sobolevskii [231] (for an alternative treatment also based on Sobolevskii’s work see
Xu & Marsden [261] and Xu [260]).

A recent monograph covering various aspects of the analysis of thermoelasticity
is that of Jiang & Racke [148].

A different approach to the existence of solutions in elasticity is to weaken the
concept of solution to that of a measure-valued solution, in which the unknown is a
Young measure νx,t in appropriate variables satisfying an integral identity obtained
by formally passing to the weak limit in a sequence of approximate solutions. Using
a variational time-discretization method, the global existence of such solutions has
been proved by Demoulini [98] for the viscoelastic equation (3.16) with S frame-
indifferent, and by Demoulini, Stuart & Tsavaras [100] for the equations (3.14)
of elastodynamics with W polyconvex (exploiting the idea of Le Floch and Qin
[218]). However they are unable to handle the constraint detDy > 0. Of course
the significance of such results would be greatly enhanced if there were examples
known of cases in which there was no corresponding weak solution.

3.3. The relation between statics and dynamics. For suitable boundary con-
ditions, the Second Law of Thermodynamics endows the equations of motion of
continuum thermodynamics with a Lyapunov function, that is a function of the
state variables that is nonincreasing along solutions. For example, suppose that
the the mechanical boundary conditions are that y = y(x, t) satisfies

y(·, t)|∂Ω1 = ȳ(·)

and the condition that the applied traction on ∂Ω2 is zero, and that the thermal
boundary condition is

θ(·, t)|∂Ω = θ0,

where θ0 > 0 is a constant. Assume that the heat supply r is zero, and that the
body force is given by (3.19). Then from (3.1), (3.3) and (3.4) with E = Ω we find
that the ballistic free energy

E =
∫

Ω

[
1
2
ρR|yt|2 + U − θ0η + h

]
dx(3.28)

is nonincreasing along solutions. (This is a result of Duhem [104] for the case
of thermoelasticity. See Coleman & Dill [86], Ericksen [111] and Ball [26, 28] for
further discussion and references.) For a thermoviscoelastic material, if v(·, t) → 0,
y(·, t) → y(·) and θ(·, t) → θ0 as t → ∞ the integrand in (3.28) formally tends to
W (Dy) + h(x,y), where W (Dy) = ψ(Dy, θ0) and ψ is the Helmholtz free energy

ψ(Dy, θ0) = U(Dy, θ0)− θ0η(Dy, θ0).

This motivates minimization of

I(y) =
∫

Ω

[W (Dy) + h(x,y)] dx.

(For pure zero traction boundary conditions, when uniformly rotating equilibria
are to be expected, we do not expect that yt → 0, and the corresponding entropy
maximization problem is studied by Lin [173]). As applied to such problems, the
calculus of variations can be viewed as representing a crude version of dynamics in
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which true dynamic orbits are replaced by all paths in a phase space of mappings
{y,yt, θ} along which E is nonincreasing.

Problem 13. Develop a qualitative dynamics for dynamic theories of elasticity.

Of course a prerequisite for such a qualitative dynamics is a global existence
theory for solutions. Given such a theory, the points at issue are the usual ones for
dissipative dynamical systems, namely whether solutions converge to equilibrium
states as t→∞, the structure of regions of attraction, the existence of stable and
unstable manifolds of equilibria, the existence of a global attractor, and so on. In
particular one can ask whether dynamic orbits generically realize suitably defined
local minimizing sequences for the ballistic free energy. This is especially interesting
in the case when the ballistic free energy does not attain a minimum (as in models
of elastic crystals – see Section 4.2). In fact for the one-dimensional viscoelastic
model of this type studied by Ball, Holmes, James, Pego & Swart [36] and Friesecke
& McLeod [128], it is known that no dynamic solutions realize global minimizing
sequences; it is unclear whether or not this is a one-dimensional phenomenon.

Problem 14. Develop criteria for the dynamic stability and instability of equilibria.

Koiter [162] is among those who have drawn attention to the problem of justi-
fying the energy criterion for stability, that an equilibrium solution is stable if it is
a local minimizer of the corresponding elastic energy (for example, of the ballistic
free energy for a thermoviscoelastic material). To keep the discussion simple, con-
sider the case of isothermal motion of a thermoviscoelastic material, for which the
equation of motion is given by (3.16), and assume that the body force is zero. The
corresponding Lyapunov function is

E(y,v) =
∫

Ω

[
1
2
ρR|v|2 +W (Dy)

]
dx,

for which y = y∗,v = 0 is a local minimizer provided y∗ is a local minimizer of

E(y) =
∫

Ω

W (Dy) dx.

Since there are different types of local minimizer corresponding to different metrics
d on different spaces X of deformations y, in particular W 1,∞ local minimizers and
W 1,p local minimizers for 1 ≤ p <∞, it is not clear which kinds of local minimizers
are needed to ensure dynamical stability. As emphasised, for example, by Knops
& Wilkes [160], the standard argument for establishing Lyapunov stability with
respect to a metric d requires more than just that y∗ is a strict local minimizer
with respect to d (that is I(y) > I(y∗) whenever y 6= y∗ and d(y,y∗) is sufficiently
small). What is needed, in addition to the continuity of I with respect to d and the
continuity in time of dynamic orbits with respect to d, is that y∗ lies in a potential
well, namely that for some ε > 0

inf
d(y,y∗)=ε

I(y) > I(y∗).

For a way of verifying that a strict local minimizer in a space based on W 1,p

for 1 < p < ∞ satisfies this requirement when W is strictly polyconvex see Ball
& Marsden [42], and for the case when W is strictly quasiconvex see Evans &
Gariepy [117] and Sychev [242]. However, we do not know in general how to prove
that a given y∗ is a strict W 1,p local minimizer. Further, for W that are not
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quasiconvex almost nothing is known. These questions are related to the open
problem, already mentioned in Section 2.7, of generalizing to higher dimensions the
Weierstrass fundamental sufficiency theorem.

The only rigorous result justifying the energy criterion in any generality (in
particular, in three dimensions) seems to be that of Potier-Ferry [216], who for pure
displacement boundary conditions establishes asymptotic stability, with respect to
the norm of W 2,p×W 2,p, p > 3, of smooth equilibria having strictly positive second
variation, under the hypotheses described in Section 3.2.

Finally, little is known about criteria justifying instability of an equilibrium
solution. An instructive example is that of Friesecke & McLeod [129], who for a
problem of one-dimensional viscoelasticity exhibit an equilibrium solution ū which,
with respect to a topology in which the dynamics is well-posed, (a) is dynamically
stable, but (b) is such that there is a continuous path in the phase space (not a
dynamical solution) leaving ū along which the energy strictly decreases, so that in
particular ū is not a local minimizer.

4. Multiscale problems

4.1. From atomic to continuum.

Problem 15. Establish the status of elasticity theory with respect to atomistic
models.

Is it possible to derive elasticity theory from atomistic models? Such models
range from full quantum many-body theory to approximations such as density-
functional theory, Thomas-Fermi theory, and models in which electronic effects
are not explicitly considered but incorporated into interatomic potentials. There
is an extensive physics and materials literature on such models and on methods
for bridging the atomistic and continuum length-scales (see Phillips [211] for an
introduction). Here I will concentrate on what little is known rigorously for the
the case of elastic crystals. However, another important class of materials is that
of cross-linked polymers, which involves some different issues that are considered
from the point of view of statistical mechanics in Deam & Edwards [97], Edwards
& Vilgis [110].

For crystals, the first question to answer is why they occur in the first place, that
is why at low temperature the minimum energy configuration of a very large number
of atoms is spatially periodic. This is the famous unsolved ‘crystal problem’, nicely
reviewed by Radin [220]. Likewise, there is no fundamental understanding of the
statistical mechanics of crystals, which would explain their stability and instabili-
ties. Given this impasse, in attempts to pass from atomistic to continuum models of
crystals some initial atomic order is always assumed. In the context of free-energy
minimization, one can draw a distinction between two kinds of approach. In the
first, an appropriate limit of a discrete energy functional is sought along sequences
of explicit atomic configurations. For example the atoms may be assumed to occupy
a periodic lattice in a reference configuration, and to be displaced according to a
given sufficiently smooth continuum deformation y (the Cauchy-Born hypothesis),
the number of atoms being sent to infinity with a suitable scaling for the energy.
In this approach there is no attempt to explain why the atoms adopt the assumed
configurations. A recent example is the work of Blanc, Le Bris & Lions [53], who
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obtain in a suitable scaling a limiting energy of the form

I(y) =
∫

Ω

W (Dy) dx

in the cases of (a) a two-body interaction, (b) Thomas-Fermi theory. As is well-
known the case of two-body interactions leads to a W satisfying the Cauchy re-
lations, namely that the linearized elasticity coefficients at a natural state (say
Dy = 1)

cijkl =
∂2W (1)
∂Aij∂Akl

possess the symmetries
cijkl = cjikl = cklij = cikjl.

These symmetries are known not to hold in general (see Love [179], Weiner [258]).
Blanc, LeBris & Lions also obtain second-order terms in the expansion of the energy
with respect to the scaling parameter, identifying these with surface energies. For
fundamental results on linear deformations with the Cauchy-Born hypothesis see
Lieb & Simon [172] and Fefferman [118]; in these papers the dependence on the
deformation gradient enters implicitly through the given Bravais lattice. For more
recent extensions of the results of [172] see Catto, Le Bris & Lions [73].

The second approach is to consider the true minimizers of the discrete prob-
lems, and to try to understand what functional their limit minimizes. One example
of this approach is the interesting study by Friesecke & Theil [130] of a model
two-dimensional problem of a lattice of particles linked by harmonic springs be-
tween their nearest and next nearest neighbours. They determine open regions
of atomic parameters in which the Cauchy-Born hypothesis holds in the appro-
priate limit, and open regions in which it does not. Another interesting recent
study in this spirit is that of Penrose [208], who considers a two-dimensional model
problem of a lattice of rotatable disks with one-body wall interactions and angle-
dependent two-body interactions. By suitably restricting the statistical ensemble,
so that, for example, certain angles between atoms in the deformed configuration
are constrained to lie in certain intervals (these constraints being designed to deter
dislocations), he proves the existence of an elastic free energy W corresponding
to taking the thermodynamic limit with prescribed linear boundary data. He also
deduces a convexity property of W weaker than rank-one convexity, and suggests
that W might in fact be quasiconvex. Other work in this spirit is that of Braides,
Dal Maso & Garroni [62], Braides & Gelli [60, 61] and Foccardi & Gelli [119], who
calculate the Γ-limits of certain discrete functionals with nearest-neighbour or pair-
wise interactions, obtaining a limiting functional allowing fracture of the general
form (2.31) together with a corresponding function space on which to minimize it
(namely SBV(Ω) or GSBV(Ω)). This acts as a reminder that, since the predictions
of minimization problems can depend on the function space, as we have seen in
Section 2.3 in connection with the Lavrentiev phenomenon, a proper atomistic to
continuum derivation should deliver not only the limiting governing equations or
energy, but the appropriate function space as well.

For a proposed scheme for the passage from atomistic to continuum models for
thin films, rods or tubes see Friesecke & James [126]. There seems to be no work
on atomistic derivations of dynamic theories of elasticity, or even of elastostatics in
the context of deformations that are not global energy minimizers.
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In some situations it is desirable to simultaneously use a continuum and a dis-
crete model. For example, one may wish to study the interaction of a defect or
other localized region (such as the vicinity of a crack tip), in which atomistic effects
may be important, with the surrounding bulk material, where a continuum theory
is appropriate. One way of handling the resulting matching problem is the quasi-
continuum method (see Tadmor, Ortiz & Phillips [245]). A rigorous understanding
of such methods is lacking.

4.2. From microscales to macroscales. Materials undergoing phase transfor-
mations involving a change of shape at a critical temperature typically develop
characteristic patterns of microstructure, in which the deformation gradient has
large variations on a fine length-scale that varies from material to material but can
be as small as a few atomic spacings. Such microstructures often contain twinned
regions consisting of many parallel layers separated by sharp interfaces, the defor-
mation gradient alternating between two distinct values in adjacent layers.

Why does fine microstructure form? To what extent can we predict its morphol-
ogy? What are the properties of the material at a macroscale much larger than the
microscale of the microstructure? Whereas it would be desirable to answer such
questions in the context of a suitably formulated dynamical theory, it is neither
clear what such a theory should be (especially as regards the kinetics of interfaces),
nor do we currently have the techniques to give answers corresponding to any such
theory. Hence we will discuss some more specific open problems that arise in static
models of such phase transformations.

Consider a single crystal of thermoelastic material that undergoes a diffusionless
phase transformation involving a change of shape at the temperature θc. For def-
initeness, suppose that there is an interval E of temperatures, containing θc, such
that for θ ∈ E, θ > θc, the minimum energy configuration (called austenite) of
the crystal is cubic. Taking the reference configuration to be undistorted austenite
at θ = θc, we suppose that for θ ∈ E, θ ≤ θc, a minimum energy configuration
(called martensite) is given by the transformation strain U(θ). We suppose that
the Helmholtz free-energy function ψ(A, θ) attains a finite minimum with respect
to A ∈ M3×3

+ for each θ ∈ E, so that by adding to it a suitable function of θ we
may assume for the purposes of free-energy minimization that

min
A∈M3×3

+

ψ(A, θ) = 0.

Let

K(θ) = {A ∈M3×3
+ : ψ(A, θ) = 0}

be the set of energy-minimizing deformation gradients. Note that by (3.12), (3.13)

SO(3)K(θ)S = K(θ),

where we take S to be the subgroup P 24 of SO(3) consisting of the 24 rotations
mapping a cube into itself. It is thus reasonable to suppose that for θ ∈ E,

K(θ) =


α(θ)SO(3), θ > θc,

SO(3) ∪
⋃N

i=1 SO(3)Ui(θc), θ = θc,⋃N
i=1 SO(3)Ui(θ), θ < θc,

(4.1)

where α(·) describes the thermal expansion, with α(θc) = 1, and where the Ui(θ),
1 ≤ i ≤ N , are the distinct positive definite symmetric matrices of the form
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QTU(θ)Q,Q ∈ P 24. We assume that N is independent of θ ∈ E. If Ui(θc) 6= 1
the transformation is first-order, while if Ui(θc) = 1 it is second-order. We say that
each Ui describes a different variant of martensite. For example, in the case of a
cubic-to-tetragonal transformation we may take

U(θ) = U1(θ) = diag (η3, η1, η1),

where η1(θ) > 0, η3(θ) > 0, and then we find that N = 3, and that

U2(θ) = diag (η1, η3, η1), U3(θ) = diag (η1, η1, η3).

For other transformations we get different numbers of variants; for example, for
cubic-to-orthorhombic transformations N = 6, and for cubic to monoclinic trans-
formations N = 12.

Note that in adopting (4.1) we exclude large shears leaving the crystal lattice
invariant (see Ericksen [113]), the inclusion of which would lead to K(θ) consisting
of an infinite number of energy wells for each θ, and to an energy-minimization
problem of a different character to that based on (4.1) (see Fonseca [120]).

The total free energy corresponding to the deformation y : Ω → R3 is given by

Iθ(y) =
∫

Ω

ψ(Dy, θ) dx.

Zero-energy microstructures (at the temperature θ) correspond to sequences of
deformations y(j) such that

lim
j→∞

Iθ(y(j)) = 0.(4.2)

If we assume a mild growth condition on ψ, such as

ψ(A, θ) ≥ c0|A|p − c1 for all A ∈M3×3
+ ,

where c0 > 0, c1 and p > 1 are constants, then (4.2) is equivalent to the statement
that Dy(j) → K(θ) in measure, or that the Young measure (νx)x∈Ω corresponding
to (a subsequence of) Dy(j) satisfies

supp νx ⊂ K(θ) a.e. x ∈ Ω.

The set of macroscopic deformation gradients corresponding to zero-energy mi-
crostructures is the set of gradients Dy : Ω → M3×3

+ such that Dy(j) ⇀ Dy in
Lp for some sequence y(j) satisfying (4.2). Equivalently, following the results of
Kinderlehrer & Pedregal [156, 157], this is the set of gradients Dy such that

Dy(x) ∈ K(θ)qc a.e. x ∈ Ω,

where for a compact set K ⊂ M3×3, Kqc denotes the quasiconvexification of K.
Equivalent definitions of Kqc are

Kqc = {ν̄ : ν is a homogeneous W 1,∞ Young measure with supp ν ⊂ K}
= {A ∈M3×3 : ϕ(A) ≤ max

B∈K
ϕ(B) for all quasiconvex ϕ}

=
⋂
{E ⊃ K : E quasiconvex}.

Here AA =
{
y ∈W 1,1(Ω;R3) : y|∂Ω = Ax

}
, and a set E is quasiconvex if it is the

zero set ϕ−1(0) of a nonnegative quasiconvex function ϕ. We also have that

Kqc = {A ∈M3×3
+ : inf

AA

Iθ(y) = 0}.
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We can similarly define the polyconvexification Kpc and the rank-one convexifi-
cation Krc of a compact set K ⊂M3×3

+ by

Kpc = {A ∈M3×3 : ϕ(A) ≤ max
B∈M3×3

ϕ(B) for all polyconvex ϕ},

Krc = {A ∈M3×3 : ϕ(A) ≤ max
B∈M3×3

ϕ(B) for all rank-one convex ϕ}.

Clearly

Krc ⊂ Kqc ⊂ Kpc.(4.3)

Problem 16. Determine K(θ)qc for θ ≤ θc.

For θ > θc we have that K(θ)qc = K(θ) (cf. Ball & James [41]). For θ ≤ θc

the problem is open. In particular, K(θ)qc is not known for the cubic-to-tetragonal
case either when θ < θc or θ = θc. In [41] Ball & James computed Kqc for the case
of two wells

K = SO(3)U ∪ SO(3)V,

with U = UT > 0,V = VT > 0, detU = detV and with SO(3)U rank-one con-
nected to SO(3)V, which occurs for orthorhombic-to-monoclinic transformations.
In this case by linear changes of variables we can assume that

U = diag (η1, η2, η3), V = diag (η2, η1, η3),(4.4)

where η1 > 0, η2 > 0, η3 > 0 and η1 6= η2. (This includes the case U = U1(θ),V =
U2(θ) of two tetragonal wells.) The answer in this case is (see Ball & James [37])
that Kqc consists of those A ∈M3×3

+ such that

AT A =

 a c 0
c b 0
0 0 η2

3

 ,

where ab − c2 = η2
1η

2
2 , a + b + 2|c| ≤ η2

1 + η2
2 . The proof is by calculating Kpc,

showing that Kpc ⊂ Krc, and using (4.3). Friesecke [124] has announced that he
can calculate K(θ)pc, θ < θc, in the cubic-to-tetragonal case. However, whether in
general K(θ)pc = K(θ)qc is unknown. (Despite this, in their study of nonclassical
austenite-martensite interfaces Ball & Carstensen [33] were able to show that for
θ < θc the identity matrix is rank-one connected to K(θ)qc if and only if it is
rank-one connected to K(θ)pc.)

Problem 17. For free-energy functions ψ(A, θ) of elastic crystals, determine for
which ∂Ω1 ⊂ ∂Ω and g : ∂Ω1 → R3 the minimum of

Iθ(y) =
∫

Ω

ψ(Dy, θ) dx

in A = {y ∈W 1,1(Ω;R3) : y|∂Ω1 = g} is attained, and for which it is not.

A solution to this problem (also to the corresponding problem including applied
loads on ∂Ω2) would help clarify the validity of the hypothesis of Ball & James [39]
that the formation of microstructure is associated with non-attainment of minimum
energy. For example, is non-attainment generic or exceptional?

It is probably overly optimistic to expect a general answer to Problem 17. A
simpler special case for which the answer is in general unknown is when ∂Ω1 = ∂Ω,
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g(x) = Ax, and A ∈ K(θ)qc\K(θ). In this case the problem is equivalent to asking
whether for such A there exists a deformation y satisfying y|∂Ω = Ax and

Dy(x) ∈ K(θ) a.e. .

For the corresponding two-well problem in whichK(θ) is replaced byK = SO(3)U∪
SO(3)V with U,V given by (4.4), there is no y with y|∂Ω = Ax and Dy(x) ∈ K
a.e. . This non-attainment result was proved by Ball & Carstensen [33] using the
result of Ball & James [40] that any y with Dy(x) ∈ Kqc a.e. is a plane strain,
the point being that a plane strain y cannot coincide with a linear mapping Ax
on the boundary of a three-dimensional region Ω unless Dy(x) = A a.e. . In the
corresponding two-dimensional problem the answer is different. In fact, if Ω ⊂ R2

and K = SO(2)U ∪ SO(2)V, where

U = diag (η1, η2), V = diag (η2, η1),

and η1 > 0, η2 > 0 then Müller & Šverák [194] modified the theory of convex integra-
tion due to Gromov [138] to show that there exists y with y|∂Ω = Ax, Dy(x) ∈ K
a.e. for any A ∈ Kqc. (For variations on the method see Dacorogna & Mar-
cellini [89], Müller & Sychev [192], Sychev [243] and Kirchheim [158].) Whether
these exotic minimizers exist in three dimensions, and if so whether they are phys-
ically relevant, is unclear. If, as seems likely, they do exist, then it is natural to
ask whether they are admissible, in the sense that they can be obtained as limits
of minimizers for a corresponding functional incorporating interfacial energy, for
example

Iε
θ (y) =

∫
Ω

[ψ(Dy(x), θ) + ε2|D2y(x)|2] dx

in the limit ε→ 0.
For general information on the models and techniques described in this section

see Ball & James [37], Bhattacharya [50], Hane [140], Müller [189], Luskin [180]
and Pedregal [204], [206].

4.3. From three-dimensional elasticity to theories of rods and shells. A
rod is a three-dimensional body whose form is close to that of a curve in R3. We
can describe a reasonably wide class of such bodies as those which occupy in a
reference configuration the bounded domain

Ωh = {r(s) + Q(s)(0,x′) : s ∈ (0, L),x′ ∈ hD},

where r : (0, L) → R3 is a smooth embedded curve parametrized by arc-length,
so that |r′(s)| = 1, where the cross-section D ⊂ R2 is a bounded domain with
0 ∈ D, and where Q : (0, L) → SO(3) is a smooth mapping with Q(s)e1 = r′(s) for
each s ∈ (0, L), which describes how the cross-section is rotated. The parameter
h > 0 measures the thickness of the rod. The simple case of an initially straight
rod of circular cross-section corresponds to the choice r(s) = se1, D = B(0, 1) ⊂
R2, Q(s) = 1, so that Ωh = (0, L)e1 × hD.

A shell is a three-dimensional body whose form is close to that of a two-dimensional
surface. A class of such bodies consists of those occupying in a reference configu-
ration the bounded domain

Ωh = {r(s1, s2) + τn(s1, s2) : (s1, s2) ∈ S, |τ | ≤ h},
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where S ⊂ R2 is a bounded domain, and r : S → R3 is a smooth embedded oriented
surface with unit normal n(s1, s2). Here h > 0 is the thickness of the shell. A plate
is a flat shell, corresponding to

Ωh = S × (−h, h).(4.5)

When h is small, such thin rods and shells are traditionally described respectively
by one-dimensional rod and two-dimensional shell models, in which the independent
variables are respectively (s, t) and (s1, s2, t), where t is time. There is an immense
literature on the many such theories, well surveyed in the books of Antman [14],
and Ciarlet [82, 83]. However there are only the beginnings of a rigorous theory
justifying such models with respect to three-dimensional elasticity.

Problem 18. Give a rigorous derivation of models of rods, plates and shells, show-
ing that their solutions well approximate appropriate solutions to three-dimensional
elasticity for small values of the thickness parameter h.

There seem to be no results of this type for dynamical theories of elasticity, so
we concentrate on what is known for elastostatics. Here one would ideally like
results showing that the solution sets for boundary-value value problems of three-
dimensional elasticity converge as h → 0 to corresponding sets for an appropriate
rod or shell theory, together with appropriate error estimates. In passing to the
limit h→ 0 other parameters such as loads may need to be scaled with h. Taking
into account such scaling, one would like the convergence and error estimates to be
uniform with respect to parameters such as loads entering the boundary conditions,
so that in particular the description of buckling according to the three-dimensional
theory could be correlated with that for the rod or shell theory identified. One of
the many difficulties to be overcome in order to achieve such results is to under-
stand how boundary-layers behave in the limit h → 0. Such boundary layers will
occur, for example, at the ends of a rod, where, according to Saint-Venant’s prin-
ciple one expects the limiting rod theory to see only resultant loads and moments
applied to the ends. Higher-order corrections in h can be expected to yield more so-
phisticated theories, for example involving numbers of directors (vectors depending
on the independent variables giving a better description of the three-dimensional
deformation).

An isolated theory that addresses some of these difficulties is Mielke’s treatment
[184], [185] of Saint-Venant’s problem for an initially straight rod of uniform cross-
section and prescribed resultant loads and moments at its two ends, in which via
a six-dimensional centre manifold he identifies a Cosserat theory of rods whose so-
lutions attract for long rods those of three-dimensional elasticity having uniformly
small strains and the same resultant loads and moments. In this connection, for
three-dimensional nonlinear elasticity Ericksen [113], [112], [114] has derived equa-
tions describing beautiful semi-inverse solutions for helical deformations of a rod.
For developments see Muncaster [195], [196], and for an existence theory for the
corresponding problem defined on cross-sections see [18].

For plates with a St. Venant-Kirchhoff stored-energy function Monneau [186] has
devised a scheme which shows that for periodic boundary conditions and sufficiently
small external forces, there is a solution of the three-dimensional equilibrium equa-
tions which converges as h→ 0 to the solution of the corresponding Kirchhoff-Love
plate theory, together with error estimates.
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However, the principal method that has so far produced rigorous results of the
desired type is Γ-convergence (see De Giorgi & Franzoni [96], Dal Maso [95]). The
first application of Γ-convergence to nonlinear elasticity was that of Acerbi, But-
tazzo & Percivale [1], who used it to derive a one-dimensional model for an elastic
string. Then Le Dret & Raoult [167, 168, 169, 170] and Ben Belgacem [49] used
it to derive a corresponding two-dimensional membrane theory (see also Bradies,
Fonseca & Francfort [59]). Le Dret & Raoult have also [171] investigated which
Cosserat theories of plates Γ-converge to the membrane theory limit as the thick-
ness goes to zero. Bhattacharya & James [51] used Γ-convergence to derive equa-
tions for thin films of martensitic material, an interesting conclusion being that in
the two-dimensional theory there can be exact austenite-martensite interfaces (for
developments see Shu [223]).

In interesting recent work Friesecke, James & Müller [127] have derived a theory
of nonlinear bending of plates starting from the nonlinear elastic energy

Ih(y) =
∫

Ωh

W (Dy(x)) dx,

where Ωh is given by (4.5). This is a more delicate problem than for the membrane
theory since for the boundary conditions for which the bending theory is expected
to be valid, Ih(yh) is expected to be of order h3 for minimizers yh, whereas for
boundary conditions leading to the membrane theory we expect that Ih(yh) is
of order h. Hence the limit h → 0 corresponds to a singular perturbation. The
corresponding bending theory has energy functional

1
24

∫
S

Q2(II) ds1ds2,

where II denotes the second fundamental form IIij = n,i · y,j , n = y,1 ∧ y,2 and
where

Q2(A) = min
a∈R3

Q3(A + a⊗ e3 + e3 ⊗ a),

Q3(A) = D2W (1)(A,A).

The proof is via a refinement of a rigidity result for SO(3) of John [149], [152] (see
also Kohn [161]). John [150], [151] also rigorously obtains equations for shells of
isotropic material, assuming that the radius of curvature of the shell is large and
the maximum strain is uniformly small, providing interior estimates for the validity
of the approximation. For other related work see Pantz [201], [203]. For plates
satisfying general boundary conditions one expects some theory incorporating both
the membrane and bending cases, but the form this should take is unclear. For
work in this direction see Ciarlet [80] and Ciarlet & Roquefort [85].
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