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Liquid crystals

A multi-billion 
dollar industry.

An intermediate 
state of matter 
between liquids 
and solids. 

Liquid crystals flow like liquids, but the constituent 
molecules retain orientational order.



The mathematics of liquid crystals involves

modelling, variational methods, PDE, algebra,

topology, probability, scientific computation ...

Most mathematical work has been on theOseen-

Frank theory, in which the mean orientation of

the rod-like molecules is described by a vector

field. However, more popular among physicists

is the Landau - de Gennes theory, in which the

order parameter describing the orientation of

molecules is a matrix, the so-called Q-tensor.





The same is true for nonlinear elasticity, and

so at a superficial level the mathematics of

elasticity and liquid crystals is similar.

However, nonlinear elasticity has need of more

of the special structure of the multi-dimensional

calculus of variations (e.g. f is quasiconvex

rather than convex in ∇u whereas for liquid

crystals it seems adequate to assume that f is

convex and even quadratic in ∇u). For liquid

crystals there is an important dependence of f

on u (whereas for elasticity f is independent of

u) and topology plays a much greater role for

liquid crystals than for elasticity.



Liquid crystals (contd)
Liquid crystals are of many different types, the main 
classes being nematics, cholesterics and smectics

Nematics consist of rod-like molecules.

Length 2-3 nm



Depending on the nature of the molecules, the 
interactions between them and the temperature 
the molecules can arrange themselves in 
different phases.

Isotropic fluid – no orientational
or positional order



Nematic phase
orientational but
no positional
order

Smectic A
phase

Smectic C
phase

Orientational and some positional order

The molecules have time-varying orientations

due to thermal motion.



Electron micrograph
of nematic phase

http://www.netwalk.com/~laserlab/lclinks.html



Cholesterics

DoITPoMS, Cambridge

If a chiral dopant is added the

molecules can form a cholesteric

phase in which the mean

orientation of the molecules

rotates in a helical fashion.



Isotropic to nematic phase 
transition

The nematic phase typically forms on cooling

through a critical temperature θc by a phase

transformation from a high temperature isotropic

phase.

θm θc

θ > θc

isotropic

θm < θ < θc

nematic

θ < θm

other LC or

solid phase



DoITPoMS, 
Cambridge



The director
A first mathematical description of the nematic

phase is to represent the mean orientation of

the molecules by a unit vector n = n(x, t).

n

But note that for most liquid

crystals n is equivalent to −n,

so that a better description is

via a line field in which we

identify the mean orientation

by the line through the origin

parallel to it.



The twisted nematic display

Wikipedia



Defects
Roughly these can be thought of as (point or

line) discontinuities in the director or line field.

Schlieren texture of a nematic film 
with surface point defects (boojums). 
Oleg Lavrentovich (Kent State)

Zhang/Kumar 2007
Carbon nano-tubes as liquid crystals



Modelling via molecular dynamics

Monte-Carlo simulation using Gay-Berne

potential to model the interaction between

molecules, which are represented by ellipsoids.

http://mw.concord.org

This interaction potential is

an anisotropic version of the

Lennard-Jones potential

between pairs of atoms

or molecules.



UGB = 4ε0ε(r̂ij, ûi, ûj)[u(r̂ij, ûi, ûj)
12−u(r̂ij, ûi, ûj)

6],

where

u(r̂ij, ûi, ûj) =
σc

rij − σ(r̂ij, ûi, ûj) + σc
,

rij = |̂rij|, and where the functions σ(r̂ij, ûi, ûj)

and ε(r̂ij, ûi, ûj) measure the contact distance

between the ellipsoids and the attractive well

depth respectively (depending in particular on

the ellipsoid geometry) and ε0, σc are empirical

parameters.



Twisted nematic display simulation

M. Ricci, M. Mazzeo, R. Berardi, P. Pasini, C. Zannoni (courtesy 
Claudio Zannoni)

944,784 molecules, including 157,464 fixed in layers near the 
boundaries to prescribe the orientation there.



Continuum models 

Ω

To keep things simple consider

only static configurations,

for which the fluid velocity is zero.



x

Ω

B(x,δ)

Molecular orientations

Fix x ∈ Ω and a

small δ > 0.



Example:

µ = 1
2(δe + δ−e) represents a state of perfect

alignment parallel to the unit vector e.



If the orientation of molecules is equally

distributed in all directions, we say that the

distribution is isotropic, and then µ = µ0, where

dµ0(p) =
1

4π
dp,

for which ρ(p) = 1
4π.

A natural idea would be to use as a state

variable the probability measure µ = µx.

However this represents an infinite-dimensional

state variable at each point x, and if we use as

an approximation moments of µ then we have

instead a finite-dimensional state variable.



Because µ(E) = µ(−E) the first moment
�

S2
p dµ(p) = 0.



Let e ∈ S2. Then

e ·Me =
�

S2
(e · p)2dµ(p)

= �cos2 θ�,

where θ is the angle between p and e.

The second moment tensor of the isotropic

distribution µ0, dµ0 = 1
4πdp, is

M0 =
1

4π

�

S2
p⊗ p dS =

1

3
1

(since
�
S2 p1p2 dS = 0,

�
S2 p21 dS =

�
S2 p22 dS etc

and trM0 = 1.)



Note that

Q =
�

S2

�
p⊗ p− 1

3
1

�
dµ(p)

satisfies Q = QT , trQ = 0, Q ≥ −1
31.



Remark. Q = 0 does not imply µ = µ0.

For example we can take

µ =
1

6

3�

i=1

(δei + δ−ei).



Since Q is symmetric and trQ = 0,

Q = λ1n1 ⊗ n1 + λ2n2 ⊗ n2 + λ3n3 ⊗ n3,

where {ni} is an orthonormal basis of eigen-

vectors of Q with corresponding eigenvalues

λ1, λ2, λ3 with λ1 + λ2 + λ3 = 0.

Since Q ≥ −1
31, each λi ≥ −1

3

and hence −1
3 ≤ λi ≤ 2

3.



Conversely, if each λi ≥ −1
3 then M is the

second moment tensor for some µ, e.g. for

µ =
3�

i=1

(λi +
1

3
)
1

2
(δni + δ−ni).

If λmin(Q) = −1
3 then for the corresponding

eigenvector e we have Qe · e = −1
3, and hence

�

S2

(p · e)2dµ(p) = 0,

and so µ is supported on the great circle

perpendicular to e.



In the uniaxial case we can suppose

λ1 = λ2 = −s
3, λ3 = 2s

3 , and setting n3 = n we

get

Q = −s

3
(1− n⊗ n) +

2s

3
n⊗ n.

Thus

Q = s(n⊗ n− 1

3
1),

where −1
2 ≤ s ≤ 1.

If the eigenvalues λi of Q are distinct then Q

is said to be biaxial, and if two λi are equal

uniaxial.



Note that

Qn · n =
2s

3

= �(p · n)2 − 1

3
�

= �cos2 θ − 1

3
�,

where θ is the angle between p and n. Hence

s =
3

2
�cos2 θ − 1

3
�.



s = −1

2
⇔

�

S2
(p · n)2dµ(p) = 0

(all molecules perpendicular to n).

s = 0 ⇔ Q = 0

(which occurs when µ is isotropic).

s = 1 ⇔
�

S2
(p · n)2dµ(p) = 1

⇔ µ =
1

2
(δn + δ−n)

(perfect ordering parallel to n).



If Q = s(n⊗ n− 1
31) is uniaxial then

|Q|2 =
2s2

3
, detQ =

2s3

27
.

In practice Q is observed to be very nearly

uniaxial except possibly very near defects, with

a constant value of s (typical values being in

the range 0.6− 0.8).

We will provide an explanation for this later.



Proof. The characteristic equation of Q is

det(Q− λ1) = detQ− λtr cof Q + 0λ2 − λ3.

But 2tr cof Q = 2(λ2λ3+λ3λ1+λ1λ2) = (λ1+

λ2 + λ3)
2− (λ2

1 + λ2
2 + λ2

3) = −|Q|2. Hence the

characteristic equation is

λ3 − 1

2
|Q|2λ− detQ = 0,

and the condition that λ3− pλ+ q = 0 has two

equal roots is that p ≥ 0 and 4p3 = 27q2.

Proposition.

Given Q = QT , trQ = 0, Q is uniaxial if and

only if

|Q|6 = 54(detQ)2.



Energetics

Ω



At each point x ∈ Ω we have a corresponding

measure µx and order parameter tensor Q(x).

We suppose that the material is described by a

free-energy density ψ(Q,∇Q), so that the total

free energy is given by

I(Q) =

�

Ω
ψ(Q(x),∇Q(x)) dx.

We write ψ = ψ(Q,D), where D is a third order

tensor.



The domain of ψ





Frame-indifference
Fix x̄ ∈ Ω, Consider two observers, one using

the Cartesian coordinates x = (x1, x2, x3) and

the second using translated and rotated coor-

dinates z = x̄ + R(x − x̄), where R ∈ SO(3).

We require that both observers see the same

free-energy density, that is

ψ(Q∗(x̄),∇zQ
∗(x̄)) = ψ(Q(x̄),∇xQ(x̄)),

where Q∗(x̄) is the value of Q measured by the

second observer.



Q∗(x̄) =
�

S2
(q ⊗ q − 1

3
1)dµx̄(R

T q)

=

�

S2
(Rp⊗Rp− 1

3
1)dµx̄(p)

= R
�

S2
(p⊗ p− 1

3
1)dµx̄(p)R

T .



Hence Q∗(x̄) = RQ(x̄)RT , and so

∂Q∗ij
∂zk

(x̄) =
∂

∂zk
(RilQlm(x̄)Rjm)

=
∂

∂xp
(RilQlmRjm)

∂xp

∂zk

= RilRjmRkp
∂Qlm

∂xp
.

Thus, for every R ∈ SO(3),

ψ(Q∗, D∗) = ψ(Q,D),

where Q∗ = RQRT , D∗
ijk = RilRjmRkpDlmp.

Such ψ are called hemitropic.



Material symmetry

The requirement that

ψ(Q∗(x̄),∇zQ
∗(x̄)) = ψ(Q(x̄),∇xQ(x̄))

when z = x̄+ R̂(x− x̄), where R̂ = −1+2e⊗ e,

|e| = 1, is a reflection is a condition of ma-

terial symmetry satisfied by nematics, but not

cholesterics, whose molecules have a chiral na-

ture.



Since any R ∈ O(3) can be written as R̂R̃,

where R̃ ∈ SO(3) and R̂ is a reflection, for a

nematic

ψ(Q∗, D∗) = ψ(Q,D)

where Q∗ = RQRT , D∗
ijk = RilRjmRkpDlmp and

R ∈ O(3). Such ψ are called isotropic.



Bulk and elastic energies

Thus, putting D = 0,

ψB(RQRT) = ψB(Q) for all R ∈ SO(3),

which holds if and only if ψB is a function of the

principal invariants of Q, that is, since trQ = 0,

ψB(Q) = ψ̄B(|Q|2,detQ).



Following de Gennes, Schophol & Sluckin PRL

59(1987), Mottram & Newton, Introduction

to Q-tensor theory, we consider the example

ψB(Q, θ) = a(θ)trQ2 − 2b

3
trQ3 +

c

2
trQ4,

where θ is the temperature, b > 0, c > 0, a =

α(θ − θ∗), α > 0.

The bulk energy



Then

ψB = a
3�

i=1

λ2
i −

2b

3

3�

i=1

λ3
i +

c

2

3�

i=1

λ4
i .

ψB attains a minimum subject to
�3

i=1 λi = 0.

A calculation shows that the critical points

have two λi equal, so that λ1 = λ2 = λ, λ3 =

−2λ say, and that

λ(a + bλ + 3cλ2) = 0.

Hence λ = 0 or λ = λ±, and

λ± =
−b±

�
b2 − 12ac

6c
.



For such a critical point we have that

ψB = 4aλ2 + 4bλ3 + 9cλ4,

which is negative when

4a + 4bλ + 9cλ2 = a + bλ < 0.

A short calculation then shows that a+bλ− < 0

if and only if a < 2b2

27c.



Hence we find that there is a phase trans-

formation from an isotropic fluid to a uniax-

ial nematic phase at the critical temperature

θNI = θ∗ + 2b2

27αc. If θ > θNI then the unique

minimizer of ψB is Q = 0.

If θ < θNI then the minimizers are

Q = smin(n⊗ n− 1

3
1) for n ∈ S2,

where smin = b+
√

b2−12ac
2c > 0.



The elastic energy



For the elastic energy we take

ψE(Q,∇Q) =
4�

i=1

LiIi,

where the Li are material constants.

An example of a hemitropic, but not isotropic

function is

I5 = εijkQilQjl,k.



The constrained theory



Oseen-Frank energy
Formally calculating ψE in terms of n,∇n we

obtain the Oseen-Frank energy functional



Boundary conditions

(a) In the constrained/Oseen-Frank theory.

(i) Strong anchoring

n(x) = ±n̄(x), x ∈ ∂Ω.

Special cases:

1. (Homeotropic) n̄(x) = ν(x),

ν(x) = unit outward normal

2. (Planar) n̄(x) · ν(x) = 0.



Special cases:

1. α(x) = 1 homeotropic .

2. α(x) = 0 planar degenerate (or tangent),

director parallel to boundary but preferred

direction not prescribed.

(ii) Conical anchoring:

|n(x) · ν(x)| = α(x) ∈ [0,1], x ∈ ∂Ω,

where ν(x) is the unit outward normal.

(iii) No anchoring: no condition on n on ∂Ω.

This is natural mathematically but seems dif-

ficult to realize in practice.



(iv) Weak anchoring. No boundary condition

is explicitly imposed, but a surface energy term

is added, of the form
�

∂Ω
w(x, n) dS

where w(x, n) = w(x,−n).

For example, corresponding to strong

anchoring we can choose

w(x, n) = −K(n(x) · n̄(x))2,

formally recovering the strong anchoring

condition in the limit K →∞.



Likewise, corresponding to conical anchoring

we can choose

w(x, n) = K[(n(x) · ν(x))2 − α(x)2]2.

Weak anchoring conditions are appealing

physically because they try to model the

interaction between the liquid crystal and

the confining boundary. They also allow

for changes in topology of the director

field which may not be possible with

strong anchoring.



(b) Landau - de Gennes

(i) Strong anchoring:

Q(x) = Q̄(x), x ∈ ∂Ω.

(ii) Weak anchoring: add surface energy term
�

∂Ω
w(x,Q) dS.

Boundary conditions contd

(iii) Conical: ?? perhaps

Q(x)ν(x) ·ν(x) =

�
3

2
|Q(x)|(α(x)2− 1

3
), x ∈ ∂Ω.



Function Spaces 
(part of the mathematical model)

Landau – de Gennes theory

We are interested in equilibrium configurations

of finite energy

I(Q) =
�

Ω
[ψB(Q) + ψE(Q,∇Q)] dx,

satisfying suitable boundary conditions. (Here

we ignore electromagnetic contributions to the

energy and surface terms.)



We use the Sobolev space W1,p(Ω;M3×3). Since

usually we assume

ψE(Q,∇Q) =
4�

i=1

LiIi,

I1 = Qij,jQik,k, I2 = Qik,jQij,k,

I3 = Qij,kQij,k, I4 = QlkQij,lQij,k,

we typically take p = 2.



Constrained theory.



Schlieren texture of a nematic film with surface point defects (boojums). 
Oleg Lavrentovich (Kent State)



Possible defects in constrained theory

Q = s(n⊗ n− 1

3
1)

Hedgehog

Q,n ∈W1,p, 1 ≤ p < 3

Finite energy

∇n(x) = 1
|x|(1− n⊗ n)

|∇n(x)|2 = 2
|x|2� 1

0 r2−pdr <∞



Disclinations



Index one half singularities

Zhang/Kumar 2007
Carbon nano-tubes
as liquid crystals



Existence in Landau – de Gennes theory

Suppose we take ψB : E → R to be contin-

uous and bounded below, E = {Q ∈ M3×3 :

Q = QT , trQ = 0}, (e.g. of the quartic form

considered previously) and

ψE(Q,∇Q) =
4�

i=1

LiIi.





Proof

By the direct method of the calculus of vari-

ations. Let Q(j) be a minimizing sequence in

A. the inequalities on the Li imply that

3�

i=1

LiIi(∇Q) ≥ µ|∇Q|2

for all Q (in particular
�3

i=1 Ii(∇Q) is convex in

∇Q). By the Poincaré inequality we have that

Q(j) is bounded in W1,2

so that for a subsequence (not relabelled)

Q(j) ⇀ Q∗ in W1,2

for some Q∗ ∈ A.



In the quartic case we can use elliptic regularity

(Davis & Gartland) to show that any minimizer

Q∗ is smooth.



Proposition (JB/Majumdar)

For any boundary conditions, if L4 �= 0 then

I(Q) =

�

Ω
[ψB(Q) +

4�

i=1

LiIi] dx

is unbounded below.

But what if L4 �= 0?



Proof. Choose any Q satisfying the boundary

conditions, and multiply it by a smooth func-

tion ϕ(x) which equals one in a neighbourhood

of ∂Ω and is zero in some ball B ⊂ Ω, which

we can take to be B(0,1). We will alter Q in

B so that

J(Q) =
�

B
[ψB(Q) +

4�

i=1

LiIi] dx

is unbounded below subject to Q|∂B = 0.



Choose

Q(x) = θ(r)

	
x

|x| ⊗
x

|x| −
1

3
1




, θ(1) = 0,

where r = |x|. Then

|∇Q|2 =
2

3
θ′2 +

4

r2
θ2,

and

I4 = QklQij,kQij,l =
4

9
θ(θ′2 − 3

r2
θ2).



Hence

J(Q) ≤ 4π
� 1

0
r2
�
ψB(Q) + C

�
2

3
θ′2 +

4

r2
θ2
�
+

L4
4

9
θ

�
θ′2 − 3

r2
θ2
��

dr,

where C is a constant.

Provided θ is bounded, all the terms are bounded

except

4π
� 1

0
r2
�
2

3
C +

4

9
L4θ

�
θ′2 dr.



Choose

θ(r) =


θ0(2 + sin kr) 0 < r < 1

2
2θ0(2 + sin k

2)(1− r) 1
2 < r < 1

The integrand is then bounded on (1
2,1) and

we need to look at

4π
� 1

2

0
r2
�
2

3
C +

4

9
L4θ0(2 + sin kr)

�
θ20k

2 cos2 kr dr,

which tends to −∞ if L4θ0 is sufficiently neg-

ative.



Existence of minimizers in the 
constrained theory

Similar. In fact, since in the constrained

theory |Q| is bounded we can allow L4 �= 0

under appropriate inequalities on the Li. The

only difference from the unconstrained case is

how to handle the constraint.



But this can be written as

|Q|2 =
2s2

3
, detQ =

2s3

27
,

and if Q(j) satisfy the constraint with Q(j) ⇀

Q∗ in W1,2 then by the compactness of the

embedding of W1,2 in L2 we may assume that

Q(j) → Q∗ a.e., so that Q∗ also satisfies the

constraint.



Can we orient the director? 
(JB/Zarnescu, ARMA 2011)



Relating the Q and n descriptions

For s a nonzero constant and n ∈ S2 let

P (n) = s

�
n⊗ n− 1

3
1

�
,

and set

Q =
�
Q ∈M3×3 : Q = P (n) for some n ∈ S2

�
.

Thus P : S2 → Q. The operator P provides us

with a way of ‘unorienting’ an S2-valued vector

field.



Proposition

If n ∈ W1,p(Ω, S2), 1 ≤ p ≤ ∞, then Q = P (n)

belongs to W1,p(Ω,Q). Conversely, let Q ∈
W1,p(Ω,Q), 1 ≤ p ≤ ∞, and n be a measur-

able function on Ω with values in S2 such that

P (n) = Q. If n is continuous along almost

every line parallel to the coordinate axes and

intersecting Ω, then n ∈ W1,p(Ω, S2) (so that

Q is orientable). Moreover

Qij,knj = sni,k.



Proof

For g, h ∈W1,1(Ω) ∩ L∞(Ω) we have

gh ∈W1,1(Ω) ∩ L∞(Ω) and (gh),i = gh,i + g,ih.

Hence, if n ∈ W1,p, we have Q ∈ W1,1 and

Qij,k = s(ninj,k +ni,knj) from which we obtain

∇Q ∈ Lp and then Q ∈W1,p. Also

Qij,knj = s
�
ni(nj,knj) + ni,k

�

= s[
ni

2
(njnj� �� �

=1

),k + ni,k] = sni,k.



Conversely, suppose that Q ∈ W1,p. Let x ∈ Ω

with n continuous along the line (x+Rek)∩Ω.

Let x + tek ∈ Ω. As Q ∈ W1,1 we can suppose

that Q is differentiable at x in the direction ek.

Then

Qij(x + tek)−Qij(x)

t

= s

�
ni(x+tek)nj(x+tek)−ni(x)nj(x)

t

�

= s · ni(x + tek)

�
nj(x+tek)−nj(x)

t

�

+s ·
�
ni(x+tek)−ni(x)

t

�
nj(x).



Multiply both sides by 1
2

�
nj(x + tek) + nj(x)

�
.

Then, since
�
nj(x + tek)− nj(x)

� �
nj(x + tek) + nj(x)

�

= nj(x + tek)nj(x + tek)− nj(x)nj(x) = 1− 1 = 0

we have that

Qij(x + tek)−Qij(x)

t
· 1
2

�
nj(x + tek) + nj(x)

�

= s ·
	
ni(x + tek)− ni(x)

t




nj(x)
1

2

�
nj(x + tek) + nj(x)

�
.



Letting t→ 0 and using the assumed continuity

of n we deduce that

s · lim
t→0

ni(x + tek)− ni(x)

t
= Qij,k(x)nj(x).

Hence the partial derivatives of n exist almost

everywhere in Ω and satisfy

sni,k = Qij,knj

and since ∇Q ∈ Lp it follows that n ∈W1,p(Ω, S2)

as required.



Proposition

Orientability is preserved by weak convergence:

if Q(k) ∈ W1,p(Ω;RP2), 1 ≤ p ≤ ∞, is a se-

quence of orientable maps with Q(k) converg-

ing weakly to Q in W1,p (weak* if p = ∞), then

Q is orientable.

Proof

If Q(k) = P (n(k)) where n(k) ∈ W1,1 then by

the previous result n(k) is bounded in W1,p

(equi-integrable if p = 1) and so we may

assume that n(k) ⇀ n in W1,p and n(k) → n

a.e., which implies that P (n) = Q.



Proof

Suppose that n and τn both generate Q and

belong to W1,1(Ω, S2), where τ2(x) = 1 a.e..

Let Q ⊂ Ω be a cube with sides parallel to

the coordinate axes. Let x2, x3 be such that

the line x1 �→ (x1, x2, x3) intersects Q. Let

L(x2, x3) denote the intersection. For a.e. such

x2, x3 we have that n(x) and τ(x)n(x) are ab-

solutely continuous in x1 on L(x2, x3). Hence

n(x) · τ(x)n(x) = τ(x) is continuous in x1, so

that τ(x) is constant on L(x2, x3).



Let ϕ ∈ C∞0 (Q). Then by Fubini’s theorem
�

Q
τϕ,1dx =

�

Q
(τϕ),1dx = 0,

so that the weak derivative τ,1 exists in Q and

is zero. Similarly the weak derivatives τ,2, τ,3
exist in Q and are zero. Thus ∇τ = 0 in Q and

hence τ is constant in Q. Since Ω is connected,

τ is constant in Ω, and thus τ ≡ 1 or τ ≡ −1

in Ω.



A smooth nonorientable line field 
in a non simply connected region.



The index one half singularities are non-orientable



Thus in a simply-connected region the uniaxial de 
Gennes and Oseen-Frank theories are equivalent.

Another consequence is that it is 
impossible to modify this Q-tensor 
field in a core around the singular 
line so that it has finite Landau-de 
Gennes energy.

(See also a recent topologically more general lifting result 
of Bethuel and Chiron for maps u:Ω→N.)



Ingredients of Proof of Theorem 2
• Lifting possible if Q is smooth and Ω is

simply connected

• Pakzad-Rivière theorem (2003) implies that

if ∂Ω is smooth, then there is a sequence of

smooth Q(j) : Ω → RP2 converging weakly to

Q in W1,2.

• We can approximate a simply-connected

domain with boundary of class C0 by ones that

are simply-connected with smooth boundary

• Orientability is preserved under weak

convergence



2D examples and results
for non simply-connected regions



Given Q ∈W1,2(G;Q2) define the auxiliary

complex-valued map

A(Q) =
2

s
Q11 −

1

3
+ i

2

s
Q12.

Then A(Q) = Z(n)2,

where Z(n) = n1 + in2.

A : Q2 → S1 is bijective.



Let C = {C(s) : 0 ≤ s ≤ 1} be a smooth Jordan

curve in R2 ≃ C.

If Z : C → S1 is smooth then the degree of Z

is the integer

deg (Z,C) =
1

2πi

�

C

Zs

Z
ds.

Writing Z(s) = eiθ(s) we have that

deg (Z,C) =
1

2πi

� 1

0
iθsds =

θ(1)− θ(0)

2π
.



If Z ∈ H
1
2(C;S1) then the degree may be de-

fined by the same formula

deg (Z,C) =
1

2πi

�

C

Zs

Z
ds.

interpreted in the sense of distributions (L.

Boutet de Monvel).



Theorem

Let Q ∈W1,2(G;Q2). The following are equiv-

alent:

(i) Q is orientable.

(ii) TrQ ∈ H
1
2(C;Q2) is orientable for every

component C of ∂G.

(iii) deg (A(TrQ), C) ∈ 2Z for each component

C of ∂G.

We sketch the proof, which is technical.



P

The orientation at the beginning and end of

the loop are the same since we can pass the

loop through the holes using orientability on

the boundary.

(i) ⇔ (ii) for continuous Q



(ii) ⇔ (iii). If TrQ is orientable on C then

deg (A(TrQ), C) = deg (Z2(n), C)

=
1

2πi

�

C

(Z2)s

Z2
ds

=
1

2πi

�

C
2
Zs

Z
ds

= 2deg (Z(n), C)

Conversely, if A(TrQ(s)) = eiθ(s) and

deg(A(TrQ), C) =
θ(1)− θ(0)

2π
∈ 2Z

then Z(s) = e
iθ(s)

2 ∈ H
1
2(C, S1) and so TrQ is

orientable.



We have seen that the (constrained) Landau-

de Gennes and Oseen-Frank theories are equiv-

alent in a simply-connected domain. Is this

true in 2D for domains with holes?

If we specify Q on each boundary component

then by the Theorem either all Q satisfying

the boundary data are orientable (so that the

theories are equivalent), or no such Q are ori-

entable, so that the Oseen Frank theory can-

not apply and the Landau- de Gennes theory

must be used.



More interesting is to apply boundary condi-

tions which allow both the Landau - de Gennes

and Oseen-Frank theories to be used and com-

pete energetically.

G = Ω\�n
i=1 ω̄i

So we consider the problem

of minimizing

I(Q) =
�

G
|∇Q|2dx

subject to Q|∂Ω = g orientable

with the boundaries ∂ωi free.



Since A is bijective and

I(Q) =
2

s2

�

G
|∇A(Q)|2dx

our minimization problem is equivalent to min-

imizing

Î(m) =
2

s2

�

G
|∇m|2dx

in W
1,2
A(g)

(G;S1) =

{m ∈W1,2(G;S1) : m|∂Ω = A(g)}.



Hence if there is only one hole (n = 1) then

deg(m,∂ω1) is even and so every Q is orientable.

So to have both orientable and non-orientable

Q we need at least two holes.



Tangent boundary conditions 
on outer boundary. No (free) 
boundary conditions on inner 
circles.





For M large enough 
the minimum energy 
configuration is 
unoriented, even 
though there is a 
minimizer among 
oriented maps.

If the boundary 
conditions 
correspond to the 
Q-field shown, then 
there is no 
orientable Q that 
satisfies them.



The general case of two holes (n = 2).

Let h(g) be the solution of the problem

∆h(g) = 0 in G
∂h(g)

∂ν
= A(g)× ∂A(g)

∂τ
on ∂Ω

h(g) = 0 on ∂ω1 ∪ ∂ω2,

where ∂
∂τ is the tangential derivative on the

boundary (cf Bethuel, Brezis, Helein).

Let J(g) = (J(g)1, J(g)2), where

J(g)i = 1
2π

�
∂ωi

∂h(g)
∂ν ds.



Theorem

All global minimizers are nonorientable iff

dist(J(g)1,Z) < dist(J(g)1,2Z)

and all are orientable iff

dist(J(g)1,2Z) < dist(J(g)1,2Z+ 1)

In the stadium example we can show that

J(g)1 = −1. Hence the first condition holds

whatever the distance between the holes, so

that the minimizer is always non-orientable.



The eigenvalue constraints

Question: how are the eigenvalue constraints

−1

3
< λi(Q) <

2

3

maintained in the theory?

B/ Apala Majumdar



Nonlinear elasticity



To ensure this we assume that

W (A) →∞ as detA→ 0+



Correspondingly, it is natural to suppose that

ψB(Q, θ) →∞ as λmin(Q) → −1

3
+ .

We show how such an ψB can be constructed

on the basis of a microscopic model.

Such a suggestion was made by Ericksen in the

context of his model of nematic liquid crystals.



The Onsager model 

In the Onsager model the probability measure

µ is assumed to be continuous with density ρ =

ρ(p), and the bulk free-energy at temperature

θ > 0 has the form

Iθ(ρ) = U(ρ)− θη(ρ),

where the entropy is given by

η(ρ) = −
�

S2
ρ(p) ln ρ(p) dp.



Denoting by

Q(ρ) =

�

S2
(p⊗ p− 1

3
1)ρ(p) dp

the corresponding Q-tensor, we have that

|Q(ρ)|2 =
�

S2

�

S2
(p⊗ p− 1

3
1) · (q ⊗ q − 1

3
1)ρ(p)ρ(q)dp dq

=

�

S2

�

S2
[(p · q)2 − 1

3
]ρ(p)ρ(q) dp dq.



(cf. Katriel, J., Kventsel, G. F., Luckhurst, G.

R. and Sluckin, T. J.(1986))



Let

J(ρ) =
�

S2
ρ(p) ln ρ(p) dp.

Given Q with Q = QT , trQ = 0 and satisfying

λi(Q) > −1/3 we seek to minimize J on the

set of admissible ρ

AQ = {ρ ∈ L1(S2) : ρ ≥ 0,
�

S2
ρ dp = 1, Q(ρ) = Q}.

Remark: We do not impose the condition

ρ(p) = ρ(−p), since it turns out that the mini-

mizer in AQ satisfies this condition.



Lemma. AQ is nonempty.

(Remark: this is not true if we allow some

λi = −1/3.)

Proof. A singular measure µ satisfying the con-

straints is

µ =
1

2

3�

i=1

(λi +
1

3
)(δni + δ−ni),

and a ρ ∈ AQ can be obtained by approximating

this.



For ε > 0 sufficiently small and i = 1,2,3 let

ϕε
i =


0 if |p · ei| < 1− ε
1

4πε if |p · ei| ≥ 1− ε

Then

ρ(p) =
1

(1− 1
2ε)(1− ε)

3�

i=1

[λi+
1

3
− ε

2
+

ε2

6
]ϕε

ei
(p)

works. �



Theorem. J attains a minimum at a unique

ρQ ∈ AQ.

Proof. By the direct method, using the facts

that ρ ln ρ is strictly convex and grows super-

linearly in ρ, while AQ is sequentially weakly

closed in L1(S2). �

Let f(Q) = J(ρQ) = infρ∈AQ
J(ρ), so that

ψB(Q, θ) = θf(Q)− κ(θ)|Q|2.







The Euler-Lagrange equation for J

Theorem. Let Q = diag (λ1, λ2, λ3). Then

ρQ(p) =
exp(µ1p

2
1 + µ2p

2
2 + µ3p

2
3)

Z(µ1, µ2, µ3)
,

where

Z(µ1, µ2, µ3) =
�

S2
exp(µ1p

2
1 + µ2p

2
2 + µ3p

2
3) dp.

The µi solve the equations

∂ lnZ

∂µi
= λi +

1

3
, i = 1,2,3,

and are unique up to adding a constant to each

µi.



Proof. We need to show that ρQ satisfies the

Euler-Lagrange equation. There is a small

difficulty due to the constraint ρ ≥ 0. For

τ > 0 let Sτ = {p ∈ S2 : ρQ(p) > τ}, and let

z ∈ L∞(S2) be zero outside Sτ and such that
�

Sτ

(p⊗ p− 1

3
1)z(p) dp = 0,

�

Sτ

z(p) dp = 0.

Then ρε := ρQ + εz ∈ AQ for all ε > 0 suffi-

ciently small. Hence

d

dε
J(ρε)|ε=0 =

�

Sτ
[1 + ln ρQ]z(p) dp = 0.



So by Hahn-Banach

1 + ln ρQ =
3�

i,j=1

Cij[pipj −
1

3
] + C

for constants Cij(τ), C(τ). Since Sτ increases

as τ decreases the constants are independent

of τ , and hence

ρQ(p) = A exp




3�

i,j=1

Cijpipj



 if ρQ(p) > 0.



Suppose for contradiction that

E = {p ∈ S2 : ρQ(p) = 0}

is such that H2(E) > 0. Note that since
�
S2 ρQdp = 1 we also have that H2(S2\E) > 0.

There exists z ∈ L∞(S2) such that
�

{ρQ>0}
(p⊗p−1

3
1)z(p) dp = 0,

�

{ρQ>0}
z(p) dp = 4π.



Changing coordinates we can assume that D =
�3

i=1αiei ⊗ ei and so 1 =
�3

i=1αi(p
2
i − 1

3) on

S2\E for constants αi. If the αi are equal

then the right-hand side is zero, a contradic-

tion, while if the αi are not all equal it is easily

shown that the intersection of S2 with the set

of such p has 2D measure zero.

Indeed if this were not true then by Hahn-

Banach we would have

1 =
3�

i,j=1

Dij(pipj −
1

3
δij) on S2\E

for a constant matrix D = (Dij).



Define for ε > 0 sufficiently small

ρε = ρQ + ε− εz.

Then ρε ∈ AQ, since
�
S2(p ⊗ p − 1

31) dp = 0.

Hence, since ρQ is the unique minimizer,

�

E
ε ln ε +

�

{ρQ>0}
[(ρQ + ε− εz) ln(ρQ + ε− εz)

−ρQ ln ρQ] dp > 0.

This is impossible since the second integral is

of order ε.

Hence we have proved that

ρQ(p) = A exp(
3�

i,j=1

Cijpipj),a.e. p ∈ S2.



Lemma. Let RTQR = Q for some R ∈ O(3).

Then ρQ(Rp) = ρQ(p) for all p ∈ S2.

Proof.
�

S2
(p⊗ p− 1

3
1)ρQ(Rp) dp

=
�

S2
(RT q ⊗ RT q − 1

3
1)ρQ(q) dq

= RTQR = Q,

and ρQ is unique. �



Applying the lemma with Rei = −ei, Rej = ej
for j �= i, we deduce that for Q = diag (λ1, λ2, λ3),

ρQ(p) =
exp(µ1p

2
1 + µ2p

2
2 + µ3p

2
3)

Z(µ1, µ2, µ3)
,

where

Z(µ1, µ2, µ3) =

�

S2
exp(µ1p

2
1 + µ2p

2
2 + µ3p

2
3) dp,

as claimed.



Finally

∂ lnZ

∂µi
= Z−1

�

S2
p2i exp(

3�

j=1

µjp
2
j ) dp

= λi +
1

3
,

and the uniqueness of the µi up to adding a

constant to each follows from the uniqueness

of ρQ. �



Hence the bulk free energy has the form

ψB(Q, θ) = θf(Q)− κ(θ)|Q|2

= θ




3�

i=1

µi(λi +
1

3
)− lnZ



− κ(θ)
3�

i=1

λ2
i ,

where

f(Q) =
�

S2
ρQ(p) ln ρQ(p) dp.



Asymptotics
In order to understand more about how ψB(Q, θ)

blows up as λmin(Q) → −1
3+ we need to study

the corresponding asymptotics for

f(Q) =
�

S2
ρQ(p) ln ρQ(p) dp.

Theorem

C1−
1

2
ln(λmin(Q)+

1

3
) ≤ f(Q) ≤ C2−ln(λmin(Q)+

1

3
)

for constants C1, C2.



Proof

For the lower bound we first note that lnZ(ν1, ν2, ν3)

is a strictly convex function of the νi. In fact

a short calculation shows that

3�

i.j=1

∂2 lnZ

∂νi∂νj
aiaj

=
1

2Z2

�

S2

�

S2

��
p2i ai −

�
q2j aj

�2

× exp
��

νk(p
2
k + q2k)

�
dp dq > 0

if a = (a1, a2, a2) �= 0.



Hence

�
νi(λi +

1

3
)− lnZ(ν1, ν2, ν3)

is a strictly concave function of the νi that is

maximized when νi = µi, with maximum value

f(Q). So we can get a lower bound by choos-

ing any νi and the choice ν1 = 2s, ν2 = ν3 = −s

for s = λmin + 1
3 gives the result.



For the upper bound we can choose any prob-

ability density ρ = ρ(p) with Q(ρ) = Q, since

we know that

f(Q) ≤
�

S2
ρ(p) ln ρ(p) dp.

The choice

ρ(p) =
�

i

λi +
1
3(1−

ε
2)(1− ε)

(1− ε
2)(1− ε)

ϕi(p),

where ϕi(p) = 1
4πε for p · ei > 1 − δ, ϕi(p) = 0

otherwise, works.



Other predictions

1. All critical points of ψB are uniaxial.

2. Phase transition predicted from isotropic to

uniaxial nematic phase just as in the quartic

model.



4. Near Q = 0 we have the expansion

1

θ
ψB(Q) = ln4π +

�
15

4
− κ(θ)

θ

�

trQ2

−225

42
trQ3 +

225

112
(trQ2)2 + . . .

The ratio of the coefficients of the last two

terms is
8

3
= 2.6666 . . .

while experimental values reported in the liter-

ature give the ratio 2.438.



5. Existence when L4 �= 0 under suitable in-

equalities on the Li, because I4 ≥ −1
3|∇Q|2.



If not, this would mean that a minimizer of I

would have an unbounded integrand. Surely

this is inconsistent with being a minimizer ....











Idea of Proof

Suppose not. Given the minimizer Q denote

by Pε(Q) the nearest point projection onto the

convex set

Kε = {Q : f(Q) ≤ 1

ε
}.

Then if ε > 0 is small enough we have

ψB(Pε(Q)) < ψB(Q)

and

|∇Pε(Q)|2 ≤ |∇Q|2.



Remark.

It is not clear how to prove the same result for

more general elastic energies, although L.C.Evans

& Hung Tran can prove partial regularity of

minimizers in that case.



This seems to be very difficult.



Liquid crystal elastomers
These are polymers for which the long chain

molecules are liquid crystals.

Thermo-optical actuation
(P. Palffy-Muhoray)

Actuation by 
hot and cold air
(E. Terentyev)

Courtesy M. Warner
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The end


