Winter School, Würzburg 9-13 January 2012

## Mathematics of Solid and Liquid Crystals

#### John Ball

Oxford Centre for Nonlinear P∂E

#### Plan of course

Lectures 1-3

Mathematics of crystalline solids

Colloquium + lectures 4-5 Mathematics of liquid crystals

#### Plan for lectures 1-3

- Modelling of solid phase transformations via nonlinear elasticity.
   Mathematical tools for describing microstructure.
   Classical austenite-martensite interfaces.
- 2. Macrotwins,

Nonclassical austenite-martensite interfaces Nucleation of austenite in martensite

3. Incorporating interfacial energy.

# Macrotwins in Ni<sub>65</sub>Al<sub>35</sub> involving two tetragonal variants (Boullay/Schryvers)



#### Martensitic microstructures in CuAlNi (Chu/James)







CuZnAI microstructure: Michel Morin (INSA de Lyon)

## **Themes of lectures**

- 1. Role of compatibility of gradients in microstructure morphology.
- 2. Why do we see these particular microstructures rather than different ones?

## Critique

We use a static theory, whereas this is clearly a pattern formation problem, which should be treated using an appropriate dynamical model.

Such a model should tell us which morphological features are predictable (e.g. via invariant manifolds, attractors ...) in a given experiment, and predict them. (a) what are appropriate dynamical equations?(b) analysis currently intractable for any such model.

Static theories are not truly predictive:

- (i) Large redundancy in energy minimizers.
- (ii) The microstructure geometry is typically assumed *a priori*, and shown to be consistent with the theory (although interesting details may be predicted).



 $\Omega \subset \mathbf{R}^n$  bounded domain Lipschitz boundary  $\partial \Omega$  $y: \Omega \to \mathbf{R}^m$ Typically, m = n = 2 or 3.

$$Dy(x) = (\partial y_i / \partial x_j) \in M^{m \times n}$$

 $M^{m \times n} = \{ \text{real } m \times n \text{ matrices} \}$ 

Compatibility question

Given  $F: \Omega \to M^{m \times n}$ , when is F = Dy for some y? A necessary condition that  $F \in L^p(\Omega; M^{m \times n})$ satisfies F = Dy for some  $y \in W^{1,p}(\Omega; \mathbb{R}^m)$ is that

$$\frac{\partial F_{ij}}{\partial x_k} - \frac{\partial F_{ik}}{\partial x_j} = 0$$

in the sense of distributions, i.e.

$$\int_{\Omega} \left( F_{ij} \frac{\partial \phi}{\partial x_k} - F_{ik} \frac{\partial \phi}{\partial x_j} \right) dx = 0$$

for all  $\phi \in C_0^{\infty}(\Omega)$ .

The condition is sufficient if  $\Omega$  is simply connected.

#### Hadamard jump condition



## **Martensitic Transformations**

These involve a change of shape of the crystal lattice at a critical temperature.

e.g. cubic to tetragonal



### Energy minimization problem for single crystal

Minimize 
$$I_{\theta}(y) = \int_{\Omega} \psi(Dy(x), \theta) dx$$

subject to suitable boundary conditions, for example

$$y|_{\partial\Omega_1} = \bar{y}.$$

 $\theta = \text{temperature},$   $\psi = \psi(A, \theta) = \text{free-energy density of crystal},$ defined for  $A \in M_+^{3 \times 3}$ , where

$$M_{+}^{3\times 3} = \{A \in M^{3\times 3} : \det A > 0\}.$$

Typically we assume that

$$\psi(A,\theta) \to \infty$$
 as det  $A \to 0+$ ,

so that infinite energy is required to compress the body to zero volume.

We can then set  $\psi(A, \theta) = \infty$  for det  $A \leq 0$ , so that  $\psi : M^{3 \times 3} \times [\theta_1, \theta_2] \rightarrow [0, \infty]$  is continuous.

There is a substantial literature on the question of how this condition can be supplemented so that deformations with finite energy are invertible maps from  $- \rightarrow \mathbb{R}^3$ , so that interpenetration of matter does not occur.

#### Frame-indifference requires

#### $\psi(RA,\theta) = \psi(A,\theta)$ for all $R \in SO(3)$ .

#### If the material has cubic symmetry then also

$$\psi(AQ,\theta) = \psi(A,\theta)$$
 for all  $Q \in P^{24}$ ,

where  $P^{24}$  is the group of rotations of a cube.

#### **Energy-well structure**

 $K(\theta) = \{A \in M^{3 \times 3}_+ \text{ that minimize } \psi(A, \theta)\}$ 



Assuming the austenite has cubic symmetry, and given the transformation strain  $U_1$  say, the N variants  $U_i$  are the distinct matrices  $QU_1Q^T$ , where  $Q \in P^{24}$ .

#### Cubic to tetragonal (e.g. $Ni_{65}AI_{35}$ )



N = 3

 $U_1 = \text{diag} (\eta_2, \eta_1, \eta_1)$  $U_2 = \text{diag} (\eta_1, \eta_2, \eta_1)$  $U_3 = \text{diag} (\eta_1, \eta_1, \eta_2)$ 



Exchange of stability

Can assume  $\min_A \psi(A, \theta) = 0$  for all  $\theta$ .

## Why use nonlinear elasticity?

- 1. Conceptually simpler
- 2. Large rotations occur in martensitic transformations. If these are linearized then phantom stresses are predicted.

The use of nonlinear elasticity to describe martensitic transformations and their microstructure is due to B/James (1987), following work of many authors applying nonlinear elasticity to crystals, especially J.L. Ericksen. There is a 'linearized' version of the theory due to Khachaturyan and Roitburd.

# Rank-one connections between energy-wells

Given  $U = U^T > 0$  and  $V = V^T > 0$ , when is there a rank-one connection between SO(3)U and SO(3)V?

That is, when are there rotations  $R_1, R_2$  and vectors c, N such that

$$R_1 U = R_2 V + c \otimes N$$

**Theorem.** Let  $D = U^2 - V^2$  have eigenvalues  $\lambda_1 \leq \lambda_2 \leq \lambda_3$ . Then SO(3)U and SO(3)V are rank-one connected if and only if  $\lambda_2 = 0$ . There are exactly two solutions provided  $\lambda_1 < \lambda_2 = 0 < \lambda_3$ , and the corresponding N's are orthogonal if and only if tr  $U^2 = \text{tr } V^2$ , i.e.  $\lambda_1 = -\lambda_3$ .

## Twins

In the case of martensitic variants with  $U = U_i, V = U_j, i \neq j$ , we have  $U = QVQ^T$  for some rotation Q and so the condition tr  $U^2 =$ tr  $V^2$  is automatically satisfied. Rank-one connections correspond to twins and the corresponding twin normals are always orthogonal.

In this case there is a simpler criterion for the existence of rank-one connections due to Forclaz, namely that

$$\det(U-V)=0$$

#### Weak convergence = convergence of averages



#### Simple laminate

 $A - B = c \otimes N$ 

 $Dy^{(j)} \rightharpoonup Dy = \lambda A + (1 - \lambda)B$ 



Atomistically sharp interfaces for cubic to tetragonal transformation in NiMn

Baele, van Tenderloo, Amelinckx



# Formulation of energy minimization problem in terms of Young measures

For  $\psi$  appropriate for martensite the minimum of  $I_{\theta}(y) = \int_{\Omega} \psi(\nabla y(x), \theta) dx$  subject to suitable boundary conditions is not in general attained by ordinary deformations y, but rather by possibly infinitely fine microstructures generated by minimizing sequences  $y^{(j)}$  of  $I_{\theta}$ . These can be described by gradient Young measures.

## **Gradient Young measures** Fix $x, j, \delta$ . $B(x,\delta)$ $E \subset M^{m \times n}$ $\Omega$

$$\nu_x^{j,\delta}(E) = \frac{\text{Volume}\{z \in B(x,\delta) \text{ with } Dy^{(j)}(z) \in E\}}{\text{Volume } B(x,\delta)}$$

 $u_x = \lim_{\delta \to 0} \lim_{k \to \infty} \nu_x^{j_k, \delta}$  Young measure corresponding to  $Dy^{(j_k)}$ .

#### Gradient Young measure of simple laminate



 $u_x = \lambda \delta_A + (1-\lambda) \delta_B$ 

## Quasiconvexity

An integrand f = f(A) is quasiconvex if

$$\int_{\Omega} f(Dz(x)) dx \ge \int_{\Omega} f(A) dx = (\text{Volume } \Omega) f(A)$$
  
whenever  $z : \Omega \to \mathbb{R}^m$  is smooth with  $z(x) = Ax$  for all  $x \in \partial \Omega$ .

The condition does not depend on  $\Omega$ .

## Quasiconvexity is the central convexity condition of the calculus of variations

Roughly, quasiconvexity is necessary and sufficient for

$$I(y) = \int_{\Omega} f(Dy) \, dx$$

to attain a minimum subject to given boundary conditions.

The existence of rank-one connections between martensitic energy-wells implies that  $\psi(\cdot, \theta)$  is not rank-one convex, hence not quasiconvex. So we expect the minimum of  $I_{\theta}$  not to be attained in general. The gradients  $Dy^{(j)}$  of minimizing sequences for  $I_{\theta}$  will not converge, but generate a microstructure (with a corresponding Young measure). **Theorem.** (Kinderlehrer/Pedregal) A family of probability measures  $(\nu_x)_{x\in\Omega}$  is the Young measure of a sequence of gradients  $Dy^{(j)}$  bounded in  $L^{\infty}$  if and only if

(i)  $\bar{\nu}_x$  is a gradient (Dy, the weak limit of  $Dy^{(j)}$ ) (ii)  $\langle \nu_x, f \rangle \ge f(\bar{\nu}_x)$  for all quasiconvex f.

#### Here

$$\bar{\nu}_x = \int_{M^{m \times n}} A \, d\nu_x(A)$$

and

$$\langle \nu_x, f \rangle = \int_{M^{m \times n}} f(A) \, d\nu_x(A)$$

## Quasiconvexification

If  $f: M^{m \times n} \to [0, \infty]$  then its quasiconvexification is defined to be the function

 $f^{\mathsf{qC}} = \sup\{g \le f : g \text{ finite and quasiconvex}\}$ 

 $E \subset M^{m \times n}$  is quasiconvex if there exists a quasiconvex  $f : M^{m \times n} \to [0, \infty)$  with  $f^{-1}(0) = E$ .

If  $K \subset M^{m \times n}$  is compact, its quasiconvexification is the set

 $K^{\mathsf{qC}} = \bigcap \{ E \supset K : E \text{ quasiconvex} \}$ 

 $\psi^{qc}(A,\theta)$  is the macroscopic free-energy function corresponding to  $\psi$ .

 $K(\theta)^{qc}$  is the set of macroscopic deformation gradients corresponding to zero-energy microstructures.

There is no known characterization of quasiconvexity.

No local characterization (for example, inequalities on f and its derivatives at an arbitrary matrix A) exists (Kristensen).

## Classical austenite-martensite interfaces

How does austenite transform to martensite as  $\theta$  passes through  $\theta_{c}$ ?

It cannot do this by means of an exact interface between austenite and martensite, because this requires the middle eigenvalue of  $U_i$  to be one, which in general is not the case (but see studies of James et al on low hysteresis alloys).

So what does it do?

#### (Classical) austenite-martensite interface in CuAlNi (courtesy C-H Chu and R.D. James)




Gives formulae of the crystallographic theory of martensite (Wechsler, Lieberman, Read)

24 habit planes for cubic-to-tetragonal

#### Rank-one connections for A/M interface





### Macrotwins in Ni<sub>65</sub>Al<sub>35</sub>

### JB, D. Schryvers, Ph. Boullay (Antwerp)

## Macrotwins in Ni<sub>65</sub>Al<sub>35</sub> involving two tetragonal variants (Boullay/Schryvers)



### Crossings and steps



### Macrotwin formation



Macroscopic deformation gradient in martensitic plate is

 $1 + b \otimes m$ 

$$m = \left(\frac{1}{2}\chi(\delta + \nu\tau), \frac{1}{2}\chi\kappa(\nu\tau - \delta), 1\right)$$
$$b = \left(\frac{1}{2}\chi\zeta(\delta + \nu\tau), \frac{1}{2}\chi\zeta\kappa(\nu\tau - \delta), \beta\right)$$

B/Schryvers

Different martensitic plates never compatible (Bhattacharya)

where  $\nu = 1$  for  $\lambda = \lambda^*$ ,  $\nu = -1$  for  $\lambda = 1 - \lambda^*$ , the microtwin planes have normals  $(1, \kappa, 0)$  and  $\chi = \pm 1$ .

Table 1: Rotations  $Q_1$  and  $Q_2$  that bring Plate II into compatibility with Plate I ( $\kappa_1 = \chi_1 = \nu_1 = 1$ ) and the corresponding macrotwin normals  $N_1$  and  $N_2$ . The direction of rotation is that of a right-handed screw in the direction of the given axis. For the case  $\kappa_2 = \nu_2 = 1, \chi_2 = -1$  see the text.

| Parameter Values |          |         | $Q_1$          |       |                              | $Q_2$           |       |                              |
|------------------|----------|---------|----------------|-------|------------------------------|-----------------|-------|------------------------------|
| $\kappa_2$       | $\chi_2$ | $\nu_2$ | Axis           | Angle | $N_1$                        | Axis            | Angle | $N_2$                        |
| -1               | 1        | 1       | (.70, 0,71)    | 1.64° | (0,1,0)                      | (.75, 0, .66)   | 1.75° | (1,0,0)                      |
| -1               | -1       | 1       | (0,.99,.16)    | 7.99° | (1,0,0)                      | (0,.99,14)      | 7.99° | (0,1,0)                      |
| -1               | 1        | -1      | (.65, .48,59)  | 6.76° | (.59,81, 0)                  | (.68, .50, .54) | 6.91° | (81,59, 0)                   |
| -1               | -1       | -1      | (48, .65, .59) | 6.76° | (81,59, 0)                   | (50, .68,54)    | 6.91° | (.59,81, 0)                  |
| 1                | 1        | -1      | (54, .54, .64) | 5.87° | $\frac{1}{\sqrt{2}}(1,1,0)$  | (57, .57,59)    | 6.08° | $\frac{1}{\sqrt{2}}(1,-1,0)$ |
| 1                | -1       | -1      | (.60, .60,52)  | 7.37° | $\frac{1}{\sqrt{2}}(1,-1,0)$ | (.62, .62, .47) | 7.47° | $\frac{1}{\sqrt{2}}(1,1,0)$  |

Nonclassical austenitemartensite interfaces

JB/ Carsten Carstensen (Berlin), Konstantinos Koumatos (Oxford), Hanus Seiner (Prague).

## Nonclassical austenite-martensite interfaces (B/Carstensen 97)



speculative nonhomogeneous martensitic microstructure with fractal refinement near interface

## Nonclassical interface with double laminate



### Nonclassical interface calculation Dy(x) = 1 $Dy(x) = F = \bar{\nu}$ $F \in \left(\bigcup_{i=1}^{N} SO(3)U_i\right)^{\mathsf{qC}}$ $\begin{bmatrix} m & \\ & u_x = \delta_1 \end{bmatrix}$ (unknown unless N = 2) $\nu_x = \nu$ supp $\nu \subset \bigcup_{i=1}^N SO(3)U_i$ $F = \mathbf{1} + b \otimes m$

### More on quasiconvexifications

Let  $K \subset M^{m \times n}$  be compact. Then

$$\begin{split} K^{qc} &= \{F \in M^{m \times n} : F = \overline{\nu}, \nu \text{ a homogeneous} \\ &\text{gradient Young measure with } \operatorname{supp} \nu \subset K \} \\ &= \{F \in M^{m \times n} : \varphi(F) \leq \max_{G \in K} \varphi(G) \text{ for all quasiconvex } \varphi \} \end{split}$$

 $\varphi$  is *polyconvex* if  $\varphi(F) = g(\mathbf{J}(F))$  for some convex function g of the list  $\mathbf{J}(F)$  of all minors of F. Thus if m = n = 3,  $\varphi$  is polyconvex if

$$\varphi(F) = g(F, \operatorname{cof} F, \det F)$$

for some convex g.

#### $\varphi$ polyconvex $\Rightarrow \varphi$ quasiconvex.

# $K^{pc} = \{F \in M^{m \times n} : \varphi(F) \le \max_{G \in K} \varphi(G)$ <br/>for all polyconvex $\varphi\}$

$$K^{qc} \subset K^{pc}$$

### Two martensitic wells

Let  $K = SO(3)U_1 \cup SO(3)U_2$ , where

 $U_1 = \text{diag}(\eta_1, \eta_2, \eta_3), \ U_2 = \text{diag}(\eta_2, \eta_1, \eta_3),$ 

and the  $\eta_i > 0$  (orthorhombic to monoclinic).

**Theorem** (Ball & James 92)  $K^{qc}$  consists of the matrices  $F \in M^{3 \times 3}_{+}$  such that

$$F^{T}F = \begin{pmatrix} a & c & 0 \\ c & b & 0 \\ 0 & 0 & \eta_{3}^{2} \end{pmatrix},$$

where  $a > 0, b > 0, a + b + |2c| \le \eta_1^2 + \eta_2^2, ab - c^2 = \eta_1^2 \eta_2^2.$ 

The proof is by calculating  $K^{pc}$  and showing by construction that any  $F \in K^{pc}$  belongs to  $K^{qc}$ .

For a nonclassical interface we need that for some a, b, c satisfying these inequalities the middle eigenvalue of  $F^T F$  is one, and we thus get (Ball & Carstensen 97) such an interface provided

$$\begin{split} \eta_2^{-1} &\leq \eta_1 \leq 1 \text{ or } 1 \leq \eta_2^{-1} \leq \eta_1 & \text{if } \eta_3 < 1, \\ \eta_2 &\leq \eta_1^{-1} \leq 1 \text{ or } 1 \leq \eta_2 \leq \eta_1^{-1} & \text{if } \eta_3 > 1. \end{split}$$

# More wells – necessary conditions

$$K = \bigcup_{i=1}^{N} SO(3)U_i$$

The martensitic variants  $U_i$  all have the same singular values (= eigenvalues)  $0 < \eta_{\min} \leq \eta_{\min} \leq \eta_{\max}$ .

Let  $F \in K^{pc}$  have singular values

 $0 < \sigma_{\min}(F) \le \sigma_{\min}(F) \le \sigma_{\max}(F).$ 

$$K^{pc} = \{F \in M^{m \times n} : \varphi(F) \le \max_{G \in K} \varphi(G)$$
  
for all polyconvex  $\varphi\}$ 

First choose  $\varphi(G) = \pm \det(G)$ . Then

 $\det F = \sigma_{\min}(F)\sigma_{\min}(F)\sigma_{\max}(F) = \eta_{\min}\eta_{\min}\eta_{\max}.$ 

Next choose  $\varphi(G) = \sigma_{\max}(G) = \max_{|x|=1} |Gx|$ , which is convex, hence polyconvex. Thus

$$\sigma_{\max}(F) \le \eta_{\max}.$$

Finally choose  $\varphi(G) = \sigma_{\max}(cof G)$ , which is a convex function

of cof(G) and hence polyconvex. Then

 $\sigma_{\mathsf{mid}}(F)\sigma_{\mathsf{max}}(F) \leq \eta_{\mathsf{mid}}\eta_{\mathsf{max}}$ 

But  $F = 1 + b \otimes m$  implies  $\sigma_{mid}(F) = 1$ .

Combining these inequalities we get that

$$\eta_{\min} \leq \eta_{\min}^{-1} \leq \eta_{\max}.$$

For cubic to tetragonal we have that

$$U_1 = \text{diag} (\eta_2, \eta_1, \eta_1), U_2 = \text{diag} (\eta_1, \eta_2, \eta_1),$$
$$U_3 = \text{diag} (\eta_1, \eta_1, \eta_2),$$

and the necessary conditions become

$$\eta_1 \le \eta_1^{-1} \le \eta_2$$
 if  $\eta_1 \le \eta_2$ ,  
 $\eta_2 \le \eta_1^{-1} \le \eta_1$  if  $\eta_1 \ge \eta_2$ .

But these turn out to be exactly the conditions given by the two-well theorem to construct a rank-one connection from  $(SO(3)U_1 \cup SO(3)U_2)^{qc}$  to the identity! Hence the conditions are sufficient also. Values of deformation parameters allowing classical and nonclassical austenite-martensite interfaces



### Interface normals





### Experimental procedure (H. Seiner)

 $3.9 \times 3.8 \times 4.2$ mm CuAlNi single crystal



Optical micrograph (H. Seiner) of non-classical interface between austenite and a martensitic microstructure

The arrows indicate the orientations of twinning planes of Type-II and compound twinning systems





Twin crossing gradients

### Cubic-to-orthorhombic energy wells

$$K(\theta_c) = SO(3) \cup \bigcup_{i=1}^{6} SO(3)U_i$$

$$U_{1} = \begin{pmatrix} \frac{\alpha+\gamma}{2} & \frac{\alpha-\gamma}{2} & 0\\ \frac{\alpha-\gamma}{2} & \frac{\alpha+\gamma}{2} & 0\\ 0 & 0 & \beta \end{pmatrix}, \quad U_{2} = \begin{pmatrix} \frac{\alpha+\gamma}{2} & \frac{\gamma-\alpha}{2} & 0\\ \frac{\gamma-\alpha}{2} & \frac{\alpha+\gamma}{2} & 0\\ 0 & 0 & \beta \end{pmatrix}, \quad U_{3} = \begin{pmatrix} \frac{\alpha+\gamma}{2} & 0 & \frac{\alpha-\gamma}{2}\\ \frac{\alpha-\gamma}{2} & 0 & \frac{\alpha+\gamma}{2} \end{pmatrix},$$
$$U_{4} = \begin{pmatrix} \frac{\alpha+\gamma}{2} & 0 & \frac{\gamma-\alpha}{2}\\ 0 & \beta & 0\\ \frac{\gamma-\alpha}{2} & 0 & \frac{\alpha+\gamma}{2} \end{pmatrix}, \quad U_{5} = \begin{pmatrix} \beta & 0 & 0\\ 0 & \frac{\alpha+\gamma}{2} & \frac{\alpha-\gamma}{2}\\ 0 & \frac{\alpha-\gamma}{2} & \frac{\alpha+\gamma}{2} \end{pmatrix}, \quad U_{6} = \begin{pmatrix} \beta & 0 & 0\\ 0 & \frac{\alpha+\gamma}{2} & \frac{\gamma-\alpha}{2}\\ 0 & \frac{\gamma-\alpha}{2} & \frac{\alpha+\gamma}{2} \end{pmatrix},$$

 $\alpha = 1.06372, \ \beta = 0.91542, \ \gamma = 1.02368$ 

Let  $U_A, U_{A'}$  and  $U_B, U_{B'}$  be two distinct pairs of martensitic variants able to form compound twins (e.g.  $U_3, U_4$  and  $U_5, U_6$ ). Then the compatibility equations for the parallelogram microstructure are :

$$R_{AB}U_B - U_A = b_{AB} \otimes n_{AB}$$

$$R_{A'B'}U_{B'} - U_{A'} = b_{A'B'} \otimes n_{A'B'}$$

$$R_{AA'}U_{A'} - U_A = b_{AA'} \otimes n_{AA'}$$

$$R_{BB'}U_{B'} - U_B = b_{BB'} \otimes n_{BB'}$$

$$R_{AB}R_{BB'} = R_{AA'}R_{A'B'}.$$

Let  $0 \le \lambda \le 1$  denote the relative volume fraction of the Type-II twins (the same by the parallelogram geometry), and set

$$M_{AB} = (1 - \lambda)U_A + \lambda R_{AB}U_B$$
$$M_{A'B'} = (1 - \lambda)U_{A'} + \lambda R_{A'B'}U_{B'}$$

Let  $0 \leq \Lambda \leq 1$  be the relative volume fraction of the compound twins. Then the overall macroscopic deformation gradient is

$$M = (1 - \Lambda)M_{AB} + \Lambda R_{AA'}M_{A'B'}.$$

For compatibility with the austenite we need

$$\lambda_{\mathsf{mid}}(M^T M) = 1$$

### Possible volume fractions $\lambda^2 - \lambda = -\frac{a_0 + a_2(\Lambda^2 - \Lambda)}{a_1 + a_3(\Lambda^2 - \Lambda)}.$



# Possible nonclassical interface normals





Curved interface between crossing twins and austenite resulting from the inhomogeneity of compound twinning. (Optical microscopy,H. Seiner)

### Construction of curved interface

This is possible at zero stress provided 1 is rank-one connected to a relative interior point of the set  $K = \bigcup_{i=1}^{N} SO(3)U_i$  of the martensitic wells, where relative is taken with respect to the set  $D = \{A : \det A = \det U_i\}$ . Such relative interior points are known to exist in the cubicto-tetragonal case due to a result by Dolzmann and Kirchheim.

Nucleation of austenite in mechanically stabilized martensite by localized heating

> JB, Konstantinos Koumatos Hanus Seiner

# Mechanically stabilized martensite

The shape-recovery process in shape-memory alloys (SMAs) concerns the thermally driven transition from the low temperature phase (martensite) into the high-temperature phase (austenite). For many SMAs, the critical temperature for initiation of the shape-recovery process depends strongly on the microstructure of the martensite.

- In particular, if the martensite is mechanically treated so that it is more difficult for it to make a compatible interface with the austenite, the critical temperature is shifted significantly upwards. This effect is called *the mechanical* stabilization of martensite and occurs for both single crystals and polycrystalline SMAs.
- It is natural to seek an explanation for this effect in terms of local minimizers y of

$$I_{\theta}(y) = \int_{\Omega} \psi(\nabla y(x), \theta) \, dx.$$
## **Experimental observations**

- Specimen: single crystal of CuAlNi prepared by the Bridgeman method in the form of a prismatic bar of dimensions  $12 \times 3 \times 3$ mm<sup>3</sup> in the austenite with edges approximately along the principal cubic directions.
- By unidirectional compression along its longest edge, the specimen was transformed into a single variant of mechanically stabilized 2H martensite. Due to the mechanical stabilization effect the reverse transition did not occur during unloading.

The martensite-to-austenite transition temperatures determined by DSC were  $A_S = -6^{\circ}C$ and  $A_F = 22^{\circ}$ C. The critical temperature  $T_C$ for the transition from the stabilized martensite induced by homogeneous heating for this specimen was  $\sim 60^{\circ}$ C. This was estimated from optical observations of the transition with one of the specimen faces laid on and thermally contacted with a gradually heated Peltier cell, using a heat conducting gel.

#### Localized heating experiment

The specimen was freely laid on a slightly prestressed, free-standing polyethylene (PE) foil to ensure minimal mechanical constraints, then locally heated by touching its surface with an ohmically heated tip of a soldering iron with temperature electronically controlled to be  $200^{\circ}C$ , i.e. significantly above the  $A_S$  and  $T_C$  temperatures.



When touched at a corner, nucleation of austenite occured there immediately. When touched at an edge or face, nucleation did not occur at the site of the localized heating, but at some corner, after a time delay (sufficient for heat conduction to make the temperature there  $> T_C$ ).

## NUCLEUS

(b)

# TWINNED-TO-DETWINNED

HABIT PLANE

(C)



In terms of Young measures the total free energy takes the form

$$I_{\theta}(\nu) = \int_{\Omega} \int_{M^{3\times 3}} \psi(A,\theta) \, d\nu_x(A) \, dx$$

We fix  $\theta$  to be the temperature of the probe. Then it is reasonable to assume that  $\min_A \psi(A, \theta) = -\delta < 0$  and that  $\psi(A, \theta) = \begin{cases} -\delta & \text{if } A \in SO(3) \\ 0 & \text{if } A \in \bigcup_{i=1}^6 SO(3)U_i \end{cases}$  (austenite), Here the  $U_i$  are the six orthorhombic variants given by

$$U_{1} = \begin{pmatrix} \frac{\alpha+\gamma}{2} & \frac{\alpha-\gamma}{2} & 0\\ \frac{\alpha-\gamma}{2} & \frac{\alpha+\gamma}{2} & 0\\ 0 & 0 & \beta \end{pmatrix}, \quad U_{2} = \begin{pmatrix} \frac{\alpha+\gamma}{2} & \frac{\gamma-\alpha}{2} & 0\\ \frac{\gamma-\alpha}{2} & \frac{\alpha+\gamma}{2} & 0\\ 0 & 0 & \beta \end{pmatrix}, \quad U_{3} = \begin{pmatrix} \frac{\alpha+\gamma}{2} & 0 & \frac{\alpha-\gamma}{2}\\ 0 & \beta & 0\\ \frac{\alpha-\gamma}{2} & 0 & \frac{\alpha+\gamma}{2} \end{pmatrix},$$
$$U_{4} = \begin{pmatrix} \frac{\alpha+\gamma}{2} & 0 & \frac{\gamma-\alpha}{2}\\ 0 & \beta & 0\\ \frac{\gamma-\alpha}{2} & 0 & \frac{\alpha+\gamma}{2} \end{pmatrix}, \quad U_{5} = \begin{pmatrix} \beta & 0 & 0\\ 0 & \frac{\alpha+\gamma}{2} & \frac{\alpha-\gamma}{2}\\ 0 & \frac{\alpha-\gamma}{2} & \frac{\alpha+\gamma}{2} \end{pmatrix}, \quad U_{6} = \begin{pmatrix} \beta & 0 & 0\\ 0 & \frac{\alpha+\gamma}{2} & \frac{\gamma-\alpha}{2}\\ 0 & \frac{\gamma-\alpha}{2} & \frac{\alpha+\gamma}{2} \end{pmatrix},$$

- Proposed explanation. Nucleation is geometrically impossible in the interior, on faces and at edges, but not at a corner. We express this by proving in a simplified model that if  $U_s$  denotes the initial pure variant of martensite then at  $U_s$ the free-energy function is quasiconvex (in the interior), quasiconvex at the boundary faces (cf Ball & Marsden 1981) and quasiconvex at the edges, but not at a corner.
- To make the problem more tractable we assume that  $\psi(A, \theta) := W(A)$  is infinite outside the austenite and martensite energy wells.

Then 
$$I = I_{\theta}$$
 becomes  
$$I(\nu) = \int_{\Omega} \langle \nu_x, W \rangle \, dx = \int_{\Omega} \int_{M^{3 \times 3}} W(A) \, d\nu_x(A) \, dx,$$

where

$$W(A) = \begin{cases} -\delta & A \in SO(3) \\ 0 & A \in \bigcup_{i=1}^{6} SO(3)U_i \\ +\infty & \text{otherwise} \end{cases}$$

and  $\delta > 0$ .

So  $W(A) < \infty$  on

$$K = SO(3) \cup \bigcup_{i=1}^{6} SO(3)U_i$$

### Nucleation impossible in the interior



# Theorem $I(\nu) \ge I(\delta_{U_s})$ (quasiconvexity at $U_s$ )

#### Nucleation impossible at faces or edges



Similarly in these cases we have

Theorem  $I(\nu) \ge I(\delta_{U_s})$ (quasiconvexity at the boundary and edges at  $U_s$ )

#### Nucleation possible at a corner



I not quasiconvex at a corner.

# Remarks

1. We are able to prove quasiconvexity at faces with most, but not all, normals. What would happen for a specimen that was a ball? 2. We have shown that a *localized* nucleation can only occur at a corner, but one could hope to show using methods of Grabovsky & Mengesha (2009) that any  $\nu$  sufficiently close to  $\delta_{U_s}$  with  $I(\nu) < I(\delta_{U_s})$  must involve nucleation at a corner.



CuZnAI microstructure: Michel Morin (INSA de Lyon)



Suppose  $y \in W^{1,\infty}(\Omega; \mathbb{R}^m)$ , i.e y Lipschitz. Can we define  $Dy^+(a), Dy^-(a)$ , and if so how are they related?

Blow up. For  $x \in B(0, 1)$  let  $z_{\delta}(x) = \delta^{-1}y(a + \delta x).$ Then  $Dz_{\delta}(x) = Dy(a + \delta x).$ 

Let  $\delta_j \rightarrow 0$  to get gradient Young measure  $\nu_x$ ,  $x \in B(0, 1)$ .



 $Dy^{\pm}(a) = \bigcap \{ E \text{ closed } : \operatorname{supp} \nu_x \subset E \text{ a.e. } x \in B^{\pm} \}$ 

**Theorem 1** (B/Carstensen). There exists  $b \in \mathbb{R}^n$  with  $b \otimes N \in Dy^+(a)^c - Dy^-(a)^c$ .

**Theorem 2** (B/Carstensen).

Let m = n = 2. Then there exists  $b \in \mathbb{R}^2$  with  $b \otimes N \in Dy^+(a)^{pc} - Dy^-(a)^{pc}$ .

Proof of Theorem 2 uses quasiregular maps, which are useful also in constructing nonpolyconvex quasiconvex functions. False in higher dimensions (Iwaniec, Verhota, Vogel 2002) Application to bicrystal microstructure

# $K(\theta) = SO(3)U_1 \cup SO(3)U_2 \quad \theta < \theta_c$



 $egin{array}{l} {
m Grain} \ 1 \ {
m supp} \ 
u_x \subset K( heta) \ {
m Grain} \ 2 \ {
m supp} \ 
u_x \subset K( heta) R_lpha \end{array}$ 

 $R_{\alpha}e_{\mathfrak{Z}}=e_{\mathfrak{Z}}$ 

Always possible to have zero-energy microstructure with  $Dy = \overline{\nu}_x = (\eta_1^2 \eta_2)^{1/3} \mathbf{1}$ 

In general one cannot have a pure variant of martensite in both grains, and if the interface between grains is suitably curved have a pure variant in either grain. This is some kind of justification as to why we typically see microstructure in grains.

Microstructure in polycrystalline  $BaTiO_3$  (G. Arlt).



Adding interfacial energy to the nonlinear elasticity model

The nonlinear elasticity model for martensitic transformations is based on a total free-energy functional

$$I_{\theta}(y) = \int_{\Omega} \psi(Dy,\theta) \, dx$$

In general the minimum of  $I_{\theta}$  is not attained, and minimizing sequences  $y^{(j)}$  generate an infinitely fine microstructure, some of whose features can be described by a gradient Young measure  $(\nu_x)_{x\in\Omega}$ .

- This is good because it provides an explanation of why very fine microstructures are observed, but bad
- (a) because real microstructures are not infinitely fine, and have characteristic lengthscales,
- (b) because the minimum is not attained.

These issues can be addressed by adding to the free-energy functional a term representing interfacial energy, resulting from the different atomic environment at twin boundaries and/or lattice curvature.

The natural way to try to understand what form the interfacial energy should take is via passage from an atomistic to a continuum model, but there is some confusion as to how this should be done.

#### Some interfaces are atomistically sharp



NiMn Baele, van Tenderloo, Amelinckx

while others are diffuse ...



Diffuse (smooth) interfaces in  $Pb_3V_2O_8$ 

#### Manolikas, van Tendeloo, Amelinckx



Diffuse interface in perovskite (courtesy Ekhard Salje)

Second gradient model for diffuse interfaces JB/Elaine Crooks (Swansea)

How does interfacial energy affect the predictions of the elasticity model of the austenitemartensite transition?



Use simple second gradient model of interfacial energy (cf Barsch & Krumhansl, Salje ), for which energy minimum is always attained.

Fix  $\theta < \theta_c$ , write  $\psi(A) = \psi(A, \theta)$ , and define  $I(y) = \int_{\Omega} \left( \psi(Dy) + \varepsilon^2 |D^2 y|^2 \right) dx$ where  $|D^2 y|^2 = y_{i,\alpha\beta} y_{i,\alpha\beta}$ ,  $\varepsilon > 0$ ,

It is not clear how to justify this model on the basis of atomistic considerations (the wrong sign problem – see, for example, Blanc, LeBris, Lions).

#### Hypotheses

No boundary conditions (i.e. boundary traction free), so result will apply to all boundary conditions.

Assume 
$$\psi \in C^2(M_+^{3\times 3})$$
,  
 $\psi(A) = \infty$  for det  $A \leq 0$ ,  
 $\psi(A) \rightarrow \infty$  as det  $A \rightarrow 0+$ ,  
 $\psi(RA) = \psi(A)$  for all  $R \in SO(3)$ ,  
 $\psi$  bounded below,  $\varepsilon > 0$ .

 $D\psi(\alpha 1) = 0$  $D^2\psi(\alpha 1)(G,G) \ge \mu |G|^2$  for all  $G = G^T$ , for some  $\mu > 0$ . Here  $\alpha = \alpha(\theta)$ . Suppose that

$$D\psi(\alpha(\theta)\mathbf{1},\theta)=0,$$

 $D^2\psi(\alpha(\theta)\mathbf{1},\theta)(G,G) \ge \mu |G|^2$  for all  $G = G^T$ ,

some  $\mu > 0$ . Then  $\bar{y}(x) = \alpha(\theta)x + c$  is a local minimizer of

$$I_{\theta}(y) = \int_{\Omega} \psi(Dy, \theta) \, dx$$

in  $W^{1,\infty}(\Omega; \mathbf{R}^3)$ .

But  $\bar{y}(x) = \alpha(\theta)x + c$  is not a local minimizer of  $I_{\theta}$ in  $W^{1,p}(\Omega; \mathbf{R}^3)$  for  $1 \leq p < \infty$  because nucleating an austenite-martensite interface reduces the energy. **Theorem.**  $\overline{y}(x) = \alpha Rx + a$ ,  $R \in SO(3), a \in \mathbb{R}^3$ , is a local minimizer of I in  $L^1(\Omega; \mathbb{R}^3)$ . More precisely,

$$I(y) - I(\bar{y}) \ge \sigma \int_{\Omega} \left( |\sqrt{Dy^T Dy} - \alpha \mathbf{1}|^2 + |D^2 y|^2 \right) dx$$

for some  $\sigma > 0$  if  $||y - \alpha Rx - a||_1$  is sufficiently small.

Remark.

$$\int_{\Omega} |\sqrt{Dy^T Dy} - \alpha \mathbf{1}|^2 \, dx$$

$$\geq c_0 \inf_{\bar{R}\in SO(3), \bar{a}\in \mathbf{R}^3} \left( \|y - \alpha \bar{R}x - \bar{a}\|_2^2 + \|Dy - \bar{R}\|_2^2 \right)$$

by Friesecke, James, Müller Rigidity Theorem

# Idea of proof

Reduce to problem of local minimizers for

$$I(U) = \int_{\Omega} (\psi(U) + m\rho^2 \varepsilon^2 |DU|^2) \, dx,$$

studied by Taheri (2002), using

$$|D_A U(A)| \leq \rho$$
 for all  $A$ , where  $U(A) = \sqrt{A^T A}$ .

# Smoothing of twin boundaries

Seek solution to equilibrium equations for

$$I(y) = \int_{\mathbf{R}^3} (W(Dy) + \varepsilon^2 |D^2 y|^2) \, dx$$

- such that
- $Dy \to A \text{ as } x \cdot N \to -\infty$
- $Dy \to B \text{ as } x \cdot N \to +\infty$ ,
- where  $A, B = A + a \otimes N$  are twins.

#### Lemma

Let  $Dy(x) = F(x \cdot N)$ , where  $F \in W^{1,1}_{loc}(\mathbf{R}; M^{3 \times 3})$ and

$$F(x \cdot N) \to A, B$$

as  $x \cdot N \to \pm \infty$ . Then there exist a constant vector  $a \in \mathbf{R}^3$  and a function  $u : \mathbf{R} \to \mathbf{R}^3$  such that

$$u(s) 
ightarrow \mathsf{0}, a$$
 as  $s 
ightarrow -\infty, \infty,$ 

and for all  $x \in \mathbf{R}^3$ 

$$F(x \cdot N) = A + u(x \cdot N) \quad N.$$

In particular

$$B = A + a \quad N.$$
### The ansatz

$$Dy(x) = A + u(x \cdot N) \otimes N.$$

leads to the 1D integral

$$\mathcal{F}(u) = \int_{\mathbf{R}} [W(A + u(s) \otimes N) + \varepsilon^2 |u'(s)|^2] ds$$
  
$$:= \int_{\mathbf{R}} [\tilde{W}(u(s)) + \varepsilon^2 |u'(s)|^2] ds.$$

For cubic  $\rightarrow$  tetragonal or orthorhombic (under a nondegeneracy assumption) we have

$$\tilde{W}(0) = \tilde{W}(a) = 0, \ \tilde{W}(u) > 0 \ \text{for} \ u \neq 0, a,$$

and so by energy minimization (Alikakos & Fusco 2008) we get a solution.

Remarks

The solution generates a solution to the full
3D equilibrium equations. However if we use
instead the ansatz

$$Dy(x) = A + v(x \cdot N)a \otimes N$$

with v a scalar, then the corresponding solution does not in general generate a solution to the 3D equations.

2. The solution is not in general unique even within the class given by the ansatz, but more work needs to be done in this direction.

## Sharp interface models

A natural idea is to minimize an energy such as

$$I(y) = \int_{\Omega} W(Dy) \, dx + \kappa \mathcal{H}^2(S_{Dy}),$$

where  $\kappa > 0$  and  $S_{Dy}$  denotes the jump set of Dy.

However this is not a sensible model, because if we have a sharp interface and approximate y by a smooth deformation, then the interfacial energy disappears and the elastic energy hardly changes. Thus a minimizer can never have a sharp interface.

## A model allowing smooth and sharp interfaces JB/ Carlos Mora-Corral (Madrid)

If we combine the smooth and sharp interface models we get a model that is well posed and in fact allows both kind of interface. In the simplest case we minimize

$$I(y) = \int_{\Omega} (W(Dy) + \varepsilon^2 |\nabla^2 y|^2) \, dx + \kappa \mathcal{H}^2(S_{Dy})$$

in the set

$$\mathcal{A} = \{ y \in W^{1,p} : Dy \in GSBV, y|_{\partial \Omega_1} = \bar{y} \}.$$

Here  $\nabla^2 y$  denotes the weak approximate differential of Dy.

# **GSBV**

The space GSBV was introduced by Ambrosio & de Giorgi. BV is the space of maps y of bounded variation i.e. whose distributional derivative Dy is a bounded measure. The space SBV consists of those  $y \in BV$  such that the measure Dy has no Cantor part. GSBV consists of those y such that for every  $\varphi \in C^1(\mathbf{R}^3)$ with  $\nabla \varphi$  of compact support,  $\varphi(y) \in SBV$ .

More generally we can suppose the energy is given by

$$I(y) = \int_{\Omega} W(Dy, \nabla^2 y) \, dx + \int_{S_{Dy}} \gamma(Dy^+(x), Dy^-(x), \nu(x)) \, d\mathcal{H}^2(x),$$

# **One-dimensional case**

Minimize

$$I_{\varepsilon,\kappa}(y) = \int_0^1 (W(y') + \varepsilon^2 |\nabla^2 y|^2) \, dx + \kappa \mathcal{H}^0(S_{y'})$$

in

$$\begin{aligned} \mathcal{A}_{\lambda} &= \{ y \in W^{1,1}(0,1) : y(0) = 0, y(1) = \lambda, \\ y' \in SBV(0,1), y' > 0 \text{ a.e.} \} \end{aligned}$$

Assume W(1) = W(2) = 0, W(p) > 0 if  $p \neq 0, 1$ . Let

$$E_{\varepsilon,\kappa,\lambda} = \inf_{y \in \mathcal{A}_{\lambda}} I_{\varepsilon,\kappa}(y)$$









# More realistic 1D model

### Minimize

$$I_{\varepsilon,\psi}(y) = \int_0^1 (W(y') + \varepsilon^2 |\nabla^2 y|^2) \, dx + \int_{S_{y'}} \psi([y']) \, d\mathcal{H}^0$$

in

$$\begin{aligned} \mathcal{A}_{\lambda} &= \{ y \in W^{1,1}(0,1) : y(0) = 0, y(1) = \lambda, \\ y' \in SBV(0,1), y' > 0 \text{ a.e.} \} \end{aligned}$$

We assume that  $\psi$  is continuous, even, of class  $C^1$  on  $(0, \infty)$ , nondecreasing on  $(0, \infty)$ , and such that

$$\lim_{t \to 0} \frac{\psi(t)}{t} = \infty, \quad \psi(a+b) \le \psi(a) + \psi(b).$$

Typically  $\psi(0) = 0$  with  $\psi$  concave on  $(0, \infty)$ . For example

$$\psi(t) = \kappa |t|^{\alpha}$$
, or  $\psi(t) = \kappa |t| \log(1 + \frac{1}{|t|})$ ,

where  $\alpha \in (0, 1)$ .

#### Theorem

Let  $W : (0, \infty) \to [0, \infty)$  be  $C^1$  and satisfy  $\lim_{t\to 0^+} W(t) = \infty$  and suppose that there exist  $r_1, r_2$  with  $0 < r_1 < r_2$  such that  $-\infty < \sup_{(0,r_i]} W' = \inf_{[r_i,\infty)} W' < \infty$  for  $i \in \{1,2\}$ . Let  $\lambda \in (r_1, r_2)$ .

Then there exists a minimiser of the functional  $I_{\varepsilon,\psi}$  in  $\mathcal{A}_{\lambda}$ . Moreover, if y is a minimizer then u = y' satisfies:

- (i)  $u \in [r_1, r_2]$  a.e.
- (ii)  $S_u$  is finite.

(iii)  $\nabla u$  is continuous and in SBV,

$$W'(u) - 2\varepsilon^2 \nabla^2 u = c$$

for some constant  $c \in \mathbf{R}$ ,  $\nabla u(0) = \nabla u(1) = 0$  and  $2\varepsilon^2 \nabla u(z) = \psi'([u](z))$  for all  $z \in S_u$ ,  $c = \int_0^1 W'(u) \, dx$  and

$$W(u) - \varepsilon^2 (\nabla u)^2 - cu = d,$$

for some constant  $d \in \mathbf{R}$ .

## Remarks

1. We cannot prove that there is at most one jump in y'. 2. The solution can be smooth or have a jump, but in general there are no piecewise affine solutions.

Colloquium, Würzburg, 11 January 2012

# An introduction to the mathematics of liquid crystals

John Ball Centre for Nonlinear PDE University of Oxford



# Liquid crystals

A multi-billion dollar industry.

An intermediate state of matter between liquids and solids.





Liquid crystals flow like liquids, but the constituent molecules retain orientational order.

# Classes of liquid crystals

Liquid crystals are of many different types, three main classes being nematics, cholesterics and smectics.

Many liquid crystals consist of rod-like molecules.

Length 2-3 nm

Methoxybenzilidene Butylanaline ("MBBA")



Chiral Carbon p-decyloxybenzylidene p'-amino 2-methylbutylcinnamate ("DOBAMBC") Depending on the nature of the molecules, the interactions between them and the temperature the molecules can arrange themselves in different phases.



Isotropic fluid – no orientational or positional order



Nematic phase orientational but no positional order Smectic A phase

Smectic C phase

Orientational and some positional order

The molecules have time-varying orientations due to thermal motion.



# Electron micrograph of nematic phase

http://www.netwalk.com/~laserlab/lclinks.html

# **Cholesterics**

If a chiral dopant is added the molecules can form a cholesteric phase in which the mean orientation of the molecules rotates in a helical fashion.



DoITPoMS, Cambridge

# Isotropic to nematic phase transition

The nematic phase typically forms on cooling through a critical temperature  $\theta_c$  by a phase transformation from a high temperature isotropic phase.





DoITPoMS, Cambridge

# The twisted nematic display





Wikipedia

# The director

A first mathematical description of the nematic phase is to represent the mean orientation of the molecules by a unit vector n = n(x, t).



But note that for most liquid crystals n is equivalent to -n, so that a better description is via a *line field* in which we identify the mean orientation by the line through the origin parallel to it. Such lines through the form the *real projective* plane  $\mathbb{R}P^2$ , and can be identified with  $3 \times 3$  symmetric matrices of the form  $n \otimes n$ , where n is a unit vector, so that n belongs to the unit sphere  $S^2$ . Here

$$(n\otimes n)_{ij}=n_in_j.$$

## Defects

Roughly these can be thought of as (point or line) discontinuities in the director or line field.



Schlieren texture of a nematic film with surface point defects (boojums). Oleg Lavrentovich (Kent State)



Zhang/Kumar 2007 Carbon nano-tubes as liquid crystals

## Modelling via molecular dynamics

Twisted nematic display molecular simulation M. Ricci, M. Mazzeo, R. Berardi, P. Pasini, C. Zannoni (courtesy Claudio Zannoni)

# Continuum models

Consider a nematic liquid crystal filling a container  $\Omega \subset \mathbb{R}^3$ .



To keep things simple consider only static configurations, for which the fluid velocity is zero.



The distribution of orientations of molecules in  $B(x_0, \delta)$  can be represented by a probability density function  $\rho \ge 0$ ,  $\int_{S^2} \rho(p) dp = 1$  on the unit sphere  $S^2$  satisfying  $\rho(p) = \rho(-p)$ .

The first moment

$$\int_{S^2} p\,\rho(p)\,dp = 0.$$

The second moment

$$M = \int_{S^2} p \otimes p \,\rho(p) \, dp$$

is a symmetric non-negative  $3 \times 3$  matrix satisfying trM = 1.

The de Gennes Q-tensor

$$Q = M - M_0$$

measures the deviation of M from its isotropic value  $M_0 = \frac{1}{3}\mathbf{1}$ , corresponding to the probability density function  $\rho(p) = \frac{1}{4\pi}$ .

Note that 
$$Q = Q^T$$
,  $\operatorname{tr} Q = 0$ ,  $\frac{2}{3} \ge \lambda_i(Q) \ge -\frac{1}{3}$ .

If two eigenvalues of Q are equal then Q is said to be *uniaxial* and has the form

$$Q = s(\tilde{n} \otimes \tilde{n} - \frac{1}{3}1),$$

where  $\tilde{n} \in S^2$  and the scalar order parameter  $s \in [-\frac{1}{2}, 1]$ .

In practice Q is observed to be very nearly uniaxial except possibly very near defects, with a constant value of s (typical values being in the range 0.6 - 0.8).

## Landau – de Gennes free energy

At each point x we have a Q-tensor Q(x).

We suppose that Q is obtained by minimizing the (free) energy

$$I_{\theta}(Q) = \int_{\Omega} \psi(Q, \nabla Q, \theta) \, dx,$$

subject to suitable boundary conditions.

For simplicity we consider the special case when

$$\psi(Q, \nabla Q, \theta) = \underbrace{a(\theta) \operatorname{tr} Q^2 - \frac{2b}{3} \operatorname{tr} Q^3 + \frac{c}{2} \operatorname{tr} Q^4}_{\psi_B(Q, \theta)} + \underbrace{\varepsilon |\nabla Q|^2}_{\psi_E(\nabla Q)}$$

where  $\theta$  is the temperature,  $b > 0, c > 0, a(\theta) = \alpha(\theta - \theta^*), \alpha > 0, \varepsilon > 0$  and

$$|\nabla Q|^2 = \sum_{i,j,k=1}^3 \left(\frac{\partial Q_{ij}}{\partial x_k}\right)^2,$$

so that we have to minimize

$$I_{\theta}(y) = \int_{\Omega} [\psi_B(Q,\theta) + \psi_E(\nabla Q)] \, dx.$$

$$\theta > \theta_{\rm NI} = \theta^* + \frac{2b^2}{27\alpha c}$$

then the unique minimizer of  $\psi_B$  is Q = 0. If  $\theta < \theta_{\text{NI}}$  then the minimizers are

$$Q = s_{\min}(n \otimes n - \frac{1}{3}1) \text{ for } n \in S^2,$$
  
where  $s_{\min} = \frac{b + \sqrt{b^2 - 12ac}}{2c} > 0.$ 

Thus this model predicts that there is a phase transformation from an isotropic fluid to a uniaxial nematic phase at the critical temperature  $\theta_{\text{NI}}$ .

## Possible defects in constrained theory

$$Q = s(n \otimes n - \frac{1}{3}1)$$
  
Hedgehog  $n(x) = \frac{x}{|x|}$ 

$$\nabla n(x) = \frac{1}{|x|} (1 - n \otimes n)$$
$$|\nabla n(x)|^2 = \frac{2}{|x|^2}$$
$$\int_0^1 r^{-2} r^2 dr < \infty$$

Finite energy
# **Disclinations**



infinite energy

## Index one half singularities



These are nonorientable and of infinite energy.

# Mathematical challenges

- Give a rigorous derivation of a continuum model from a molecular one. What forms should the bulk and elastic energies have, is it reasonable to use second moments, boundary conditions ...?)
- 2. What is the best way to describe defects? (For example, are there useful asymptotics as  $\varepsilon \rightarrow 0$  in the Landau de Gennes theory?)

# The eigenvalue constraints

Question: how are the eigenvalue constraints

$$-\frac{1}{3} < \lambda_i(Q) < \frac{2}{3}$$

maintained in the theory?

B/Majumdar

## Nonlinear elasticity



Minimize

$$I(y) = \int_{\Omega} W(\nabla y(x)) \, dx$$

subject to suitable boundary conditions, e.g.  $y|_{\partial\Omega_1} = \bar{y}$ .

To prevent interpenetration of matter we require that y is invertible, and in particular that

### $\det \nabla y(x) > 0$ a.e. $x \in \Omega$ .

To ensure this we assume that

 $W(A) \rightarrow \infty$  as det  $A \rightarrow 0+$ 

Correspondingly, it is natural to suppose that

$$\psi_B(Q,\theta) \to \infty$$
 as  $\lambda_{\min}(Q) \to -\frac{1}{3}+$ 

Such a suggestion was made by Ericksen in the context of his model of nematic liquid crystals.

We show how such an  $\psi_B$  can be constructed on the basis of a microscopic model.

## The Onsager model

In the Onsager model the probability measure  $\mu$  is assumed to be continuous with density  $\rho = \rho(p)$ , and the bulk free-energy at temperature  $\theta > 0$  has the form

$$I_{\theta}(\rho) = U(\rho) - \theta \eta(\rho),$$

where the entropy is given by

$$\eta(\rho) = -\int_{S^2} \rho(p) \ln \rho(p) \, dp.$$

With the Maier-Saupe molecular interaction, the internal energy is given by

$$U(\rho) = \kappa \int_{S^2} \int_{S^2} \left[\frac{1}{3} - (p \cdot q)^2\right] \rho(p) \rho(q) \, dp \, dq$$

where  $\kappa > 0$  is a coupling constant.

#### Denoting by

$$Q(\rho) = \int_{S^2} (p \otimes p - \frac{1}{3}1)\rho(p) \, dp$$

the corresponding Q-tensor, a short calculation shows that

$$U(\rho) = -\kappa |Q(\rho)|^2.$$

Hence

$$I_{\theta}(\rho) = \theta \int_{S^2} \rho(p) \ln \rho(p) \, dp - \kappa |Q(\rho)|^2$$

Given Q we define

$$\psi_B(Q,\theta) = \inf_{\{\rho:Q(\rho)=Q\}} I_{\theta}(\rho)$$
  
=  $\theta \inf_{\{\rho:Q(\rho)=Q\}} \int_{S^2} \rho \ln \rho \, dp - \kappa |Q|^2.$ 

(cf. Katriel, J., Kventsel, G. F., Luckhurst, G. R. and Sluckin, T. J.(1986))

Theorem

$$\psi_B(Q,\theta) \ge c_0 - \frac{\theta}{2} \ln(\lambda_{\min}(Q) + \frac{1}{3}),$$
  
that  $\psi_B(Q,\theta) \to \infty$  as  $\lambda_{\min}(Q) \to -\frac{1}{3}+$ 

Remarks

SO

1. The blow-up corresponds to a perfectly aligned state having entropy  $-\infty$ .

2. All critical points of  $\psi_B$  are uniaxial. Phase transition predicted from isotropic to uniaxial nematic phase just as in the quartic model.

Given appropriate boundary conditions, do minimizers of

$$I(Q) = \int_{\Omega} [\psi_B(Q) + \psi_E(Q, \nabla Q)] dx$$

have eigenvalues which are bounded away from  $-\frac{1}{3}$ , i.e. for some  $\delta > 0$ 

$$-\frac{1}{3} + \delta \le \lambda_{\min}(Q(x)) < \frac{2}{3} - \delta \text{ for a.e. } x \in \Omega?$$

If not, this would mean that a minimizer of *I* would have an unbounded integrand. Surely this is inconsistent with being a minimizer ....

### Example (B & Mizel) Minimize

$$I(u) = \int_{-1}^{1} \left[ (x^4 - u^6)^2 u_x^{28} + \epsilon u_x^2 \right] dx$$

subject to

$$u(-1) = -1, u(1) = 1,$$

with  $0 < \epsilon < \epsilon_0 \approx .001$ .



Result of finite-element minimization, minimizing  $I(u_h)$  for a piecewise affine approximation  $u_h$  to u on a mesh of size h, when h is very small. The method converges and produces two curves  $u^{\pm}$ .



However the real minimizer is  $y^*$ , which has a singularity

$$y^*(x) \sim |x|^{\frac{2}{3}}$$
sign x as  $x \sim 0$ .

Theorem

Let Q minimize

$$I(Q) = \int_{\Omega} [\psi_B(Q) + \varepsilon |\nabla Q|^2] \, dx,$$

subject to  $Q(x) = Q_0(x)$  for  $x \in \partial \Omega$ , where  $\varepsilon > 0$  and  $Q_0(\cdot)$  is sufficiently smooth with  $\lambda_{\min}(Q_0(x)) > -\frac{1}{3}$ . Then

$$\lambda_{\min}(Q(x)) > -\frac{1}{3} + \delta,$$

for some  $\delta > 0$  and is a smooth solution of the corresponding Euler-Lagrange equation.

Nonlinear elasticity problem: Do minimizers for suitable boundary conditions of

$$I(y) = \int_{\Omega} W(\nabla y) \, dx$$

with  $W(A) \to \infty$  as det  $A \to 0+$  satisfy

$$\det \nabla y(x) \geq \varepsilon > 0$$
 a.e.  $x \in \Omega$ 

for some  $\varepsilon > 0$ ?

#### This seems to be very difficult.

Recall the definition of the Q-tensor for nematics, namely

$$Q = \int_{S^2} (p \otimes p - \frac{1}{3}1)\rho(p) dp,$$
  
and that  $Q = Q^T$ , tr  $Q = 0, -\frac{1}{3} < \lambda_i(Q) < \frac{2}{3}$ .

If 
$$Q = s(n \otimes n - \frac{1}{3}1)$$
 is uniaxial then  $|Q|^2 = \frac{2s^2}{3}$ , det  $Q = \frac{2s^3}{27}$ .

Proposition.

Given  $Q = Q^T$ , trQ = 0, Q is uniaxial if and only if

$$|Q|^6 = 54(\det Q)^2.$$

*Proof.* The characteristic equation of Q is

$$\det(Q - \lambda \mathbf{1}) = \det Q - \lambda \operatorname{tr} \operatorname{cof} Q + 0\lambda^2 - \lambda^3.$$

But  $2\text{tr} \operatorname{cof} Q = 2(\lambda_2\lambda_3 + \lambda_3\lambda_1 + \lambda_1\lambda_2) = (\lambda_1 + \lambda_2 + \lambda_3)^2 - (\lambda_1^2 + \lambda_2^2 + \lambda_3^2) = -|Q|^2$ . Hence the characteristic equation is

$$\lambda^3 - \frac{1}{2}|Q|^2\lambda - \det Q = 0,$$

and the condition that  $\lambda^3 - p\lambda + q = 0$  has two equal roots is that  $p \ge 0$  and  $4p^3 = 27q^2$ .

## **Energetics**



Consider a liquid crystal material filling a container  $\Omega \subset \mathbf{R}^3$ . We suppose that the material is incompressible, homogeneous (same material at every point) and that the temperature is constant. At each point  $x \in \Omega$  we have a corresponding order parameter tensor Q(x). We suppose that the material is described by a free-energy density  $\psi(Q, \nabla Q)$ , so that the total free energy is given by

$$I(Q) = \int_{\Omega} \psi(Q(x), \nabla Q(x)) \, dx.$$

We write  $\psi = \psi(Q, D)$ , where D is a third order tensor.

## The domain of $\psi$

For what Q, D should  $\psi(Q, D)$  be defined? Let  $\mathcal{E} = \{Q \in M^{3 \times 3} : Q = Q^T, \text{tr } Q = 0\}$  $\mathcal{D} = \{D = (D_{ijk}) : D_{ijk} = D_{jik}, D_{kki} = 0\}.$ We suppose that  $\psi$  : dom  $\psi \to \mathbf{R}$ , where

dom 
$$\psi = \{(Q, D) \in \mathcal{E} \times \mathcal{D}, \lambda_i(Q) > -\frac{1}{3}\}.$$

But in order to differentiate  $\psi$  easily with respect to its arguments, it is convenient to extend  $\psi$  to all of  $M^{3\times3}\times(3rd \text{ order tensors})$ . To do this first set  $\psi(Q,D) = \infty$  if  $(Q,D) \in \mathcal{E} \times \mathcal{D}$  with some  $\lambda_i(Q) \leq -\frac{1}{3}$ .

Then note that

$$PA = \frac{1}{2}(A + A^T) - \frac{1}{3}(\operatorname{tr} A)\mathbf{1}$$

is the orthogonal projection of  $M^{3\times 3}$  onto  $\mathcal{E}$ . So for any Q, D we can set

$$\psi(Q,D) = \psi(PQ,PD),$$
  
where  $(PD)_{ijk} = \frac{1}{2}(D_{ijk} + D_{jik}) - \frac{1}{3}D_{llk}\delta_{ij}.$   
Thus we can assume that  $\psi$  satisfies for  $(Q,D) \in$   
dom  $\psi$ 

$$\frac{\partial \psi}{\partial Q_{ij}} = \frac{\partial \psi}{\partial Q_{ji}}, \ \frac{\partial \psi}{\partial Q_{ii}} = 0,$$
$$\frac{\partial \psi}{\partial D_{ijk}} = \frac{\partial \psi}{\partial D_{jik}}, \ \frac{\partial \psi}{\partial D_{iik}} = 0.$$

## **Frame-indifference**

Fix  $\bar{x} \in \Omega$ , Consider two observers, one using the Cartesian coordinates  $x = (x_1, x_2, x_3)$  and the second using translated and rotated coordinates  $z = \bar{x} + R(x - \bar{x})$ , where  $R \in SO(3)$ . We require that both observers see the same free-energy density, that is

 $\psi(Q^*(\bar{x}), \nabla_z Q^*(\bar{x})) = \psi(Q(\bar{x}), \nabla_x Q(\bar{x})),$ 

where  $Q^*(\bar{x})$  is the value of Q measured by the second observer.

$$Q^*(\bar{x}) = \int_{S^2} (q \otimes q - \frac{1}{3}\mathbf{1}) d\mu_{\bar{x}}(R^T q)$$
  
= 
$$\int_{S^2} (Rp \otimes Rp - \frac{1}{3}\mathbf{1}) d\mu_{\bar{x}}(p)$$
  
= 
$$R \int_{S^2} (p \otimes p - \frac{1}{3}\mathbf{1}) d\mu_{\bar{x}}(p) R^T$$

Hence  $Q^*(\bar{x}) = RQ(\bar{x})R^T$ , and so

$$\frac{\partial Q_{ij}^*}{\partial z_k}(\bar{x}) = \frac{\partial}{\partial z_k} (R_{il}Q_{lm}(\bar{x})R_{jm})$$
$$= \frac{\partial}{\partial x_p} (R_{il}Q_{lm}R_{jm})\frac{\partial x_p}{\partial z_k}$$
$$= R_{il}R_{jm}R_{kp}\frac{\partial Q_{lm}}{\partial x_p}.$$

Thus, for every  $R \in SO(3)$ ,

$$\psi(Q^*, D^*) = \psi(Q, D),$$

where  $Q^* = RQR^T$ ,  $D^*_{ijk} = R_{il}R_{jm}R_{kp}D_{lmp}$ . Such  $\psi$  are called *hemitropic*.

# Material symmetry

The requirement that

 $\psi(Q^*(\bar{x}), \nabla_z Q^*(\bar{x})) = \psi(Q(\bar{x}), \nabla_x Q(\bar{x}))$ when  $z = \bar{x} + \hat{R}(x - \bar{x})$ , where  $\hat{R} = -1 + 2e - e$ , |e| = 1, is a *reflection* is a condition of material symmetry satisfied by nematics, but not cholesterics, whose molecules have a chiral nature. Since any  $R \in O(3)$  can be written as  $\widehat{R}\widetilde{R}$ , where  $\widetilde{R} \in SO(3)$  and  $\widehat{R}$  is a reflection, for a nematic

$$\psi(Q^*, D^*) = \psi(Q, D)$$

where  $Q^* = RQR^T$ ,  $D^*_{ijk} = R_{il}R_{jm}R_{kp}D_{lmp}$  and  $R \in O(3)$ . Such  $\psi$  are called *isotropic*.

# Bulk and elastic energies

We can decompose  $\psi$  as

$$\psi(Q,D) = \psi(Q,0) + (\psi(Q,D) - \psi(Q,0))$$
  
=  $\psi_B(Q) + \psi_E(Q,D)$   
= bulk + elastic

Thus, putting D = 0,

$$\psi_B(RQR^T) = \psi_B(Q)$$
 for all  $R \in SO(3)$ ,

which holds if and only if  $\psi_B$  is a function of the principal invariants of Q, that is, since tr Q = 0,

$$\psi_B(Q) = \bar{\psi}_B(|Q|^2, \det Q).$$

Examples of isotropic functions quadratic in  $\nabla Q$  :

$$I_{1} = Q_{ij,j}Q_{ik,k}, \quad I_{2} = Q_{ik,j} \ Q_{ij,k}$$
$$I_{3} = Q_{ij,k}Q_{ij,k}, \quad I_{4} = Q_{lk}Q_{ij,l}Q_{ij,k}$$

Note that

$$I_1 - I_2 = (Q_{ij}Q_{ik,k})_{,j} - (Q_{ij}Q_{ik,j})_{,k}$$
  
is a null Lagrangian.

An example of a hemitropic, but not isotropic function is

$$I_5 = \varepsilon_{ijk} Q_{il} Q_{jl,k}.$$

### For the elastic energy we take

$$\psi_E(Q, \nabla Q) = \sum_{i=1}^4 L_i I_i,$$

where the  $L_i$  are material constants.

# The constrained theory

If the  $L_i$  are small, it is reasonable to consider the constrained theory in which Q is required to be uniaxial with a constant scalar order parameter s > 0, so that

$$Q = s(n \otimes n - \frac{1}{3}1).$$

(For recent rigorous work justifying this see Majumdar & Zarnescu, Nguyen & Zarnescu.) In this theory the bulk energy is constant and so we only have to consider the elastic energy

$$I(Q) = \int_{\Omega} \psi_E(Q, \nabla Q) \, dx.$$

## **Oseen-Frank energy**

Formally calculating  $\psi_E$  in terms of n, 
abla n we obtain the Oseen-Frank energy functional

$$I(n) = \int_{\Omega} [K_1 (\operatorname{div} n)^2 + K_2 (n \cdot \operatorname{curl} n)^2 + K_3 | n \times \operatorname{curl} n |^2 + (K_2 + K_4) (\operatorname{tr}(\nabla n)^2 - (\operatorname{div} n)^2)] dx,$$

where

$$K_{1} = 2L_{1}s^{2} + L_{2}s^{2} + L_{3}s^{2} - \frac{2}{3}L_{4}s^{3},$$
  

$$K_{2} = 2L_{1}s^{2} - \frac{2}{3}L_{4}s^{3},$$
  

$$K_{3} = 2L_{1}s^{2} + L_{2}s^{2} + L_{3}s^{2} + \frac{4}{3}L_{4}s^{3},$$
  

$$K_{4} = L_{3}s^{2}.$$

# Function Spaces (part of the mathematical model)

#### Unconstrained theory.

We are interested in equilibrium configurations of finite energy

$$I(Q) = \int_{\Omega} [\psi_B(Q) + \psi_E(Q, \nabla Q)] \, dx.$$

We use the Sobolev space  $W^{1,p}(\Omega; M^{3\times 3})$ . Since usually we assume

$$\psi_E(Q, \nabla Q) = \sum_{i=1}^4 L_i I_i,$$

$$I_1 = Q_{ij,j} Q_{ik,k}, I_2 = Q_{ik,j} Q_{ij,k},$$

$$I_3 = Q_{ij,k} Q_{ij,k}, I_4 = Q_{lk} Q_{ij,l} Q_{ij,k},$$
we typically take  $p = 2$ .

#### Constrained theory.

For  $1 \le p < \infty$  the Sobolev space  $W^{1,p}(\Omega, \mathbb{R}P^2)$ is the set of  $Q = s(n \otimes n - \frac{1}{3}1)$  with weak derivative  $\nabla Q$  satisfying  $\int_{\Omega} |\nabla Q(x)|^p dx < \infty$ .

Thus for the Landau - de Gennes energy density, the space of Q with finite elastic energy is  $W^{1,2}(\Omega, \mathbb{R}P^2)$ .
# Existence of minimizers in the constrained theory

Immediate in  $W^{1,2}(\Omega, \mathbb{R}P^2)$ , for a variety of boundary conditions, under suitable inequalities on the  $L_i$ , since  $\psi_E$  is then convex in  $\nabla Q$ and coercive and the uniaxiality contraint is weakly closed. The equilibrium equations (JB/Majumdar) Let Q be a minimizer of

$$I(Q) = \int_{\Omega} \psi_E(Q, \nabla Q) \, dx$$

subject to  $Q \in K = \{s(n \otimes n - \frac{1}{3}1) : n \in S^2\}$ . Considering a variation

$$Q_{\varepsilon} = s \left( \frac{[n + \varepsilon a \wedge n] \otimes [n + \varepsilon a \wedge n]}{|n + \varepsilon a \wedge n|^2} - \frac{1}{3} \mathbf{1} \right),$$

with a smooth and of compact support, we get the weak form of the equilibrium equations

$$ZQ = QZ,$$

where  $Z_{ij} = \frac{\partial \psi_E}{\partial Q_{ij}} - \frac{\partial}{\partial x_k} \frac{\partial \psi_E}{\partial D_{ijk}}$  ( $\psi_E$  symmetrized).

### Can we orient the director? (JB/Zarnescu)

We say that Q = Q(x) is *orientable* if we can write

$$Q(x) = s(n(x) \otimes n(x) - \frac{1}{3}1),$$

where  $n \in W^{1,p}(\Omega, S^2)$ .

This means that for each x we can make a choice of the unit vector  $n(x) = \pm \tilde{n}(x) \in S^2$  so that  $n(\cdot)$  has some reasonable regularity, sufficient to have a well-defined gradient  $\nabla n$  (in topological jargon such a choice is called a *lifting*).

## Relating the Q and n descriptions

Proposition Let  $Q = s(n \otimes n - \frac{1}{3}1)$ , s a nonzero constant, |n| = 1 a.e., belong to  $W^{1,p}(\Omega; \mathbb{R}P^2)$  for some  $p, 1 \leq p < \infty$ . If n is continuous along almost every line parallel to the coordinate axes, then  $n \in W^{1,p}(\Omega, S^2)$  (in particular n is orientable), and

$$n_{i,k} = Q_{ij,k} n_j.$$

### Theorem 1

### An orientable Q has exactly two orientations.

#### Proof

Suppose that n and  $\tau n$  both generate Q and belong to  $W^{1,1}(\Omega, S^2)$ , where  $\tau^2(x) = 1$  a.e.. For a.e.  $x_2, x_3$ , both n(x) and  $\tau(x)n(x)$  are absolutely continuous in  $x_1$ . Hence

$$\tau(x)n(x)\cdot n(x) = \tau(x)$$

is continuous in  $x_1$ . Hence the weak partial derivative  $\tau_{,1}$  exists and is zero. Similarly  $\tau_{,2}, \tau_{,3}$  exist and are zero. Thus  $\nabla \tau = 0$  a.e. in  $\Omega$ . Hence  $\tau = 1$  a.e. or  $\tau = -1$  a.e.

A smooth nonorientable director field in a non simply connected region.



The index one half singularities are non-orientable



### Theorem 2

# If $\Omega$ is simply-connected and $Q \in W^{1,p}$ , $p \ge 2$ , then Q is orientable.

(See also a recent topologically more general lifting result of Bethuel and Chiron for maps  $u:\Omega \rightarrow N$ .)

Thus in a simply-connected region the uniaxial de Gennes and Oseen-Frank theories are equivalent.



Another consequence is that it is impossible to modify this Q-tensor field in a core around the singular line so that it has finite Landau-de Gennes energy.

# Ingredients of Proof of Theorem 2

- Lifting possible if Q is smooth and  $\Omega$  simply-connected
- Pakzad-Rivière theorem (2003) implies that if ∂Ω is smooth, then there is a sequence of smooth Q<sup>(j)</sup> converging weakly to Q in W<sup>1,2</sup>
- We can approximate a simply-connected domain with boundary of class C by ones that are simply-connected with smooth boundary
- The Proposition implies that orientability is preserved under weak convergence

2D examples and results for non simply-connected regions Let  $\Omega \subset \mathbb{R}^2$ ,  $\omega_i \subset \mathbb{R}^2, i = 1, ..., n$  be bounded, open and simply connected, with  $C^1$  boundary, such that  $\bar{\omega}_i \subset \Omega$ ,  $\bar{\omega}_i \cap \bar{\omega}_j \neq \emptyset$  for  $i \neq j$ , and set  $G = \Omega \setminus \bigcup_{i=1}^n \bar{\omega}_i$ .



$$Q_2 = \{Q = s(n \otimes n - \frac{1}{3}1) : n = (n_1, n_2, 0)\}$$

Given  $Q \in W^{1,2}(G; Q_2)$  define the auxiliary complex-valued map

$$A(Q) = \frac{2}{s}Q_{11} - \frac{1}{3} + i\frac{2}{s}Q_{12}.$$

Then  $A(Q) = Z(n)^2$ , where  $Z(n) = n_1 + in_2$ .

$$A: Q_2 \to S^1.$$

Let  $C = \{C(s) : 0 \le s \le 1\}$  be a smooth Jordan curve in  $\mathbb{R}^2 \simeq \mathbb{C}$ .

If  $Z: C \to S^1$  is smooth then the degree of Z is the integer

$$\deg(Z,C) = \frac{1}{2\pi i} \int_C \frac{Z_s}{Z} ds.$$

Writing  $Z(s) = e^{i\theta(s)}$  we have that  $\deg(Z,C) = \frac{1}{2\pi i} \int_0^1 i\theta_s ds = \frac{\theta(1) - \theta(0)}{2\pi}.$  If  $Z \in H^{\frac{1}{2}}(C; S^{1})$  then the degree may be defined by the same formula

$$\deg(Z,C) = \frac{1}{2\pi i} \int_C \frac{Z_s}{Z} ds.$$

interpreted in the sense of distributions (L. Boutet de Monvel).

Theorem Let  $Q \in W^{1,2}(G; Q_2)$ . The following are equivalent:

(i) Q is orientable. (ii)  $\operatorname{Tr} Q \in H^{\frac{1}{2}}(C; Q_2)$  is orientable for every component C of  $\partial G$ . (iii) deg  $(A(\operatorname{Tr} Q), C) \in 2\mathbb{Z}$  for each component C of  $\partial G$ .

We sketch the proof, which is technical.



The orientation at the beginning and end of the loop are the same since we can pass the loop through the holes using orientability on the boundary.

(ii) 
$$\Leftrightarrow$$
 (iii). If Tr Q is orientable on C then  

$$deg (A(\operatorname{Tr} Q), C) = deg (Z^{2}(n), C)$$

$$= \frac{1}{2\pi i} \int_{C} \frac{(Z^{2})_{s}}{Z^{2}} ds$$

$$= \frac{1}{2\pi i} \int_{C} 2\frac{Z_{s}}{Z} ds$$

$$= 2deg (Z(n), C)$$
Conversely, if  $A(\operatorname{Tr} Q(s)) = e^{i\theta(s)}$  and  

$$deg (A(\operatorname{Tr} Q), C) = \frac{\theta(1) - \theta(0)}{\xi} \in 2\mathbb{Z}$$

then  $Z(s) = e^{\frac{i\theta(s)}{2}} \in H^{\frac{1}{2}}(C, S^1)$  and so  $\operatorname{Tr} Q$  is orientable.

 $2\pi$ 

We have seen that the (constrained) Landaude Gennes and Oseen-Frank theories are equivalent in a simply-connected domain. Is this true in 2D for domains with holes?

If we specify Q on each boundary component then by the Theorem either all Q satisfying the boundary data are orientable (so that the theories are equivalent), or no such Q are orientable, so that the Oseen Frank theory cannot apply and the Landau- de Gennes theory must be used.

More interesting is to apply boundary conditions which allow both the Landau - de Gennes and Oseen-Frank theories to be used and compete energetically.

So we consider the problem of minimizing

$$I(Q) = \int_G |\nabla Q|^2 dx$$

subject to  $Q|_{\partial^{\perp}} = g$  orientable with the boundaries  $\partial \omega_i$  free.



Since A is bijective and

$$I(Q) = \frac{2}{s^2} \int_G |\nabla A(Q)|^2 dx$$

our minimization problem is equivalent to minimizing

$$\widehat{I}(m) = \frac{2}{s^2} \int_G |\nabla m|^2 dx$$

in  $W^{1,2}_{A(g)}(G; S^1) =$  $\{m \in W^{1,2}(G; S^1) : m|_{\partial} = A(g)\}.$  In order that Q is orientable on  $\partial \Omega$  we need that

$$\mathsf{deg}(m,\partial\Omega)\in 2\mathbb{Z}.$$

We always have that

$$\deg(m,\partial\Omega) = \sum_{i=1}^{n} \deg(m,\partial\omega_i).$$

Hence if there is only one hole (n = 1) then  $deg(m, \partial \omega_1)$  is even and so every Q is orientable.

So to have both orientable and non-orientable Q we need at least two holes.

Tangent boundary conditions on outer boundary. No (free) boundary conditions on inner circles.

$$I(Q) = \int_{\Omega} |\nabla Q|^2 dx$$

$$I(n) = 2s^2 \int_{\Omega} |\nabla n|^2 dx$$







For M large enough the minimum energy configuration is unoriented, even though there is a minimizer among oriented maps.

If the boundary conditions correspond to the Q-field shown, then there is no orientable Q that satisfies them.

### The general case of two holes (n = 2).

Let h(g) be the solution of the problem

$$\begin{split} \Delta h(g) &= 0 \text{ in } G \\ \frac{\partial h(g)}{\partial \nu} &= A(g) \times \frac{\partial A(g)}{\partial \tau} \text{ on } \partial - \\ h(g) &= 0 \text{ on } \partial \omega_1 \cup \partial \omega_2, \end{split}$$

where  $rac{\partial}{\partial au}$  is the tangential derivative on the boundary (cf Bethuel, Brezis, Helein).

Let 
$$J(g) = (J(g)^1, J(g)^2)$$
, where  $J(g)^i = \frac{1}{2\pi} \int_{\partial \omega_i} \frac{\partial h(g)}{\partial \nu} ds$ .

#### Theorem

All global minimizers are nonorientable iff

$$dist(J(g)^1, \mathbb{Z}) < dist(J(g)^1, 2\mathbb{Z})$$

and all are orientable iff

$$\mathsf{dist}(J(g)^1, 2\mathbb{Z}) < \mathsf{dist}(J(g)^1, 2\mathbb{Z} + 1)$$

In the stadium example we can show that the first condition holds whatever the distance between the holes, so that the minimizer is always non-orientable.

### Existence for full Q-tensor theory We have to minimize

$$I(Q) = \int_{\Omega} [\psi_B(Q) + \psi_E(Q, \nabla Q)] dx$$

subject to suitable boundary conditions.

Suppose we take  $\psi_B : \mathcal{E} \to \mathbf{R}$  to be continuous and bounded below,  $\mathcal{E} = \{Q \in M^{3 \times 3} : Q = Q^T, \text{tr} Q = 0\}$ , (e.g. of the quartic form considered previously) and

$$\psi_E(Q, \nabla Q) = \sum_{i=1}^4 L_i I_i,$$

which is the simplest form that reduces to Oseen-Frank in the constrained case. Theorem (Davis & Gartland 1998) Let  $\Omega \subset \mathbb{R}^3$  be a bounded domain with smooth boundary  $\partial \Omega$ . Let  $L_4 = 0$  and

$$L_3 > 0, -L_3 < L_2 < 2L_3, -\frac{3}{5}L_3 - \frac{1}{10}L_2 < L_1.$$

Let  $\bar{Q}:\partial\Omega
ightarrow \mathcal{E}$  be smooth. Then

$$I(Q) = \int_{\Omega} [\psi_B(Q) + \sum_{i=1}^3 L_i I_i(\nabla Q)] dx$$

attains a minimum on

$$\mathcal{A} = \{ Q \in W^{1,2}(\Omega; \mathcal{E}) : Q|_{\partial \Omega} = \bar{Q} \}.$$

Proof

By the direct method of the calculus of variations. Let  $Q^{(j)}$  be a minimizing sequence in  $\mathcal{A}$ . the inequalities on the  $L_i$  imply that

$$\sum_{i=1}^{3} L_i I_i(\nabla Q) \ge \mu |\nabla Q|^2$$

for all Q (in particular  $\sum_{i=1}^{3} I_i(\nabla Q)$  is convex in  $\nabla Q$ ). By the Poincaré inequality we have that

$$Q^{(j)}$$
 is bounded in  $W^{1,2}$ 

so that for a subsequence (not relabelled)

$$Q^{(j)} \rightharpoonup Q^*$$
 in  $W^{1,2}$ 

for some  $Q^* \in \mathcal{A}$ .

We may also assume, by the compactness of the embedding of  $W^{1,2}$  in  $L^2$ , that  $Q^{(j)} \rightarrow Q$  a.e. in  $\Omega$ . But

$$I(Q^*) \leq \liminf_{j \to \infty} I(Q^{(j)})$$

by Fatou's lemma and the convexity in  $\nabla Q$ . Hence  $Q^*$  is a minimizer.

In the quartic case we can use elliptic regularity (Davis & Gartland) to show that any minimizer  $Q^*$  is smooth.

*Proposition.* For any boundary conditions, if  $L_4 \neq 0$  then

$$I(Q) = \int_{\Omega} [\psi_B(Q) + \sum_{i=1}^4 L_i I_i] dx$$

is unbounded below.

*Proof.* Choose any Q satisfying the boundary conditions, and multiply it by a smooth function  $\varphi(x)$  which equals one in a neighbourhood of  $\partial\Omega$  and is zero in some ball  $B \subset \Omega$ , which we can take to be B(0,1). We will alter Q in B so that

$$J(Q) = \int_{B} [\psi_{B}(Q) + \sum_{i=1}^{4} L_{i}I_{i}] dx$$

is unbounded below subject to  $Q|_{\partial B} = 0$ .

Choose

$$Q(x) = \theta(r) \left[ \frac{x}{|x|} \otimes \frac{x}{|x|} - \frac{1}{3} 1 \right], \ \theta(1) = 0,$$
 where  $r = |x|$ . Then

$$|\nabla Q|^2 = \frac{2}{3}\theta'^2 + \frac{4}{r^2}\theta^2,$$

and

$$I_4 = Q_{kl}Q_{ij,k}Q_{ij,l} = \frac{4}{9}\theta(\theta'^2 - \frac{3}{r^2}\theta^2).$$

Hence

$$J(Q) \le 4\pi \int_0^1 r^2 \left[ \psi_B(Q) + C \left( \frac{2}{3} \theta'^2 + \frac{4}{r^2} \theta^2 \right) + L_4 \frac{4}{9} \theta \left( \theta'^2 - \frac{3}{r^2} \theta^2 \right) \right] dr$$

where C is a constant.

Provided  $\theta$  is bounded, all the terms are bounded except

$$4\pi \int_0^1 r^2 \left(\frac{2}{3}C + \frac{4}{9}L_4\theta\right) \theta'^2 \, dr.$$

Choose

$$\theta(r) = \begin{cases} \theta_0(2 + \sin kr) & 0 < r < \frac{1}{2} \\ 2\theta_0(2 + \sin \frac{k}{2})(1 - r) & \frac{1}{2} < r < 1 \end{cases}$$

The integrand is then bounded on  $(\frac{1}{2}, 1)$  and we need to look at

$$4\pi \int_0^{\frac{1}{2}} r^2 \left(\frac{2}{3}C + \frac{4}{9}L_4\theta_0(2 + \sin kr)\right) \theta_0^2 k^2 \cos^2 kr \, dr,$$

which tends to  $-\infty$  if  $L_4\theta_0$  is sufficiently negative.

### The Onsager model (joint work with Apala Majumdar)

In the Onsager model the bulk free-energy at temperature  $\theta > 0$  has the form

$$I_{\theta}(\rho) = U(\rho) - \theta \eta(\rho),$$

where the entropy is given by

$$\eta(\rho) = -\int_{S^2} \rho(p) \ln \rho(p) \, dp.$$

With the Maier-Saupe molecular interaction, the internal energy is given by

$$U(\rho) = \kappa \int_{S^2} \int_{S^2} \left[\frac{1}{3} - (p \cdot q)^2\right] \rho(p) \rho(q) \, dp \, dq$$

where  $\kappa > 0$  is a coupling constant.

Denoting by

$$Q(\rho) = \int_{S^2} (p \otimes p - \frac{1}{3}\mathbf{1})\rho(p) \, dp$$

the corresponding Q-tensor, we have that

$$\begin{aligned} |Q(\rho)|^2 &= \int_{S^2} \int_{S^2} (p \otimes p - \frac{1}{3}1) \cdot (q \otimes q - \frac{1}{3}1) \rho(p) \rho(q) dp dq \\ &= \int_{S^2} \int_{S^2} [(p \cdot q)^2 - \frac{1}{3}] \rho(p) \rho(q) dp dq. \end{aligned}$$
Hence  $U(\rho) = -\kappa |Q(\rho)|^2$  and

$$I_{\theta}(\rho) = \theta \int_{S^2} \rho(p) \ln \rho(p) \, dp - \kappa |Q(\rho)|^2.$$

Given Q we define

$$\psi_B(Q,\theta) = \inf_{\substack{\{\rho:Q(\rho)=Q\}}} I_{\theta}(\rho)$$
  
=  $\theta \inf_{\substack{\{\rho:Q(\rho)=Q\}}} \int_{S^2} \rho \ln \rho \, dp - \kappa |Q|^2.$ 

(cf. Katriel, J., Kventsel, G. F., Luckhurst, G. R. and Sluckin, T. J.(1986))

Let

$$J(\rho) = \int_{S^2} \rho(p) \ln \rho(p) \, dp.$$

Given Q with  $Q = Q^T$ , tr Q = 0 and satisfying  $\lambda_i(Q) > -1/3$  we seek to minimize J on the set of admissible  $\rho$ 

$$\mathcal{A}_Q = \{ \rho \in L^1(S^2) : \rho \ge 0, \int_{S^2} \rho \, dp = 1, Q(\rho) = Q \}.$$

Remark: We do not impose the condition  $\rho(p) = \rho(-p)$ , since it turns out that the minimizer in  $\mathcal{A}_Q$  satisfies this condition.

*Lemma.*  $\mathcal{A}_Q$  is nonempty.

- (Remark: this is not true if we allow some  $\lambda_i = -1/3$ .)
- *Proof.* A singular measure  $\mu$  satisfying the constraints is

$$\mu = \frac{1}{2} \sum_{i=1}^{3} (\lambda_i + \frac{1}{3}) (\delta_{e_i} + \delta_{-e_i}),$$

and a  $ho \in \mathcal{A}_Q$  can be obtained by approximating this.

For  $\varepsilon > 0$  sufficiently small and i = 1, 2, 3 let

$$\varphi_i^{\varepsilon} = \begin{cases} 0 & \text{if } |p \cdot e_i| < 1 - \varepsilon \\ \frac{1}{4\pi\varepsilon} & \text{if } |p \cdot e_i| \ge 1 - \varepsilon \end{cases}$$

Then

$$\rho(p) = \frac{1}{(1 - \frac{1}{2}\varepsilon)(1 - \varepsilon)} \sum_{i=1}^{3} [\lambda_i + \frac{1}{3} - \frac{\varepsilon}{2} + \frac{\varepsilon^2}{6}] \varphi_{e_i}^{\varepsilon}(p)$$
  
works.  $\Box$ 

Theorem. J attains a minimum at a unique  $ho_Q \in \mathcal{A}_Q.$ 

*Proof.* By the direct method, using the facts that  $\rho \ln \rho$  is strictly convex and grows superlinearly in  $\rho$ , while  $\mathcal{A}_Q$  is sequentially weakly closed in  $L^1(S^2)$ .  $\Box$ 

Let  $f(Q) = J(\rho_Q) = \inf_{\rho \in \mathcal{A}_Q} J(\rho)$ , so that  $\psi_B(Q, \theta) = \theta f(Q) - \kappa |Q|^2$ .

# Theorem f is strictly convex in Q and

$$\lim_{\lambda_{\min}(Q)\to -\frac{1}{3}+} f(Q) = \infty.$$

#### Proof

The strict convexity of f follows from that of  $\rho \ln \rho$ . Suppose that  $\lambda_{\min}(Q^{(j)}) \rightarrow -\frac{1}{3}$  but  $f(Q^{(j)})$  remains bounded. Then

$$Q^{(j)}e^{(j)} \cdot e^{(j)} + \frac{1}{3}|e^{(j)}|^2 = \int_{S^2} \rho_{Q^{(j)}}(p)(p \cdot e^{(j)})^2 dp \to 0,$$

where  $e^{(j)}$  is the eigenvector of  $Q^{(j)}$  corresponding to  $\lambda_{\min}(Q^{(j)})$ .

But we can assume that  $\rho_{Q(j)} \rightharpoonup \rho$  in  $L^1(S^2)$ , where  $\int_{S^2} \rho(p) dp = 1$  and that  $e^{(j)} \rightarrow e$ , |e| = 1. Passing to the limit we deduce that

$$\int_{S^2} \rho(p) (p \cdot e)^2 dp = 0.$$

But this means that  $\rho(p) = 0$  except when  $p \cdot e = 0$ , contradicting  $\int_{S^2} \rho(p) dp = 1$ .  $\Box$ 

## The Euler-Lagrange equation for J

Theorem. Let  $Q = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$ . Then

$$\rho_Q(p) = \frac{\exp(\mu_1 p_1^2 + \mu_2 p_2^2 + \mu_3 p_3^2)}{Z(\mu_1, \mu_2, \mu_3)},$$

where

$$Z(\mu_1, \mu_2, \mu_3) = \int_{S^2} \exp(\mu_1 p_1^2 + \mu_2 p_2^2 + \mu_3 p_3^2) \, dp.$$
  
The  $\mu_i$  solve the equations  
$$\frac{\partial \ln Z}{\partial \mu_i} = \lambda_i + \frac{1}{3}, \ i = 1, 2, 3,$$

and are unique up to adding a constant to each

 $\mu_i$ .

*Proof.* We need to show that  $\rho_Q$  satisfies the Euler-Lagrange equation. There is a small difficulty due to the constraint  $\rho \geq 0$ . For  $\tau > 0$  let  $S_{\tau} = \{p \in S^2 : \rho_Q(p) > \tau\}$ , and let  $z \in L^{\infty}(S^2)$  be zero outside  $S_{\tau}$  and such that  $\int_{S_{-}} (p \otimes p - \frac{1}{3}1) z(p) \, dp = 0, \quad \int_{S_{\tau}} z(p) \, dp = 0.$ Then  $\rho_{\varepsilon} := \rho_Q + \varepsilon z \in \mathcal{A}_Q$  for all  $\varepsilon > 0$  suffi-

ciently small. Hence

$$\frac{d}{d\varepsilon}J(\rho_{\varepsilon})|_{\varepsilon=0} = \int_{S_{\tau}} [1 + \ln \rho_Q] z(p) \, dp = 0.$$

#### So by Hahn-Banach

$$1 + \ln \rho_Q = \sum_{i,j=1}^{3} C_{ij} [p_i p_j - \frac{1}{3}] + C$$

for constants  $C_{ij}(\tau)$ ,  $C(\tau)$ . Since  $S_{\tau}$  increases as  $\tau$  decreases the constants are independent of  $\tau$ , and hence

$$\rho_Q(p) = A \exp\left(\sum_{i,j=1}^3 C_{ij} p_i p_j\right) \text{ if } \rho_Q(p) > 0.$$

Suppose for contradiction that

$$E = \{ p \in S^2 : \rho_Q(p) = 0 \}$$

is such that  $\mathcal{H}^2(E) > 0$ . Note that since  $\int_{S^2} \rho_Q dp = 1$  we also have that  $\mathcal{H}^2(S^2 \setminus E) > 0$ . There exists  $z \in L^\infty(S^2)$  such that

$$\int_{\{\rho_Q > 0\}} (p \ p - \frac{1}{3}\mathbf{1})z(p) \, dp = 0, \ \int_{\{\rho_Q > 0\}} z(p) \, dp = 4\pi.$$

Indeed if this were not true then by Hahn-Banach we would have

$$1 = \sum_{i,j=1}^{3} D_{ij}(p_i p_j - \frac{1}{3}\delta_{ij}) \text{ on } S^2 \backslash E$$

for a constant matrix  $D = (D_{ij})$ .

Changing coordinates we can assume that D = $\sum_{i=1}^{3} \mu_i e_i$   $e_i$  and so  $1 = \sum_{i=1}^{3} \mu_i (p_i^2 - \frac{1}{3})$  on  $S^2 \setminus E$  for constants  $\mu_i$ . If the  $\mu_i$  are equal then the right-hand side is zero, a contradiction, while if the  $\mu_i$  are not all zero it is easily shown that the intersection of  $S^2$  with the set of such p has 2D measure zero.

Define for  $\varepsilon > 0$  sufficiently small

$$\rho_{\varepsilon} = \rho_Q + \varepsilon - \varepsilon z.$$

Then  $\rho_{\varepsilon} \in \mathcal{A}_Q$ , since  $\int_{S^2} (p \otimes p - \frac{1}{3}\mathbf{1}) dp = 0$ . Hence, since  $\rho_Q$  is the unique minimizer,

$$\int_{E} \varepsilon \ln \varepsilon + \int_{\{\rho_Q > 0\}} \left[ (\rho_Q + \varepsilon - \varepsilon z) \ln(\rho_Q + \varepsilon - \varepsilon z) - \rho_Q \ln \rho_Q \right] dp > 0.$$

This is impossible since the second integral is of order  $\varepsilon$ .

Hence we have proved that

$$\rho_Q(p) = A \exp(\sum_{i,j=1}^3 C_{ij} p_i p_j), \text{ a.e. } p \in S^2.$$

Lemma. Let  $R^T Q R = Q$  for some  $R \in O(3)$ . Then  $\rho_Q(Rp) = \rho_Q(p)$  for all  $p \in S^2$ .

Proof.

$$\begin{split} \int_{S^2} (p \otimes p - \frac{1}{3} \mathbf{1}) \rho_Q(Rp) \, dp \\ &= \int_{S^2} (R^T q \otimes R^T q - \frac{1}{3} \mathbf{1}) \rho_Q(q) \, dq \\ &= R^T Q R = Q, \end{split}$$

and  $ho_Q$  is unique.  $\Box$ 

Applying the lemma with  $Re_i = -e_i$ ,  $Re_j = e_j$ for  $j \neq i$ , we deduce that for  $Q = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$ ,  $\rho_Q(p) = \frac{\exp(\mu_1 p_1^2 + \mu_2 p_2^2 + \mu_3 p_3^2)}{Z(\mu_1, \mu_2, \mu_3)}$ ,

where

$$Z(\mu_1, \mu_2, \mu_3) = \int_{S^2} \exp(\mu_1 p_1^2 + \mu_2 p_2^2 + \mu_3 p_3^2) \, dp,$$
  
as claimed.

Finally

$$\frac{\partial \ln Z}{\partial \mu_i} = Z^{-1} \int_{S^2} p_i^2 \exp(\sum_{j=1}^3 \mu_j p_j^2) dp$$
$$= \lambda_i + \frac{1}{3},$$

and the uniqueness of the  $\mu_i$  up to adding a constant to each follows from the uniqueness of  $\rho_Q$ .  $\Box$ 

#### Hence the bulk free energy has the form

$$\psi_B(Q,\theta) = \theta \sum_{i=1}^3 \mu_i (\lambda_i + \frac{1}{3}) - \theta \ln Z - \kappa \sum_{i=1}^3 \lambda_i^2.$$

$$\begin{array}{l} \operatorname{Remarks} \\ 1. \ c_0 - \frac{1}{2} \ln(\lambda_{\min}(Q) + \frac{1}{3}) \leq \frac{1}{\theta} \psi_B \leq \\ c_1 - \ln(\lambda_{\min}(Q) + \frac{1}{3}). \end{array}$$

2. All critical points of  $\psi_B$  are uniaxial. Phase transition predicted from isotropic to uniaxial nematic phase just as in the quartic model.

3. Minimizers  $\rho^*$  of  $I_{\theta}(\rho)$  correspond to minimizers over Q of  $\psi_B(Q)$ . These  $\rho^*$  were calculated and shown to be uniaxial by Fatkullin and Slastikov (2005), Liu, H. Zhang and P. Zhang (2005). Now consider the problem of minimizing

$$I(Q) = \int_{\Omega} [\psi_B(Q) + \sum_{i=1}^4 L_i I_i(Q, \nabla Q)] dx$$

subject to, for example,

$$Q(x)|_{\partial\Omega} = Q_0(x).$$

Since  $\psi_B(Q) \to \infty$  when  $\lambda_{\min}(Q) \to -1/3$  the difficult term  $I_4$  can be absorbed into  $I_3$ , since

$$I_3 + 3I_4 = (\delta_{kl} + 3Q_{kl})Q_{ij,k}Q_{ij,l} \ge 0$$

and the existence of a minimizer follows under appropriate conditions (c.f. Gartland & Davis) on the  $L_i$ , even when  $L_4 \neq 0$ .

## Liquid crystal elastomers

These are polymers for which the long chain molecules are liquid crystals.

Actuation by hot and cold air (E. Terentyev)

Courtesy M. Warner





Thermo-optical actuation (P. Palffy-Muhoray)

### References

J.M. Ball and A. Majumdar. Nematic Liquid Crystals: from Maier-Saupe to a Continuum Theory, Mol. Cryst. Liq. Cryst. 525 (2010) 1-11.

J.M. Ball and A. Zarnescu, Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal. (2011)

J.M. Ball, Some open problems in elasticity. In Geometry, Mechanics, and Dynamics, pages 3--59, Springer, New York, 2002

N. Mottram and C. Newton, Introduction to Q-tensor theory (on Strathclyde webpage of N. Mottram).

Isaac Newton Institute for Mathematical Sciences, Cambridge



## **The Mathematics of Liquid Crystals**

7 January - 5 July 2013

http://www.newton.ac.uk/programmes/MLC/index.htm



Organisers:

John Ball David Chillingworth Mikhail Osipov Peter Palffy-Muhoray Mark Warner