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Metric Structures
Intuition: A metric structure is the continuous, or metric, analogue of a model.

Definition
A metric structure is a triple (M, d; I) such that (M, d) is a complete, bounded∗ metric
space, and I is an interpretation consisting of:

• a collection of distinguished elements c ∈ M (constants);

• a collection of distinguished uniformly continuous functions f : Mn → M (functions);

• a collection of distinguished uniformly continuous functions P : Mn → [a, b] ⊂ R
(predicates).

We say that a metric structure is separable if (M, d) is a separable metric space and I
is countable.
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Two Examples

1. If (M; {cj}j∈J, {fk}k∈K, {Rℓ}ℓ∈L) is a model, and d{0,1} is the discrete metric on M.
Then

(M, d{0,1}; {cj}j∈J, {fk}k∈K, {Rℓ}ℓ∈L)

is a metric structure.

2. Cantor and Baire space: (2ω, d) and (ωω, d) where

d(τ, σ) =

{
2−n, if n is the least index such that τ(n) ̸= σ(n)

0, τ = σ

We can also add a function f : M → M defined by f(τ)(n) = τ(n + 1).
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Two More Examples

1. Given a probability algebra

A = (A, 0, 1,¬,∧,∨, µ)

let dµ(x, y) = µ(x△y) be the complete distance related to the measure µ. Then

(A, dµ; {0, 1}, {¬,∧,∨}, {µ})

is a metric structure.

2. Hilbert Space.
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Metric Scott analysis

Theorem ([BYDNT17] Scott Sentences)
Every separable metric structureA is characterized, up to isomorphism among all
separable metric structures in the same language, by a continuous infinitary sentence,
which is called the Scott sentence ofA. That is, there is a continuous infinitary sentence ϕ
such that for any separable metric structure B in the same language,

ϕB = 0 iff B ∼= A.
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Continuous infinitary logic, informally
Intuition: We want a language that allows us to perform a Scott analysis of separable
metric structures.

1. Formulas are uniformly continuous∗ functions ϕ : An → [aϕ, bϕ] ⊂ R. The range,
and the modulus of continuity of ϕ are specified by the language;

2. given formulas ϕ and ψ, we allow the following connectives∗

ϕ+ ψ, max(ϕ, ψ), min(ϕ, ψ), {r · ϕ}r∈Q, 1;

3. supx and infx act as the continuous first-order quantifiers;

4. Suppose {ϕn | n < ω} is a set of formulas,∆ a modulus of continuity, and I ⊂ R
compact. If each ϕn respects∆ and I, then supn ϕn and infn ϕn are formulas
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A Robust Scott Rank

Theorem ([Mon15])
The Scott rank of a countable structureA is the least ordinal α > 0 such that the
following equivalent conditions all hold:

1. every automorphism orbit ofA is definable by anΣin
α-formula;

2. the Scott sentence ofA isΠin
α+1;

3. for anyΠin
α-type p(x) realized inA, there is aΣin

α formula ϕ(x) that supports the
type inA. Meaning thatA |= ∃ x̄ϕ(x̄) and:

A |= ∀x
(
ϕ(x) ⇒

∧
ψ(x)∈p(x) ψ(x)

)
.

Question
Can we give a robust notion of Scott rank for separable metric structures?
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A First Step

Definition
LetA and B be separable metric structures. Fix sequences A = {an | n < ω} ⊂ A
and B = {bn | n < ω} ⊂ B such that every tail of each sequence is dense in the
respective structure.

Question
What relation between A and B can be lifted to an isomorphism betweenA and B.
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Definition
AnΩ-bounded back-and-forth set with bound t > 0 is a set I ⊂ A<ω × B<ω such that
for (a, b) ∈ I we have:

1. supϕ |ϕA(a)− ϕB(b)| < t where ϕ(x) varies over all |ā| = |b̄|-aryΩ-quantifier
free formulas∗;

2. For every c ∈ A there is a d ∈ B such that the index of d in B is larger than all the
indices in a, b, c and (ac, bd) ∈ I;

3. For every d ∈ B there is a c ∈ A such that the index of c in A is larger than all the
indices in a, b, d and (ac, bd) ∈ I.

Theorem
LetA and B be separable metric structures, Ω a universal modulus, and t > 0. Fix
countable tail-dense sequences A ofA and B of B. If I ⊂ A<ω × B<ω is anΩ-bounded
back-and-forth set with bound t and (a, b) ∈ I, then there is an isomorphism Φ : A → B
such that

Ω(dA(f(ai), bi) | i < |ā|) ≤ t.
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10/14

Definability of Closures of Automorphism
Orbits

Lemma ([BYDNT17])
LetΩ be an universal weak-modulus,A be a separable metric structure with a countable
tail-dense sequence A, and a, b ∈ An for some n < ω. Then b ∈ AutA(a) if, and only if,
ϕA(a) = ϕA(b) for allΩ continuous infinitary formulas without parameters.

Theorem (B.)
LetΩ be an universal weak-modulus,A be a separable metric structure. Then the closure
of the automorphism orbit of a ∈ A<ω inA isΩ-definable (i.e. the function
dΩ(x, AutA(ā)) is a definable predicate).
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A Robust(ish) Scott Rank for Separable
Metric Structures

Definition
TheΩ-Scott Rank of a separable metric structureA is the least countable ordinal
α > 0 such that all the automorphism orbits of all finite tuples ofA are
(Ω, infα)-definable.
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A Robust(ish) Scott Rank for Separable
Metric Structures

Theorem (B.)
LetA be a separable metric structure ,Ω a universal modulus and α > 0 a countable limit
ordinal. Fix A, a countable tail-dense sequence ofA. Then, the following are equivalent:

1. the closure of every automorphism orbit of every ā ∈ A<ω is (Ω, inf<α)-definable
without parameters;

2. A has an (Ω, supα) Scott predicate. That is, a definable predicate of the form
Q = supn supx̄n Pn(x̄n) that characterizesA up to isomorphism amongst all separable

structures in the same language and such that each Pn is an (Ω, inf<α) definable
predicate;

3. every (Ω, sup<α) type realized in A is supported inA by an (Ω, inf<α)-definable
predicate without parameters.
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