Special thanks to Dino Rossegger for all the productive conversations

Diego Bejarano

Geometry from the model theorist's point of view

September 10, 2024

Intuition: A metric structure is the continuous, or metric, analogue of a model.

Intuition: A metric structure is the continuous, or metric, analogue of a model.

Definition

A metric structure is a triple (*M, d*; *I*) such that (*M, d*) is a *complete, bounded[∗]* metric space, and *I* is an interpretation consisting of:

Intuition: A metric structure is the continuous, or metric, analogue of a model.

Definition

A metric structure is a triple $(M, d; I)$ such that (M, d) is a *complete, bounded*^{*} metric space, and *I* is an interpretation consisting of:

• a collection of distinguished elements *c ∈ M* (constants);

Intuition: A metric structure is the continuous, or metric, analogue of a model.

Definition

A metric structure is a triple $(M, d; I)$ such that (M, d) is a *complete, bounded*^{*} metric space, and *I* is an interpretation consisting of:

- a collection of distinguished elements *c ∈ M* (constants);
- $\bm{\cdot}$ a collection of distinguished uniformly continuous functions $f\colon M^n\to M$ (functions);

Intuition: A metric structure is the continuous, or metric, analogue of a model.

Definition

A metric structure is a triple $(M, d; I)$ such that (M, d) is a *complete, bounded^{*}* metric space, and *I* is an interpretation consisting of:

- a collection of distinguished elements *c ∈ M* (constants);
- $\bm{\cdot}$ a collection of distinguished uniformly continuous functions $f\colon M^n\to M$ (functions);
- \cdot $\,$ a collection of distinguished uniformly continuous functions $\textit{P}:\textit{M}^n\rightarrow\left[\textit{a},\textit{b}\right] \subset\mathbb{R}$ (predicates).

Intuition: A metric structure is the continuous, or metric, analogue of a model.

Definition

A metric structure is a triple $(M, d; I)$ such that (M, d) is a *complete, bounded^{*}* metric space, and *I* is an interpretation consisting of:

- a collection of distinguished elements *c ∈ M* (constants);
- $\bm{\cdot}$ a collection of distinguished uniformly continuous functions $f\colon M^n\to M$ (functions);
- \cdot $\,$ a collection of distinguished uniformly continuous functions $\textit{P}:\textit{M}^n\rightarrow\left[\textit{a},\textit{b}\right] \subset\mathbb{R}$ (predicates).

We say that a metric structure is **separable** if (*M, d*) is a separable metric space and *I* is countable.

Two Examples

Two Examples

1. If $(M;\{ \epsilon_j \}_{j\in J},\{ f_k \}_{k\in K},\{ R_\ell \}_{\ell\in L})$ is a model, and $d_{\{ 0,1 \}}$ is the discrete metric on M . Then

 $(M, d_{\{0,1\}}; \{c_j\}_{j\in J}, \{f_k\}_{k\in K}, \{R_\ell\}_{\ell\in L})$

is a metric structure.

Two Examples

1. If $(M;\{ \epsilon_j \}_{j\in J},\{ f_k \}_{k\in K},\{ R_\ell \}_{\ell\in L})$ is a model, and $d_{\{ 0,1 \}}$ is the discrete metric on M . Then

 $(M, d_{\{0,1\}}; \{c_j\}_{j\in J}, \{f_k\}_{k\in K}, \{R_\ell\}_{\ell\in L})$

is a metric structure.

2. Cantor and Baire space: $(2^\omega, d)$ and (ω^ω, d) where

$$
d(\tau,\sigma) = \begin{cases} 2^{-n}, & \text{if } n \text{ is the least index such that } \tau(n) \neq \sigma(n) \\ 0, & \tau = \sigma \end{cases}
$$

We can also add a function $f : M \to M$ defined by $f(\tau)(n) = \tau(n+1)$.

Two More Examples

Two More Examples

1. Given a probability algebra

$$
\mathcal{A}=(\mathbf{A},0,1,\neg,\wedge,\vee,\mu)
$$

let $d_{\mu}(x, y) = \mu(x \triangle y)$ be the complete distance related to the measure μ . Then

$$
(\mathsf{A},\mathsf{d}_{\mu};\{0,1\},\{\neg,\wedge,\vee\},\{\mu\})
$$

is a metric structure.

Two More Examples

1. Given a probability algebra

$$
\mathcal{A}=(\mathbf{A},0,1,\neg,\wedge,\vee,\mu)
$$

let $d_{\mu}(x, y) = \mu(x \triangle y)$ be the complete distance related to the measure μ . Then

$$
(\mathsf{A},\mathsf{d}_{\mu};\{0,1\},\{\neg,\wedge,\vee\},\{\mu\})
$$

is a metric structure.

2. Hilbert Space.

Metric Scott analysis

Metric Scott analysis

Theorem ([\[BYDNT17](#page-41-0)] Scott Sentences)

Every separable metric structure A is characterized, up to isomorphism among all separable metric structures in the same language, by a continuous infinitary sentence, which is called the Scott sentence of A. That is, there is a continuous infinitary sentence ϕ such that for any separable metric structure B in the same language,

 $\phi^{\mathcal{B}} = 0$ *iff* $\mathcal{B} \cong \mathcal{A}$ *.*

Intuition: We want a language that allows us to perform a Scott analysis of separable metric structures.

Intuition: We want a language that allows us to perform a Scott analysis of separable metric structures.

1. Formulas are uniformly continuous * functions $\phi:\mathcal{A}^n\to[a_\phi,b_\phi]\subset\mathbb{R}.$ The range, and the modulus of continuity of ϕ are specified by the language;

Intuition: We want a language that allows us to perform a Scott analysis of separable metric structures.

- 1. Formulas are uniformly continuous * functions $\phi:\mathcal{A}^n\to[a_\phi,b_\phi]\subset\mathbb{R}.$ The range, and the modulus of continuity of ϕ are specified by the language;
- 2. given formulas *ϕ* and *ψ*, we allow the following connectives*[∗]*

 $\phi + \psi$, max (ϕ, ψ) , min (ϕ, ψ) , $\{r \cdot \phi\}_{r \in \mathbb{Q}}$, 1;

Intuition: We want a language that allows us to perform a Scott analysis of separable metric structures.

- 1. Formulas are uniformly continuous * functions $\phi:\mathcal{A}^n\to[a_\phi,b_\phi]\subset\mathbb{R}.$ The range, and the modulus of continuity of ϕ are specified by the language;
- 2. given formulas *ϕ* and *ψ*, we allow the following connectives*[∗]*

 $\phi + \psi$, max (ϕ, ψ) , min (ϕ, ψ) , $\{r \cdot \phi\}_{r \in \mathbb{Q}}$, 1;

3. $\sup_\textsf{x}$ and $\inf_\textsf{x}$ act as the continuous first-order quantifiers;

Intuition: We want a language that allows us to perform a Scott analysis of separable metric structures.

- 1. Formulas are uniformly continuous * functions $\phi:\mathcal{A}^n\to[a_\phi,b_\phi]\subset\mathbb{R}.$ The range, and the modulus of continuity of ϕ are specified by the language;
- 2. given formulas *ϕ* and *ψ*, we allow the following connectives*[∗]*

 $\phi + \psi$, max (ϕ, ψ) , min (ϕ, ψ) , $\{r \cdot \phi\}_{r \in \mathbb{Q}}$, 1;

- 3. $\sup_\textsf{x}$ and $\inf_\textsf{x}$ act as the continuous first-order quantifiers;
- 4. Suppose $\{\phi_n \mid n < \omega\}$ is a set of formulas, Δ a modulus of continuity, and $I \subset \mathbb{R}$ compact. If each ϕ_n respects Δ and *I*, then $\sup_n \phi_n$ and $\inf_n \phi_n$ are formulas

Theorem ([\[Mon15](#page-41-1)])

The Scott rank of a countable structure $\mathcal A$ *is the least ordinal* $\alpha > 0$ *such that the following equivalent conditions all hold:*

Theorem ([\[Mon15](#page-41-1)])

The Scott rank of a countable structure $\mathcal A$ *is the least ordinal* $\alpha > 0$ *such that the following equivalent conditions all hold:*

1. *every automorphism orbit of* ${\cal A}$ *is definable by an* $\Sigma_\alpha^{\text{in}}$ *-formula;*

Theorem ([\[Mon15](#page-41-1)])

The Scott rank of a countable structure $\mathcal A$ *is the least ordinal* $\alpha > 0$ *such that the following equivalent conditions all hold:*

- 1. *every automorphism orbit of* ${\cal A}$ *is definable by an* $\Sigma_\alpha^{\text{in}}$ *-formula;*
- 2. *the Scott sentence of* ${\cal A}$ *is* $\Pi^m_{\alpha+1}$ *;*

Theorem ([\[Mon15](#page-41-1)])

The Scott rank of a countable structure $\mathcal A$ *is the least ordinal* $\alpha > 0$ *such that the following equivalent conditions all hold:*

- 1. *every automorphism orbit of* ${\cal A}$ *is definable by an* $\Sigma_\alpha^{\text{in}}$ *-formula;*
- 2. *the Scott sentence of* ${\cal A}$ *is* $\Pi^m_{\alpha+1}$ *;*

3. *for any* Π_α^n *-type p* (\overline{x}) *realized in* $\mathcal A$ *, there is a* Σ_α^n *formula* $\phi(\overline{x})$ *that supports the type in A. Meaning that* $A \models \exists \overline{x} \phi(\overline{x})$ *and:*

$$
\mathcal{A} \models \forall x \; \left(\phi(\overline{x}) \Rightarrow \bigwedge_{\psi(x) \in \rho(x)} \psi(\overline{x}) \right).
$$

Theorem ([\[Mon15](#page-41-1)])

The Scott rank of a countable structure $\mathcal A$ *is the least ordinal* $\alpha > 0$ *such that the following equivalent conditions all hold:*

- 1. *every automorphism orbit of* ${\cal A}$ *is definable by an* $\Sigma_\alpha^{\text{in}}$ *-formula;*
- 2. *the Scott sentence of* ${\cal A}$ *is* $\Pi^m_{\alpha+1}$ *;*

3. *for any* Π_α^n *-type p* (\overline{x}) *realized in* $\mathcal A$ *, there is a* Σ_α^n *formula* $\phi(\overline{x})$ *that supports the type in A. Meaning that* $A \models \exists \overline{x} \phi(\overline{x})$ *and:*

$$
\mathcal{A} \models \forall x \left(\phi(\overline{x}) \Rightarrow \bigwedge_{\psi(x) \in \rho(x)} \psi(\overline{x}) \right).
$$

Ouestion

Can we give a robust notion of Scott rank for separable metric structures?

A First Step

A First Step

Definition

Let *A* and *B* be separable metric structures. Fix sequences $A = \{a_n \mid n < \omega\} \subset A$ and $B = \{b_n \mid n < \omega\} \subset B$ such that every tail of each sequence is dense in the respective structure.

A First Step

Definition

Let *A* and *B* be separable metric structures. Fix sequences $A = \{a_n \mid n < \omega\} \subset A$ and $B = \{b_n \mid n < \omega\} \subset B$ such that every tail of each sequence is dense in the respective structure.

Ouestion

What relation between A and B can be lifted to an isomorphism between A and B.

An Ω -*bounded back-and-forth set with bound* $t>0$ *is a set* $I\subset A^{<\omega}\times B^{<\omega}$ *such that* for $(\overline{a}, \overline{b}) \in I$ we have:

An Ω -*bounded back-and-forth set with bound* $t>0$ *is a set* $I\subset A^{<\omega}\times B^{<\omega}$ *such that* for $(\overline{a}, \overline{b}) \in I$ we have:

1. $\sup_{\phi}|\phi^{\cal A}(\overline a)-\phi^{\cal B}(\overline b)|< t$ where $\phi(\overline x)$ varies over all $|\overline a|=|\overline b|$ -ary Ω -quantifier free formulas*[∗]* ;

An Ω -*bounded back-and-forth set with bound* $t>0$ *is a set* $I\subset A^{<\omega}\times B^{<\omega}$ *such that* for $(\overline{a}, \overline{b}) \in I$ we have:

- 1. $\sup_{\phi}|\phi^{\cal A}(\overline a)-\phi^{\cal B}(\overline b)|< t$ where $\phi(\overline x)$ varies over all $|\overline a|=|\overline b|$ -ary Ω -quantifier free formulas*[∗]* ;
- 2. For every *c ∈ A* there is a *d ∈ B* such that the index of *d* in *B* is larger than all the indices in \overline{a} , \overline{b} , c and $(\overline{a}c, \overline{b}d) \in I$;
- 3. For every $d \text{ ∈ } B$ there is a $c \text{ ∈ } A$ such that the index of c in A is larger than all the indices in \overline{a} *,* \overline{b} *, d* and $(\overline{a}c, \overline{b}d) \in I$.

An Ω -*bounded back-and-forth set with bound* $t>0$ *is a set* $I\subset A^{<\omega}\times B^{<\omega}$ *such that* for $(\overline{a}, \overline{b}) \in I$ we have:

- 1. $\sup_{\phi}|\phi^{\cal A}(\overline a)-\phi^{\cal B}(\overline b)|< t$ where $\phi(\overline x)$ varies over all $|\overline a|=|\overline b|$ -ary Ω -quantifier free formulas*[∗]* ;
- 2. For every *c ∈ A* there is a *d ∈ B* such that the index of *d* in *B* is larger than all the indices in \overline{a} , \overline{b} , c and $(\overline{a}c, \overline{b}d) \in I$;
- 3. For every *d ∈ B* there is a *c ∈ A* such that the index of *c* in *A* is larger than all the indices in \overline{a} *,* \overline{b} *, d* and $(\overline{a}c, \overline{b}d) \in I$.

Theorem

Let \cal{A} *and* \cal{B} *be separable metric structures,* Ω *a universal modulus, and* $t > 0$ *. Fix countable tail-dense sequences A of A and B of B. If I ⊂ A <ω × B <ω is an* Ω*-bounded back-and-forth set with bound t and* $(\overline{a}, \overline{b}) \in I$, then there is an isomorphism $\Phi : \mathcal{A} \to \mathcal{B}$ *such that*

 $\Omega(d_A(f(a_i), b_i) | i < |\bar{a}|) < t.$

Definability of Closures of Automorphism **Orbits**

Definability of Closures of Automorphism **Orbits**

Lemma ([\[BYDNT17](#page-41-0)])

Let Ω *be an universal weak-modulus, A be a separable metric structure with a countable* t ail-dense sequence A, and $\overline{a}, \overline{b} \in$ A n for some $n < \omega$. Then $\overline{b} \in$ Aut $_{\mathcal{A}}(\overline{a})$ if, and only if, *ϕ ^A*(*a*) = *ϕ ^A*(*b*) *for all* Ω *continuous infinitary formulas without parameters.*

Definability of Closures of Automorphism **Orbits**

Lemma ([\[BYDNT17](#page-41-0)])

Let Ω *be an universal weak-modulus, A be a separable metric structure with a countable* t ail-dense sequence A, and $\overline{a}, \overline{b} \in$ A n for some $n < \omega$. Then $\overline{b} \in$ Aut $_{\mathcal{A}}(\overline{a})$ if, and only if, *ϕ ^A*(*a*) = *ϕ ^A*(*b*) *for all* Ω *continuous infinitary formulas without parameters.*

Theorem (B.)

Let Ω *be an universal weak-modulus, A be a separable metric structure. Then the closure of the automorphism orbit of* $\overline{a} \in A^{\langle \omega \rangle}$ *in* A *is* Ω -definable (*i.e. the function* $d^{\Omega}(x,\overline{Aut_{\mathcal{A}}(\bar{a})})$ *is a definable predicate).*

Definition

The Ω -Scott Rank of a separable metric structure $\mathcal A$ is the least countable ordinal *α >* 0 such that all the automorphism orbits of all finite tuples of *A* are (Ω, \inf^{α}) -definable.

Theorem (B.)

Let A be a separable metric structure , Ω *a universal modulus and α >* 0 *a countable limit ordinal. Fix A, a countable tail-dense sequence of A. Then, the following are equivalent:*

Theorem (B.)

Let A be a separable metric structure , Ω *a universal modulus and α >* 0 *a countable limit ordinal. Fix A, a countable tail-dense sequence of A. Then, the following are equivalent:*

1. *the closure of every automorphism orbit of every* $\bar a\in$ *A^{<* ω *} is* $(\Omega,\inf^{\textstyle <\alpha})$ *-definable without parameters;*

Theorem (B.)

Let A be a separable metric structure , Ω *a universal modulus and α >* 0 *a countable limit ordinal. Fix A, a countable tail-dense sequence of A. Then, the following are equivalent:*

- 1. *the closure of every automorphism orbit of every* $\bar a\in$ *A^{<* ω *} is* $(\Omega,\inf^{\textstyle <\alpha})$ *-definable without parameters;*
- 2. *A has an* (Ω*,* sup*^α*) *Scott predicate. That is, a definable predicate of the form* $Q = \sup_n \sup_{\bar{x}_n} P_n(\bar{x}_n)$ *that characterizes* $\mathcal A$ *up to isomorphism amongst all separable structures in the same language and such that each* P_n *is an* $(\Omega, \inf^{\leq \alpha})$ *definable predicate;*

Theorem (B.)

Let A be a separable metric structure , Ω *a universal modulus and α >* 0 *a countable limit ordinal. Fix A, a countable tail-dense sequence of A. Then, the following are equivalent:*

- 1. *the closure of every automorphism orbit of every* $\bar a\in$ *A^{<* ω *} is* $(\Omega,\inf^{\textstyle <\alpha})$ *-definable without parameters;*
- 2. *A has an* (Ω*,* sup*^α*) *Scott predicate. That is, a definable predicate of the form* $Q = \sup_n \sup_{\bar{x}_n} P_n(\bar{x}_n)$ *that characterizes* $\mathcal A$ *up to isomorphism amongst all separable structures in the same language and such that each* P_n *is an* $(\Omega, \inf^{\leq \alpha})$ *definable predicate;*
- 3. *every* $(\Omega, \overline{\sup{\leftarrow}\alpha})$ *type realized in A is supported in A by an* $(\Omega, \inf^{\leftarrow}\alpha)$ -*definable predicate without parameters.*

References

-
- Itaï Ben Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov, *Model theory for metric structures*, Cambridge University Press, Cambridge, 2008.

Itaï Ben Yaacov, Michal Doucha, Andre Nies, and Todor Tsankov, *Metric Scott analysis*, 46–87.

Itaï Ben Yaacov and José Iovino, *Model theoretic forcing in analysis*, Annals of Pure and Applied Logic **158** (2009), no. 3, 163–174.

- Christopher J. Eagle, *Omitting types for infinitary [0, 1]-valued logic*, Annals of Pure and Applied Logic **165** (2014), no. 3, 913–932, arXiv:1304.5208 [math].
- Andreas Hallbäck, Maciej Malicki, and Todor Tsankov, *Continous logic and borel equivalence relations*, The Journal of Symbolic Logic (2022), 1-25.

Antonio Montalbán, *Computable Structure Theory: Beyond the arithmetic*, In preparation.

R

- , *A robuster Scott rank*, Proceedings of the American Mathematical Society **143** (2015), no. 12, 5427–5436.
- Dana Scott, *Logic with denumerably long formulas and finite strings of quantifiers*, Journal of Symbolic Logic **36** (1965), no. 1, 1104–329.

Thank You!

