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Metric Structures

Intuition: A metric structure is the continuous, or metric, analogue of a model.
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Metric Structures

Intuition: A metric structure is the continuous, or metric, analogue of a model.

Definition
A metric structure is a triple (M, d; /) such that (M, d) is a complete, bounded™ metric
space, and / is an interpretation consisting of:

+ a collection of distinguished elements ¢ € M (constants);
+ a collection of distinguished uniformly continuous functions f : M" — M (functions);

+ a collection of distinguished uniformly continuous functions P : M" — [a,b] C R
(predicates).

We say that a metric structure is separable if (M, d) is a separable metric space and /
is countable.
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Two Examples

1. 1f (M5 {¢ }jes, {fi bkeks {Re}eer) is @ model, and dyg 1y is the discrete metric on M.
Then

(M, dgo.1y; {G}jes fihkers {Re}eer)

is a metric structure.
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Two Examples

1. 1f (M5 {¢ }jes, {fi bkeks {Re}eer) is @ model, and dyg 1y is the discrete metric on M.
Then

(M, d0,1y; {6 }jess {fitrers {Re}eer)
is a metric structure.
2. Cantor and Baire space: (2¢,d) and (w¥, d) where
.2‘”, if n is the least index such that 7(n) # o(n)

d(r,0) = «

: T=0

We can also add a function f : M — M defined by f(7)(n) = 7(n + 1).
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Two More Examples
1. Given a probability algebra
A = (A707 17ﬁa/\7 \/,,u)

letd,,(x,y) = pu(xAy) be the complete distance related to the measure . Then

(A7 du§ {Ov 1}’ {_" A, \/}, {:u})

is a metric structure.
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Two More Examples
1. Given a probability algebra
A = (A707 17ﬁa/\7 \/,,u)

letd,,(x,y) = pu(xAy) be the complete distance related to the measure . Then

(A7 du§ {Ov 1}’ {_" A, \/}, {:u})

is a metric structure.

2. Hilbert Space.
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Metric Scott analysis

Theorem ([BYDNT17] Scott Sentences)

Every separable metric structure A is characterized, up to isomorphism among all
separable metric structures in the same language, by a continuous infinitary sentence,
which is called the Scott sentence of A. That is, there is a continuous infinitary sentence ¢
such that for any separable metric structure I3 in the same language,

=0 iff B=A.
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Continuous infinitary logic, informally

Intuition: We want a language that allows us to perform a Scott analysis of separable
metric structures.
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and the modulus of continuity of ¢ are specified by the language;

2. given formulas ¢ and 1), we allow the following connectives*
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Continuous infinitary logic, informally

Intuition: We want a language that allows us to perform a Scott analysis of separable

metric structures.

1. Formulas are uniformly continuous™ functions ¢ : A" — [ag, bs] C R. The range,
and the modulus of continuity of ¢ are specified by the language;

2. given formulas ¢ and 1), we allow the following connectives*

¢ + 1/)7 max(¢,z/)), min(¢7¢)» {r' ¢}r€@7 1;

3. sup, and inf, act as the continuous first-order quantifiers;
4. Suppose {¢, | n < w} is a set of formulas, A a modulus of continuity, and / C R
compact. If each ¢, respects A and /, then sup,, ¢, and inf, ¢, are formulas
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A Robust Scott Rank

Theorem ([Moni5])

The Scott rank of a countable structure A is the least ordinal o« > 0 such that the
following equivalent conditions all hold:
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Theorem ([Moni5])

The Scott rank of a countable structure A is the least ordinal o« > 0 such that the
following equivalent conditions all hold:

1. every automorphism orbit of A is definable by an X" -formula;
2. the Scott sentence of Ais I ;

3. for any I1"-type p(X) realized in A, there is a ¥.I" formula ¢(X) that supports the
type in A. Meaning that A = 3 x¢(x) and:

A (66) = Avgepin V).
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A Robust Scott Rank

Theorem ([Moni5])

The Scott rank of a countable structure A is the least ordinal o« > 0 such that the
following equivalent conditions all hold:

1. every automorphism orbit of A is definable by an X" -formula;
2. the Scott sentence of Ais I ;

3. for any I1"-type p(X) realized in A, there is a ¥.I" formula ¢(X) that supports the
type in A. Meaning that A = 3 x¢(x) and:

A (66) = Avgepin V).

Question

Can we give a robust notion of Scott rank for separable metric structures?
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A First Step

Definition

Let A and BB be separable metric structures. Fix sequencesA = {a, | n <w} C A
and B = {b, | n < w} C B such that every tail of each sequence is dense in the
respective structure.
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A First Step

Definition

Let A and BB be separable metric structures. Fix sequencesA = {a, | n <w} C A
and B = {b, | n < w} C B such that every tail of each sequence is dense in the
respective structure.

Question

What relation between A and B can be lifted to an isomorphism between A and B.

Berkeley

UNIVERSITY OF CALIFORNIA




Definition
An Q-bounded back-and-forth set with bound t > 0 is a set/ C A< x B<“ such that
for (@,b) € I we have:
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Definition

An Q-bounded back-and-forth set with bound t > 0 is a set/ C A< x B<“ such that

for (@,b) € I we have:

1. sup, [¢7(@) — ¢5(b)| < t where ¢(X) varies over all |a| = |b|-ary -quantifier
free formulas™;

2. Foreveryc € Athereisad € Bsuch that the index of d in Bis larger than all the
indices in @, b, cand (ac, bd) € |

3. Foreveryd € Bthereis ac € Asuch that the index of cin A is larger than all the
indices in @, b,d and (ac, bd) € |

Theorem

Let A and BB be separable metric structures, € a universal modulus, and t > 0. Fix
countable tail-dense sequences A of A and B of B. If | C A% x B<“ is an Q)-bounded
back-and-forth set with bound t and (@, b) € I, then there is an isomorphism ® : A — B

such that
Q(dalf(a),bi) [ i <la]) <t
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Definability of Closures of Automorphism
Orbits




Definability of Closures of Automorphism
Orbits

Lemma ([BYDNT17])

Let €0 be an universal weak-modulus, A be a separable metric structure with a countable
tail-dense sequence A, and @, b € A" for some n < w. Then b € Aut4(a (@) if, and only if,
»(a) = ¢*A(b) for all 2 continuous infinitary formulas without parameters.
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Definability of Closures of Automorphism
Orbits

Lemma ([BYDNT17])

Let €0 be an universal weak-modulus, A be a separable metric structure with a countable
tail-dense sequence A, and @, b € A" for some n < w. Then b € Aut4(a (@) if, and only if,
»(a) = ¢*A(b) for all 2 continuous infinitary formulas without parameters.

Theorem (B.)

Let 2 be an universal weak-modulus, A be a separable metric structure. Then the closure
of the automorphism orbit of @ € A<% in A is Q-definable (i.e. the function

d**(x, Aut 4 (a)) is a definable predicate).
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A Robust(ish) Scott Rank for Separable
Metric Structures




A Robust(ish) Scott Rank for Separable
Metric Structures

Definition
The €2-Scott Rank of a separable metric structure A is the least countable ordinal

« > 0 such that all the automorphism orbits of all finite tuples of A are
(2, inf")-definable.
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A Robust(ish) Scott Rank for Separable
Metric Structures

Theorem (B.)

Let A be a separable metric structure, §2 a universal modulus and o« > 0 a countable limit
ordinal. Fix A, a countable tail-dense sequence of A. Then, the following are equivalent:
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ordinal. Fix A, a countable tail-dense sequence of A. Then, the following are equivalent:

1. the closure of every automorphism orbit of every a € A< s (€2, inf<a)—definable
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2. A has an (2, sup®) Scott predicate. That is, a definable predicate of the form
Q = sup, sup; P,(X,) that characterizes A up to isomorphism amongst all separable

structures in the same language and such that each P, is an (€2, inf~%) definable
predicate;
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A Robust(ish) Scott Rank for Separable
Metric Structures

Theorem (B.)

Let A be a separable metric structure, §2 a universal modulus and o« > 0 a countable limit

ordinal. Fix A, a countable tail-dense sequence of A. Then, the following are equivalent:

1. the closure of every automorphism orbit of every a € A< s (€2, inf<a)—definable
without parameters;

2. A has an (2, sup®) Scott predicate. That is, a definable predicate of the form
Q = sup, sup; P,(X,) that characterizes A up to isomorphism amongst all separable
structures in the same language and such that each P, is an (€2, inf~%) definable
predicate;

3. every (Q, SUp<) type realized in A is supported in A by an (€2, inf~)-definable
predicate without parameters.
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